帳號:guest(3.133.152.215)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭畯元
作者(外文):Cheng, Chun-Yuan
論文名稱(中文):單光子及單電漿子之量子操控
論文名稱(外文):Quantum manipulation of single photons and single plasmons
指導教授(中文):褚志崧
指導教授(外文):Chuu, Chih-Sung
口試委員(中文):施至剛
果尚志
張文豪
王立邦
口試委員(外文):Shih, Chih-Kang
Gwo, Shangjr
Chang, Wen-Hao
Wang, Li-Bang
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:102022807
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:79
中文關鍵詞:量子點單光子表面電漿波型調製
外文關鍵詞:quantum dotsingle photonsurface plasmonwaveform modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:516
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
操控量子位元狀態為實現量子運算與傳輸等量子資訊技術的必要條件。在量子狀態中波包的波形為重要的性質,其影響在量子位元與物質之交互作用,故操控波形為一門重要的課題。本論文以波形操縱討論兩個主題,一為量子點單光子螢光的純化,二為單表面電漿子波形操縱。 第一部分實驗演示室溫之CdSeTe-ZnS量子點單光子螢光的波形操縱。更進一步以調製螢光波形,使單光子純度提升,達到g^((2) ) (0)=0.01。此純度不僅與低溫InGaAs量子點單光子源[1]達到相同等級,也是目前室溫下純度最高的量子點單光子源。同時,單光子純度不隨激發強度上升而下降,故可在提升激發強度增加亮度同時,維持單光子的純度。本實驗可應用於將量子點作為室溫系統之高純度且高亮度單光子光源。第二部分實驗以調製單光子波形產生任意波形之單表面電漿子。實驗中以驗證表面單電漿子在轉換回單光子後與原始之單光子有相同的波形與同調長度,說明表面電漿子與光子之間的轉換仍保持同調性。這個結果說明藉由調製單光子波形產生任意波形且同調之單表面電漿子。本實驗為首次實現並驗證單光子與單表面電漿子間之同調波包轉換,可應用在量子資訊領域,調控單表面電漿子與其他量子位元之交互作用。
Manipulation of the quantum bit (qbit) state is essential for realizing quantum information technique, e.g. quantum teleportation and quantum computing. By waveform modulation, this thesis discusses the following two topics: the purification of single photons from quantum dots and the generation of single plasmons with arbitrary waveforms. In the first experiment, we demonstrate the waveform modulation. Of importance, the single photon is purified by the wave-packet shaping, with the single photon purity reaching g^((2) ) (0)=0.01. The achieved purity is not only comparable to the single-photon emitters based on the cryogenic-temperature InGaAs quantum dots [1], but is also the highest among the room-temperature quantum-dot single-photon emitters. With this method, we can increase the single-photon brightness by increasing the pumping power without compromising the single-photon quality. This technique can be applied to generate single photon source with high brightness and high purity. In the second experiment, we demonstrate the arbitrary-waveform single plasmon excited by single photon. We also demonstrate that the waveform and coherent time of the photon reemitted by single surface plasmon are identical with the original photon. Therefore, the coherence is maintained during the photon-plasmon conversion. This result implies that, we can generate a coherent single surface plasmon with arbitrary waveform by manipulating the single photon wavepacket. It is also the first time that the coherent wavepacket transfer has been demonstrated and verified between single photons and single plasmons. This method can be applied to control the interaction between qubit and single plasmon.
摘要 I
ABSTRACT II
目錄 III
緒論 1
I. 室溫量子點單光子光源之純化 4
1. 實驗原理 5
1.1. 單光子 5
1.1.1. 二次量子化(Second Quantization) 5
1.1.2. 單光子測量與二階相關函數 6
1.2. 量子點 9
1.2.1. 簡介 9
1.2.2. 量子點螢光 10
1.2.3. 量子點單光子光源 11
1.2.4. 環境溫度與量子點螢光 12
2. 實驗架設與樣品 13
2.1. 儀器及架設 13
2.1.1. 螢光共軛焦顯微鏡(Fluorescence Confocal Microscope) 13
2.1.2. 量子點螢光波形操縱架設 14
2.2. 量子點樣品 15
2.2.1. 樣品製備 15
2.2.2. 量子點光學性質 16
3. 實驗結果 19
3.1. 量子點單光子之波形操縱 19
3.2. 單光子純化 20
4. 總結 24
II. 任意波形之單表面電漿極化子 25
5. 實驗原理 26
5.1. 表面電漿極化子(SPP) 26
5.1.1. 理論模型 26
5.1.2. 表面電漿子極化子之激發 30
5.1.3. 異常光學透射 (EOT) 32
5.2. 雙光子光源 34
5.2.1. 雙共振自發參量下轉換 (SPDC) 34
5.2.2. 雙光子波包 36
5.2.3. 預示單光子(heralded single photons) 38
5.3. MACH-ZEHNDER干涉 39
5.4. HONG-OU-MANDEL(HOM)干涉 41
5.4.1. 簡介 41
5.4.2. SPDC雙光子之HOM干涉 42
6. 表面電漿樣品設計及性質 47
6.1. 樣品設計 47
6.2. 樣品製作與測量 48
7. 實驗架設與量測 50
7.1. 波形操縱 50
7.1.1. 實驗架設 50
7.1.2. 波形調製 52
7.1.3. 波形測量 54
7.1.4. 單光子純度 59
7.2. HONG-OU-MENDEL雙光子干涉實驗 60
7.2.1. 實驗架設 60
7.2.2. 光程差測量 61
7.2.3. 頻率差測量 62
7.2.4. 實驗結果 63
7.3. MACH-ZEHNDER干涉實驗 66
7.3.1. 實驗架設 66
7.3.2. 衰減雷射強度測量 67
7.3.3. 實驗結果 68
8. 總結 69
未來展望 70
參考文獻 71
附錄 74
A. 聲光調變器(AOM) 74
B. 古典MACH-ZEHNDER干涉實驗 76
C. 電光調變器(EOM) 77
D. HOM干涉頻譜波形 78
[1] I. Aharonovich, D. Englund, and M. Toth. Solid-state single-photon emitters. Nat. Photonics 10 , 631 (2016).
[2] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. Siam J. Comput. Vol. 26, No. 5, pp. 1484–1509 (1997).
[3] W. K. Wootters & W. H. Zurek. A single quantum cannot be cloned. Naturevolume 299, pages802–803 (1982).
[4] Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information. (Cambridge Univ. Press, 2000).
[5] Jeremy l. O’brien, Akira Furusawa, and Jelena Vučković. Photonic quantum technologies. Nat. Photonics volume 3, pages 687–695 (2009).
[6] Brent Fisher, Jean Michel Caruge, Don Zehnder, and Moungi Bawendi. Room-Temperature Ordered Photon Emission from Multiexciton States in Single CdSe Core-Shell Nanocrystals. Phys. Rev. Lett. 94, 087403 (2005).
[7] S.-W. Feng, C.-Y. Cheng et al. Purification of Single Photons from Room-Temperature Quantum Dots. Phys. Rev. Lett. 119, 143601 (2017)
[8] M. Stobinska, G. Alber and G. Leuchs. Perfect excitation of a matter qubit by a single photon in free space. EPL, 86, 14007 (2009).
[9] A. V. Akimov, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nat. Vol. 450. p402 (2007).
[10] E. Altewischer, M. P. van Exter & J. P. Woerdman. Plasmon-assisted transmission of entangled photons. Nat. volume 418, pages304–306 (2002).
[11] Marie-Christine Dheur, et al. Single-plasmon interferences. Sci. Adv. 2. e1501574 (2016)
[12] Mark Fox. Quantum Optics - An Introduction. OUP Oxford (2006).
[13] V. I. Klimov, A. A. Mikhailovsky, W. McBranch, A. Leatherdale, M. G. Bawendi. Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science Vol. 287, Issue 5455, pp. 1011-1013 (2000).
[14] B. J. Riel, An introduction to self-assembled quantum dots. American Journal of Physics 76, 750 (2008).
[15] Alexander L. Efros and David J. Nesbitt. Origin and control of blinking in quantum dots. Nat. Nanotechnol. volume 11, pages 661–671 (2016).
[16] Y. Louyer, L. Biadala, J.-B. Trebbia, M. J. Fernee, Ph. Tamarat, and B. Lounis. Efficient Biexciton Emission in Elongated CdSe/ZnS Nanocrystals. Nano Lett. 4370-4375 (2011).
[17] Mark J. Holmes, Kihyun Choi, Satoshi Kako, Munetaka Arita, and Yasuhiko Arakawa. Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot. Nano Lett. 14, 982 – 986 (2014).
[18] Stefan A. Maier. Plasmonics: Fundamentals and Applications. Springer Verlag. (2007).
[19] Mark Fox. Quantum Optics – An Introduction, Oxford Univ. Press. (2006).
[20] Mark J. Holmes, et al. Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot, Nano Lett. 14, 982 – 986 (2014).
[21] H. A. Bethe. Theory of Diffraction by Small Holes. Phys. Rev. 66, 163 (1944).
[22] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio & P. A. Wolff, Nature, volume 391, 667–669 (1998).
[23] Anatoly V. Zayats, Igor I. Smolyaninov. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A: Pure Appl. Opt. 5 S1–S35 (2003).
[24] Anatoly V. Zayats, Igor I. Smolyaninov, Alexei A. Maradudin. Nano-optics of surface plasmon polaritons. Physics Reports 408 131–314 (2005).
[25] Chih-Sung Chuu, G. Y. Yin, and S. E. Harris. A miniature ultrabright source of temporally long, narrowband biphotons. Appl. Phys. Lett. 101, 051108 (2012).
[26] Chih-Sung Chuu * and S. E. Harris Ultrabright backward-wave biphoton source Phys. Rev. A 83, 061803(R) (2011).
[27] Yu-Jung Lu, et al. Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nat. Commun. Vol. 8, 1631 (2017).
[28] G.-Y. Chen, N. Lambert, C.-H. Chou, Y.-N. Chen, and F., Phys. Rev. B 84 , 045310 (2011).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *