|
參考文獻 1. Scott, D. E.; Bayly, A. R.; Abell, C.; Skidmore, J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discovery 2016, 15, 533-550. 2. Takaoka, Y.; Ojida, A.; Hamachi, I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew. Chem., Int. Ed. 2013, 52, 4088-4106. 3. Sakurai, K.; Ozawa, S.; Yamaguchi, T. Photoaffinity labeling studies of the carbohydrate-binding proteins with different affinities. Bioorg. Med. Chem. 2015, 23, 5319-5325. 4. Tamura, T.; Ueda, T.; Goto, T.; Tsukidate, T.; Shapira, Y.; Nishikawa, Y.; Fujisawa, A.; Hamachi, I. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat. Commun. 2018, 9, 1870. 5. Kunishima, M.; Nakanishi, S.; Nishida, J.; Tanaka, H.; Morisaki, D.; Hioki, K.; Nomoto, H. Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation. Chem. Commun. 2009, 37, 5597-5599. 6. Murale, D. P.; Hong, S. C.; Haque, M. M.; Lee, J. S. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci. 2016, 15, 14-47. 7. Site-Specific Protein Labeling: Methods and Protocols; Methods in Molecular Biology; Gautier, A., Hinner, M. J., Eds.; Springer: New York, 2015. 8. Chang, T.-C.; Lai, C.-H.; Chien, C.-W.; Liang, C.-F.; Adak, A. K.; Chuang, Y.-J.; Chen, Y.-J.; Lin, C.-C. Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate–Lectin Interactions. Bioconjugate Chem. 2013, 24, 1895-1906. 9. Chang, T.-C.; Adak, A. K.; Lin, T.-W.; Li, P.-J.; Chen, Y.-J.; Lai, C.-H.; Liang, C.-F.; Chen, Y.-J.; Lin, C.-C. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein. Bioorg. Med. Chem. 2016, 24, 1216-1224. 10. Varki, A. Evolutionary forces shaping the golgi glycosylation machinery: Why cell surface glycans are universal to living cells. Cold Spring Harb. Perspect. Biol. 2011, 3, a005462. 11. Maverakis, E.; Kim, K.; Shimoda, M.; Gershwin, M. E.; Patel, F.; Wilken, R.; Raychaudhuri, S.; Ruhaak, L. R.; Lebrilla, C. B. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. J. Autoimmun. 2015, 57, 1-13. 12. McMichael, A. J.; Borrow, P.; Tomaras, G. D.; Goonetilleke, N.; Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nat. Rev. Immunol. 2010, 10, 11-23. 13. Christiansen, M. N.; Chik, J.; Lee, L.; Anugraham, M.; Abrahams, J. L.; Packer, N. H. Cell surface protein glycosylation in cancer. Proteomics 2014, 14, 525-546. 14. Pearce, O. M.; Laubli, H. Sialic acids in cancer biology and immunity. Glycobiology 2016, 26, 111-128. 15. Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L. Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 2010, 63, 322-329. 16. Bull, C.; Stoel, M. A.; den Brok, M. H.; Adema, G. J. Sialic acids sweeten a tumor's life. Cancer Res. 2014, 74, 3199-3204. 17. Almaraz, R. T.; Tian, Y.; Bhattarcharya, R.; Tan, E.; Chen, S. H.; Dallas, M. R.; Chen, L.; Zhang, Z.; Zhang, H.; Konstantopoulos, K.; Yarema, K. J. Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol. Cell. Proteomics 2012, 11, M112 017558. 18. Uemura, T.; Shiozaki, K.; Yamaguchi, K.; Miyazaki, S.; Satomi, S.; Kato, K.; Sakuraba, H.; Miyagi, T. Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. Oncogene 2009, 28, 1218-1229. 19. Shiozaki, K.; Yamaguchi, K.; Takahashi, K.; Moriya, S.; Miyagi, T. Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. J. Biol. Chem. 2011, 286, 21052-21061. 20. Becker, D. J.; Lowe, J. B. Fucose: biosynthesis and biological function in mammals. Glycobiology 2003, 13, 41R-53R. 21. Lin, T.-W.; Chang, H.-T.; Chen, C.-H.; Chen, C.-H.; Lin, S.-W.; Hsu, T.-L.; Wong, C.-H. Galectin-3 binding protein and galectin-1 interaction in breast cancer cell aggregation and metastasis. J. Am. Chem. Soc. 2015, 137, 9685-9693. 22. Takeda, Y.; Shinzaki, S.; Okudo, K.; Moriwaki, K.; Murata, K.; Miyoshi, E. Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer 2012, 118, 3036-3043. 23. Fujita, K.; Shimomura, M.; Uemura, M.; Nakata, W.; Sato, M.; Nagahara, A.; Nakai, Y.; Takamatsu, S.; Miyoshi, E.; Nonomura, N. Serum fucosylated haptoglobin as a novel prognostic biomarker predicting high‐Gleason prostate cancer. Prostate 2014, 74, 1052-1058. 24. Kuno, A.; Uchiyama, N.; Koseki-Kuno, S.; Ebe, Y.; Takashima, S.; Yamada, M.; Hirabayashi, J. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods 2005, 2, 851-856. 25. Hayashi, T.; Sun, Y.; Tamura, T.; Kuwata, K.; Song, Z.; Takaoka, Y.; Hamachi, I. Semisynthetic lectin-4-dimethylaminopyridine conjugates for labeling and profiling glycoproteins on live cell surfaces. J. Am. Chem. Soc. 2013, 135, 12252-12258. 26. Rabinovich, G. A.; Croci, D. O. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 2012, 36, 322-335. 27. van Kooyk, Y.; Rabinovich, G. A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 2008, 9, 593-601. 28. Crocker, P. R.; Varki, A. Siglecs in the immune system. Immunology 2001, 103, 137-145. 29. Rabinovich, G. A.; Toscano, M. A.; Jackson, S. S.; Vasta, G. R. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 2007, 17, 513-520. 30. Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F. Introduction to galectins. Glycoconj. J. 2004, 19, 433-440. 31. Figdor, C. G.; van Kooyk, Y.; Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2002, 2, 77-84. 32. Morris, K. N.; Wool, I. G. Determination by systematic deletion of the amino acids essential for catalysis by ricin A chain. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 4869-4873. 33. Szewczak, A. A.; Moore, P. B.; Chang, Y. L.; Wool, I. G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 9581-9585. 34. Itakura, Y.; Nakamura-Tsuruta, S.; Kominami, J.; Sharon, N.; Kasai, K.; Hirabayashi, J. Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. 2007, 142, 459-469. 35. Rutenber, E.; Robertus, J. D. Structure of ricin B-chain at 2.5 A resolution. Proteins 1991, 10, 260-269. 36. Wu, A. M.; Wu, J. H.; Singh, T.; Lai, L. J.; Yang, Z.; Herp, A. Recognition factors of Ricinus communis agglutinin 1 (RCA(1)). Mol. Immunol. 2006, 43, 1700-1715. 37. You, W.-K.; Kasman, I.; Hu-Lowe, D. D.; McDonald, D. M. Ricinus communis Agglutinin I Leads to Rapid Down-Regulation of VEGFR-2 and Endothelial Cell Apoptosis in Tumor Blood Vessels. Am. J. Pathol. 2010, 176, 1927-1940. 38. Rana, M.; Dhamija, H.; Prashar, B.; Sharma, S. Ricinus communis L. - A review. Int. J. Pharmtech Res. 2012, 4, 1706-1711. 39. Crocker, P. R.; Paulson, J. C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007, 7, 255-266. 40. Delputte, P. L.; Van Gorp, H.; Favoreel, H. W.; Hoebeke, I.; Delrue, I.; Dewerchin, H.; Verdonck, F.; Verhasselt, B.; Cox, E.; Nauwynck, H. J. Porcine sialoadhesin (CD169/Siglec-1) is an endocytic receptor that allows targeted delivery of toxins and antigens to macrophages. PLoS One 2011, 6, e16827. 41. Izquierdo-Useros, N.; Lorizate, M.; McLaren, P. J.; Telenti, A.; Krausslich, H. G.; Martinez-Picado, J. HIV-1 Capture and Transmission by Dendritic Cells: The Role of Viral Glycolipids and the Cellular Receptor Siglec-1. PLoS Pathog. 2014, 10, e1004146. 42. Kiwamoto, T.; Kawasaki, N.; Paulson, J. C.; Bochner, B. S. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 2012, 135, 327-336. 43. Pillai, S.; Netravali, I. A.; Cariappa, A.; Mattoo, H. Siglecs and immune regulation. Annu. Rev. Immunol. 2012, 30, 357-392. 44. Poe, J. C.; Fujimoto, Y.; Hasegawa, M.; Haas, K. M.; Miller, A. S.; Sanford, I. G.; Bock, C. B.; Fujimoto, M.; Tedder, T. F. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat. Immunol. 2004, 5, 1078-1087. 45. Jellusova, J.; Nitschke, L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front. Immunol. 2011, 2, 96. 46. Dörner, T.; Shock, A.; Goldenberg, D. M.; Lipsky, P. E. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus. Autoimmun. Rev. 2015, 14, 1079-1086. 47. Tamir, I.; Dal Porto, J. M.; Cambier, J. C. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr. Opin. Immunol. 2000, 12, 307-315. 48. Powell, L. D.; Jain, R. K.; Matta, K. L.; Sabesan, S.; Varki, A. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22. Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 1995, 270, 7523-7532. 49. Collins, B. E.; Blixt, O.; Han, S.; Duong, B.; Li, H.; Nathan, J. K.; Bovin, N.; Paulson, J. C. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J Immunol. 2006, 177, 2994-3003. 50. Peng, W.; Paulson, J. C. CD22 ligands on a natural N-glycan scaffold efficiently deliver toxins to B-lymphoma cells. J. Am. Chem. Soc. 2017, 139, 12450-12458. 51. O’Reilly, M. K.; Collins, B. E.; Han, S.; Liao, L.; Rillahan, C.; Kitov, P. I.; Bundle, D. R.; Paulson, J. C. Bifunctional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells. J. Am. Chem. Soc. 2008, 130, 7736-7745. 52. McEnaney, P. J.; Parker, C. G.; Zhang, A. X.; Spiegel, D. A. Antibody-recruiting molecules: An emerging paradigm for engaging immune function in treating human disease. ACS Chem. Biol. 2012, 7, 1139-1151. 53. Jandus, C.; Boligan, K. F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R. E.; Baerlocher, G. M.; Simon, H.-U.; Romero, P.; Münz, C.; von Gunten, S. Interactions between Siglec-7/9 receptors and ligands influence NK cell–dependent tumor immunosurveillance. J. Clin. Invest. 2014, 124, 1810-1820. 54. Hudak, J. E.; Canham, S. M.; Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014, 10, 69-75. 55. Nicoll, G.; Avril, T.; Lock, K.; Furukawa, K.; Bovin, N.; Crocker, P. R. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 2003, 33, 1642-1648. 56. Ito, A.; Handa, K.; Withers, D. A.; Satoh, M.; Hakomori, S. Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett. 2001, 504, 82-86. 57. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010, 20, 1373-1379. 58. Yamaji, T.; Teranishi, T.; Alphey, M. S.; Crocker, P. R.; Hashimoto, Y. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem. 2002, 277, 6324-6332. 59. Jäger, S.; Cimermancic, P.; Gulbahce, N.; Johnson, J. R.; McGovern, K. E.; Clarke, S. C.; Shales, M.; Mercenne, G.; Pache, L.; Li, K.; Hernandez, H.; Jang, G. M.; Roth, S. L.; Akiva, E.; Marlett, J.; Stephens, M.; D’Orso, I.; Fernandes, J.; Fahey, M.; Mahon, C.; O’Donoghue, A. J.; Todorovic, A.; Morris, J. H.; Maltby, D. A.; Alber, T.; Cagney, G.; Bushman, F. D.; Young, J. A.; Chanda, S. K.; Sundquist, W. I.; Kortemme, T.; Hernandez, R. D.; Craik, C. S.; Burlingame, A.; Sali, A.; Frankel, A. D.; Krogan, N. J. Global landscape of HIV-human protein complexes. Nature 2011, 481, 365-370. 60. Jain, A.; Liu, R.; Ramani, B.; Arauz, E.; Ishitsuka, Y.; Ragunathan, K.; Park, J.; Chen, J.; Xiang, Y. K.; Ha, T. Probing cellular protein complexes using single-molecule pull-down. Nature 2011, 473, 484-488. 61. Aoki, S. K.; Diner, E. J.; de Roodenbeke, C. t. K.; Burgess, B. R.; Poole, S. J.; Braaten, B. A.; Jones, A. M.; Webb, J. S.; Hayes, C. S.; Cotter, P. A.; Low, D. A. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 2010, 468, 439-442. 62. Stellberger, T.; Häuser, R.; Baiker, A.; Pothineni, V. R.; Haas, J.; Uetz, P. Improving the yeast two-hybrid system with permutated fusions proteins: the Varicella Zoster Virus interactome. Proteome Sci. 2010, 8, 8. 63. Petschnigg, J.; Groisman, B.; Kotlyar, M.; Taipale, M.; Zheng, Y.; Kurat, C. F.; Sayad, A.; Sierra, J. R.; Usaj, M. M.; Snider, J.; Nachman, A.; Krykbaeva, I.; Tsao, M.-S.; Moffat, J.; Pawson, T.; Lindquist, S.; Jurisica, I.; Stagljar, I. The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells. Nat. Methods 2014, 11, 585-592. 64. Jones, R. B.; Gordus, A.; Krall, J. A.; MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006, 439, 168-174. 65. Liu, B.; Archer, C. T.; Burdine, L.; Gillette, T. G.; Kodadek, T. Label transfer chemistry for the characterization of protein-protein interactions. J. Am. Chem. Soc. 2007, 129, 12348-12349. 66. Li, X. W.; Rees, J. S.; Xue, P.; Zhang, H.; Hamaia, S. W.; Sanderson, B.; Funk, P. E.; Farndale, R. W.; Lilley, K. S.; Perrett, S.; Jackson, A. P. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem. 2014, 289, 14434-14447. 67. Bar, D. Z.; Atkatsh, K.; Tavarez, U.; Erdos, M. R.; Gruenbaum, Y.; Collins, F. S. Biotinylation by antibody recognition-a method for proximity labeling. Nat. Methods 2018, 15, 127-133. 68. Leitner, A.; Walzthoeni, T.; Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat. Protoc. 2013, 9, 120-137. 69. Kim, D. I.; Roux, K. J. Filling the void: Proximity-based labeling of proteins in living cells. Trends Cell Biol. 2016, 26, 804-817. 70. Rees, J. S.; Li, X.-W.; Perrett, S.; Lilley, K. S.; Jackson, A. P. Protein neighbors and proximity proteomics. Mol. Cell. Proteomics 2015, 14, 2848-2856. 71. Branon, T. C.; Bosch, J. A.; Sanchez, A. D.; Udeshi, N. D.; Svinkina, T.; Carr, S. A.; Feldman, J. L.; Perrimon, N.; Ting, A. Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018, 36, 880-887. 72. Lam, S. S.; Martell, J. D.; Kamer, K. J.; Deerinck, T. J.; Ellisman, M. H.; Mootha, V. K.; Ting, A. Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 2014, 12, 51-54. 73. Rhee, H. W.; Zou, P.; Udeshi, N. D.; Martell, J. D.; Mootha, V. K.; Carr, S. A.; Ting, A. Y. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013, 339, 1328-1331. 74. Chen, A. L.; Kim, E. W.; Toh, J. Y.; Vashisht, A. A.; Rashoff, A. Q.; Van, C.; Huang, A. S.; Moon, A. S.; Bell, H. N.; Bentolila, L. A.; Wohlschlegel, J. A.; Bradley, P. J. Novel components of the Toxoplasma inner membrane complex revealed by BioID. mBio 2015, 6, e02357−14. 75. Krishnamurthy, A.; Jimeno, A. Bispecific antibodies for cancer therapy: A review. Pharmacol. Ther. 2018, 185, 122-134. 76. Sawa, M.; Hsu, T.-L.; Itoh, T.; Sugiyama, M.; Hanson, S. R.; Vogt, P. K.; Wong, C.-H. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12371-12376. 77. Krall, N.; da Cruz, F. P.; Boutureira, O.; Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 2016, 8, 103-113. 78. Li, X.; Fang, T.; Boons, G.-J. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew. Chem., Int. Ed. 2014, 53, 7179-7182. 79. Witus, L. S.; Francis, M. B. Using synthetically modified proteins to make new materials. Acc. Chem. Res. 2011, 44, 774-783. 80. Kim, C. H.; Axup, J. Y.; Schultz, P. G. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol. 2013, 17, 412-419. 81. Gong, Y.; Pan, L. Recent advances in bioorthogonal reactions for site-specific protein labeling and engineering. Tetrahedron Lett. 2015, 56, 2123-2132. 82. Baker, A. S.; Deiters, A. Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches. ACS Chem. Biol. 2014, 9, 1398-1407. 83. Gautier, A.; Deiters, A.; Chin, J. W. Light-activated kinases enable temporal dissection of signaling networks in living cells. J. Am. Chem. Soc. 2011, 133, 2124-2127. 84. Lemke, E. A.; Summerer, D.; Geierstanger, B. H.; Brittain, S. M.; Schultz, P. G. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat. Chem. Biol. 2007, 3, 769-772. 85. Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 2004, 126, 14306-14307. 86. Deiters, A.; Groff, D.; Ryu, Y.; Xie, J.; Schultz, P. G. A genetically encoded photocaged tyrosine. Angew. Chem., Int. Ed. 2006, 45, 2728-2731. 87. Baslé, E.; Joubert, N.; Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol. 2010, 17, 213-227. 88. Tanaka, K.; Fujii, Y.; Fukase, K. Site-selective and nondestructive protein labeling through azaelectrocyclization-induced cascade reactions. ChemBioChem 2008, 9, 2392-2397. 89. Fuhrmann, J.; Clancy, K. W.; Thompson, P. R. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 2015, 115, 5413-5461. 90. Chen, G.; Heim, A.; Riether, D.; Yee, D.; Milgrom, Y.; Gawinowicz, M. A.; Sames, D. Reactivity of functional groups on the protein surface: development of epoxide probes for protein labeling. J. Am. Chem. Soc. 2003, 125, 8130-8133. 91. Schlick, T. L.; Ding, Z.; Kovacs, E. W.; Francis, M. B. Dual-Surface Modification of the Tobacco Mosaic Virus. J. Am. Chem. Soc. 2005, 127, 3718-3723. 92. McFarland, J. M.; Joshi, N. S.; Francis, M. B. Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 2008, 130, 7639-7644. 93. Rosen, C. B.; Francis, M. B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 2017, 13, 697-705. 94. Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. Target-specific chemical acylation of lectins by ligand-tethered DMAP catalysts. J. Am. Chem. Soc. 2008, 130, 245-251. 95. Song, Z.; Takaoka, Y.; Kioi, Y.; Komatsu, K.; Tamura, T.; Miki, T.; Hamachi, I. Extended affinity-guided DMAP chemistry with a finely tuned acyl donor for intracellular FKBP12 labeling. Chem. Lett. 2014, 44, 333-335. 96. Tamura, T.; Song, Z.; Amaike, K.; Lee, S.; Yin, S.; Kiyonaka, S.; Hamachi, I. Affinity-guided oxime chemistry for selective protein acylation in live tissue systems. J. Am. Chem. Soc. 2017, 139, 14181-14191. 97. Heidler, P.; Link, A. N-acyl-N-alkyl-sulfonamide anchors derived from Kenner's safety-catch linker: powerful tools in bioorganic and medicinal chemistry. Bioorg. Med. Chem. 2005, 13, 585-599. 98. Falchi, A.; Giacomelli, G.; Porcheddu, A.; Taddei, M. 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM): A valuable alternative to PyBOP for solid phase peptide synthesis. Synlett 2000, 275–277. 99. D’Este, M.; Eglin, D.; Alini, M. A systematic analysis of DMTMM vs EDC/NHS for ligation of amines to hyaluronan in water. Carbohydr. Polym. 2014, 108, 239-246. 100. Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 2009, 5, 341-343. 101. Tamura, T.; Tsukiji, S.; Hamachi, I. Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells. J. Am. Chem. Soc. 2012, 134, 2216-2226. 102. Fujishima, S.-h.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J. Am. Chem. Soc. 2012, 134, 3961-3964. 103. Vodovozova, E. L. Photoaffinity labeling and its application in structural biology. Biochemistry (Moscow) 2007, 72, 1-20. 104. Herner, A.; Marjanovic, J.; Lewandowski, T. M.; Marin, V.; Patterson, M.; Miesbauer, L.; Ready, D.; Williams, J.; Vasudevan, A.; Lin, Q. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J. Am. Chem. Soc. 2016, 138, 14609-14615. 105. Singh, A.; Thornton, E. R.; Westheimer, F. H. The photolysis of diazoacetylchymotrypsin. J. Biol. Chem. 1962, 237, PC3006-3008. 106. Meier, H.; Zeller, K.-P. The Wolff rearrangement of α‐diazo carbonyl compounds. Angew. Chem., Int. Ed. 1975, 14, 32-43. 107. Smith, R. A. G.; Knowles, J. R. The preparation and photolysis of 3-aryl-3H-diazirines. J. Chem. Soc., Perkin Trans. 2, 1975, 686-694 108. Church, R. F. R.; Weiss, M. J. Diazirines. II. Synthesis and properties of small functionalized diazirine molecules. Observations on the reaction of a diaziridine with the iodine-iodide ion system. J. Org. Chem. 1970, 35, 2465-2471. 109. Brunner, J.; Senn, H.; Richards, F. M. 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J. Biol. Chem. 1980, 255, 3313-3318. 110. Leriche, G.; Chisholm, L.; Wagner, A. Cleavable linkers in chemical biology. Bioorg. Med. Chem. 2012, 20, 571-582. 111. Zhang, X.; Malhotra, S.; Molina, M.; Haag, R. Micro- and nanogels with labile crosslinks - from synthesis to biomedical applications. Chem. Soc. Rev. 2015, 44, 1948-1973. 112. Mortensen, M. R.; Skovsgaard, M. B.; Okholm, A. H.; Scavenius, C.; Dupont, D. M.; Rosen, C. B.; Enghild, J. J.; Kjems, J.; Gothelf, K. V. Small-molecule probes for affinity-guided introduction of biocompatible handles on metal-binding proteins. Bioconjugate Chem. 2018, 29, 3016-3025. 113. Pillow, T. H.; Sadowsky, J. D.; Zhang, D.; Yu, S. F.; Del Rosario, G.; Xu, K.; He, J.; Bhakta, S.; Ohri, R.; Kozak, K. R.; Ha, E.; Junutula, J. R.; Flygare, J. A. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem. Sci. 2017, 8, 366-370. 114. Hamann, P. R.; Hinman, L. M.; Beyer, C. F.; Lindh, D.; Upeslacis, J.; Flowers, D. A.; Bernstein, I. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chem. 2002, 13, 40-46. 115. Schneider, E. M.; Zeltner, M.; Zlateski, V.; Grass, R. N.; Stark, W. J. Click and release: fluoride cleavable linker for mild bioorthogonal separation. Chem. Commun. 2016, 52, 938-941. 116. Tomohiro, T.; Kato, K.; Masuda, S.; Kishi, H.; Hatanaka, Y. Photochemical construction of coumarin fluorophore on affinity-anchored protein. Bioconjugate Chem. 2011, 22, 315-318. 117. Tomohiro, T.; Inoguchi, H.; Masuda, S.; Hatanaka, Y. Affinity-based fluorogenic labeling of ATP-binding proteins with sequential photoactivatable cross-linkers. Bioorg. Med. Chem. Lett. 2013, 23, 5605-5608. 118. Morimoto, S.; Tomohiro, T.; Maruyama, N.; Hatanaka, Y. Photoaffinity casting of a coumarin flag for rapid identification of ligand-binding sites within protein. Chem. Commun. 2013, 49, 1811-1813. 119. Klymchenko, A. S. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. Acc. Chem. Res. 2017, 50, 366-375. 120. Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015, 15, 8300-8305. 121. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006. 122. Olsson, T. S. G.; Williams, M. A.; Pitt, W. R.; Ladbury, J. E. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design. J. Mol. Biol. 2008, 384, 1002-1017. 123. Myslinski, J. M.; DeLorbe, J. E.; Clements, J. H.; Martin, S. F. Protein–ligand interactions: Thermodynamic effects associated with increasing nonpolar surface area. J. Am. Chem. Soc. 2011, 133, 18518-18521. 124. MacNevin, C. J.; Gremyachinskiy, D.; Hsu, C.-W.; Li, L.; Rougie, M.; Davis, T. T.; Hahn, K. M. Environment-sensing merocyanine dyes for live cell imaging applications. Bioconjugate Chem. 2013, 24, 215-223. 125. Chen, H.-J.; Chew, C. Y.; Chang, E.-H.; Tu, Y.-W.; Wei, L.-Y.; Wu, B.-H.; Chen, C.-H.; Yang, Y.-T.; Huang, S.-C.; Chen, J.-K.; Chen, I. C.; Tan, K.-T. S-cis diene conformation: A new bathochromic shift strategy for near-infrared fluorescence switchable dye and the imaging applications. J. Am. Chem. Soc. 2018, 140, 5224-5234. 126. Karpenko, I. A.; Collot, M.; Richert, L.; Valencia, C.; Villa, P.; Mély, Y.; Hibert, M.; Bonnet, D.; Klymchenko, A. S. Fluorogenic squaraine dimers with polarity-sensitive folding as bright far-red probes for background-free bioimaging. J. Am. Chem. Soc. 2015, 137, 405-412. 127. Lang, K.; Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 2014, 9, 16-20. 128. Pham, N. D.; Parker, R. B.; Kohler, J. J. Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 2013, 17, 90-101. 129. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936-3938. 130. Stolowitz, M. L.; Ahlem, C.; Hughes, K. A.; Kaiser, R. J.; Kesicki, E. A.; Li, G.; Lund, K. P.; Torkelson, S. M.; Wiley, J. P. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 1. A novel boronic acid complex for protein immobilization. Bioconjugate Chem. 2001, 12, 229-239. 131. Kikuchi, D.; Sakaguchi, S.; Ishii, Y. An alternative method for the selective bromination of alkylbenzenes using NaBrO3/NaHSO3 reagent. J. Org. Chem. 1998, 63, 6023-6026. 132. Sá, M. M.; Ramos, M. D.; Fernandes, L. Fast and efficient preparation of Baylis–Hillman-derived (E)-allylic azides and related compounds in aqueous medium. Tetrahedron 2006, 62, 11652-11656. 133. Gritter, R. J.; Dupre, G. D.; Wallace, T. J. Oxidation of benzyl alcohols with manganese dioxide. Nature 1964, 202, 179-181. 134. Kambe, T.; Correia, B. E.; Niphakis, M. J.; Cravatt, B. F. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 2014, 136, 10777-10782. 135. Montalbetti, C. A. G. N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron, 2005, 61, 10827–10852. 136. Morley, T. J.; Withers, S. G. Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437. 137. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I. A novel α-2,6-sialyltransferase: Transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem. 1996, 61, 8632-8635. 138. Yamamoto, T.; Nakashizuka, M.; Terada, I. Cloning and expression of a marine bacterial beta-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. J. Biochem. 1998, 123, 94-100. 139. Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X. Trans-sialidase activity of Photobacterium damsela α2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2010, 20, 260-268. 140. Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933-2945. 141. Nicolson, G. L.; Blaustein, J.; Etzler, M. E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 1974, 13, 196-204. 142. Harvey, D. J.; Wing, D. R.; Kuster, B.; Wilson, I. B. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass. Spectrom. 2000, 11, 564-571. 143. Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 2002, 124, 14922-14933. 144. Arndt, N. X.; Tiralongo, J.; Madge, P. D.; von Itzstein, M.; Day, C. J. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 2011, 112, 2230-2240. 145. Tao, S. C.; Li, Y.; Zhou, J.; Qian, J.; Schnaar, R. L.; Zhang, Y.; Goldstein, I. J.; Zhu, H.; Schneck, J. P. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008, 18, 761-769. 146. Ellis, G. A.; Palte, M. J.; Raines, R. T. Boronate-mediated biologic delivery. J. Am. Chem. Soc. 2012, 134, 3631-3634. 147. Sun, T.; Yu, S.-H.; Zhao, P.; Meng, L.; Moremen, K. W.; Wells, L.; Steet, R.; Boons, G.-J. One-step selective exoenzymatic labeling (SEEL) strategy for the biotinylation and identification of glycoproteins of living cells. J. Am. Chem. Soc. 2016, 138, 11575-11582. 148. Wu, Z. L.; Huang, X.; Burton, A. J.; Swift, K. A. D. Probing sialoglycans on fetal bovine fetuin with azido-sugars using glycosyltransferases. Glycobiology 2016, 26, 329-334. 149. Palmisano, G.; Larsen, M. R.; Packer, N. H.; Thaysen-Andersen, M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv. 2013, 3, 22706-22726. 150. Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; Lu, Y.; Meng, Y. G.; Ng, C.; Yang, J.; Lee, C. C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S. D.; Lee Wong, W.; Lowman, H. B.; Vandlen, R.; Sliwkowski, M. X.; Scheller, R. H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925-932. 151. Alley, S. C.; Okeley, N. M.; Senter, P. D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 2010, 14, 529-537. 152. Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo, R.; Marcantoni, E.; Melchiorre, P.; Sambri, L. Reaction of dicarbonates with carboxylic acids catalyzed by weak Lewis acids: general method for the synthesis of anhydrides and esters. Synthesis 2007, 22, 3489-3496. 153. Gilbert, M.; Brisson, J. R.; Karwaski, M. F.; Michniewicz, J.; Cunningham, A. M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz (1)H and (13)C NMR analysis. J. Biol. Chem. 2000, 275, 3896-3906. 154. Gilbert, M.; Karwaski, M. F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A. M.; Wakarchuk, W. W. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem. 2002, 277, 327-337. 155. Liang, J.; Zhang, Z.; Zhao, H.; Wan, S.; Zhai, X.; Zhou, J.; Liang, R.; Deng, Q.; Wu, Y.; Lin, G. Simple and rapid monitoring of doxorubicin using streptavidin-modified microparticle-based time-resolved fluorescence immunoassay. RSC Adv. 2018, 8, 15621-15631. 156. Hou, H.; Zhao, Y.; Li, C.; Wang, M.; Xu, X.; Jin, Y. Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Sci. Rep. 2017, 7, 1759. 157. Park, J. W.; Hong, K.; Kirpotin, D. B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U. B.; Marks, J. D.; Moore, D.; Papahadjopoulos, D.; Benz, C. C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 2002, 8, 1172-1181. 158. Hamouda, H.; Kaup, M.; Ullah, M.; Berger, M.; Sandig, V.; Tauber, R.; Blanchard, V. Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J. Proteome Res. 2014, 13, 6144-6151. 159. Goh, J. B.; Ng, S. K. Impact of host cell line choice on glycan profile. Crit. Rev. Biotechnol. 2018, 38, 851-867. 160. Chen, J.; Stubbe, J. Bleomycins: Towards better therapeutics. Nat. Rev. Cancer 2005, 5, 102-112. 161. Chapuis, J. C.; Schmaltz, R. M.; Tsosie, K. S.; Belohlavek, M.; Hecht, S. M. Carbohydrate dependent targeting of cancer cells by bleomycin-microbubble conjugates. J. Am. Chem. Soc. 2009, 131, 2438-2439. 162. Yu, Z.; Schmaltz, R. M.; Bozeman, T. C.; Paul, R.; Rishel, M. J.; Tsosie, K. S.; Hecht, S. M. Selective tumor cell targeting by the disaccharide moiety of bleomycin. J. Am. Chem. Soc. 2013, 135, 2883-2886. 163. Bhattacharya, C.; Yu, Z.; Rishel, M. J.; Hecht, S. M. The carbamoylmannose moiety of bleomycin mediates selective tumor cell targeting. Biochemistry 2014, 53, 3264-3266. 164. Punnonen, E. L.; Ryhanen, K.; Marjomaki, V. S. At reduced temperature, endocytic membrane traffic is blocked in multivesicular carrier endosomes in rat cardiac myocytes. Eur. J. Cell Biol. 1998, 75, 344-352. 165. Yamano, S.; Dai, J.; Yuvienco, C.; Khapli, S.; Moursi, A. M.; Montclare, J. K. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J. Controlled Release 2011, 152, 278-285. 166. Liu, R.; Li, H.; Gao, X.; Mi, Q.; Zhao, H.; Gao, Q. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1. Biochem. Biophys. Res. Commun. 2017, 487, 34-40. 167. Augustin, R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life 2010, 62, 315-333. 168. Krzeslak, A.; Wojcik-Krowiranda, K.; Forma, E.; Jozwiak, P.; Romanowicz, H.; Bienkiewicz, A.; Brys, M. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol. Oncol. Res. 2012, 18, 721-728. 169. Heuser, J. E.; Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 1989, 108, 389-400.
|