帳號:guest(3.144.110.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林卓穎
作者(外文):Lin, Cho-Ying
論文名稱(中文):單層之銦化銻與銦化鉍在鍺(111)與矽(111)晶面上的結構與成長模式之探討
論文名稱(外文):Structure and Growth Evolution of the Single Bilayer of InSb and InBi layer on the Ge(111) and Si(111) Surfaces
指導教授(中文):林登松
指導教授(外文):Lin, Deng-Sung
口試委員(中文):鄭弘泰
陳家浩
林俊良
徐斌睿
魏德新
口試委員(外文):Jeng, Horng-Tay
Chen, Chia-Hao
Lin, Chun-Liang
Hsu, Pin-Jui
Wei, Der-Hsin
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:102022801
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:121
中文關鍵詞:三五族半導體拓樸絕緣體
外文關鍵詞:STMXPSTopological InsulatorIII-V material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:515
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
III-V族化合物半導體有著高速、小能隙、低功率元的特性,其中InSb有著最好的電子遷移率,因此一直都是人們關注的研究題材。另一方面,拓樸絕緣體是最近幾年最熱門的話題之一,也被稱為量子自旋霍爾絕緣體。原子較重的元素如Bi,天生具有較強的自旋軌道耦合效應。與其結合的III-V化合物材料如GaBi及InBi被預測有機會成為二維拓譜絕緣體,並適合長在Si(111)的基板上。因此如果可以找到一個好的成長機制,便可以使這些III-V族半導體被納入先進晶片的製程中。
在本研究中,我們在分別在Ge(111)及Si(111)基板上成長InSb及InBi的薄膜並利用掃描穿隧電子顯微鏡、X射線核心層光電子能譜以及第一原理的密度泛函計算來研究這兩個系統。第一個系統是單層的InSb成長在Ge(111)表面的過程。第二個系統是成長不同結構的InBi奈米薄膜在Si(111)表面的過程。
蒸鍍大量的In原子在Sb/Si(111)-(2×1)表面上並熱退火到400 ℃。結果顯示表面上會出現少量且平整的(2×2)結構。重複此步驟幾次之後,一整層的單層InSb薄膜將會出現在表面上。利用這個過程我們可以清楚的建立In0.75Sb-(2×2)之原子模型。
在室溫下蒸鍍1.0層的Bi原子在In/Si(111)-(4×1)表面上,Bi原子會直接與下層的In原子鍵結,此結構是Bi0.5In-(4×2)與BiIn-(4×3)。倘若在室溫下蒸鍍1.0層的In原子在Bi/Si(111)-(√3×√3)表面上,會形成三維的In島嶼。在這兩種成長的情況下,當退火溫度都達到460 ℃的時候,表面都會出現In0.75Bi-(2×2)的結構,此結構的最上層是In原子。我們的第一原理計算顯示,In為頂層的In0.75Bi-(2×2)其系統能量是比Bi為頂層的Bi0.75In-(2×2)還低。在室溫下成長0.43層的Bi元素在In/Si(111)-4×1上後,隨之加熱到400 ~ 460 ℃會出現相當平整及少缺陷的In0.86Bi0.43-(√7×√7)結構。若同時蒸鍍1.2及0.8層的Bi與In原子在Si(111)基板上則需要熱退火到較高的溫度( 500 ℃ )才能形成In0.86Bi0.43-(√7×√7)的結構。第一原理計算發現此結構是二維的拓譜絕緣體。
III-V化合物半導體成長在Si(111)上雖然已有許多研究,但初始成長的模式的文獻探討並不多。本實驗中我們研究單層InSb成長在Ge(111)基板上實驗的初始成長機制。並且在實驗二裡發現了 InxBiy-(2×2)有兩種穩定的形式存在於Si(111)表面上,且在460 ℃發生意想不到的相變。我們相信這些研究不論對未來的科學或是材料應用都提供了一個新的思維及方向。
III-V compound semiconductors have the characteristics of high electron and hole mobilities, small band gaps. They are suitable for high speed and low power integrated circuit applications. Among the commonly used III-V semiconductors, InSb has the highest mobility and attracts much attention. Topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are another popular research topics. Valence band electrons in compounds with a heavy atom such as Bi typically have large spin-orbit coupling (SOC). Group-III compounds Containing Bi, such as GaBi and InBi have been researched and predicted to be the 2D-TIs. With proper lattice rotations on the Si(111) substrate, the lattice mismatches are reduced and GaBi and InBi films can possibly be grown with reasonable quality. Thus, it is worthwhile to search for optimized growth processes which can be integrated into the fabrication of modern chips.
In this thesis, we grow the films of InSb and InBi on the Ge(111) and Si(111) surfaces. We have further employed the scanning tunneling microscopy (STM), X-ray core-level photoemission spectroscopy (XPS) and the ab-initio calculations based on density functional theory (DFT) to investigate these systems. Our results show that deposition large amount of In atoms on the Sb/Ge(111)-(2×1) surface followed by annealing to 400 ℃ leads to a few flat (2×2) structure on the surface. After repeating the circle process, a single bilayer InSb film covers nearly the entire surface. With STM images, we have also constructed a clearly atomic model of In0.75Sb-(2×2).
Deposition of 1.0-ML Bi on the In/Si(111)-(4×1) surface at room temperature results in Bi-terminated Bi0.5In-(4×2) and BiIn-(4×3) structure, which are stable up to ~300℃ annealing. By contrast, deposition of In on the β-Bi/Si(111)-(√3×√3) surface at room temperature results in three dimensional (3D) islands. In both cases, annealing at 460℃ results in the same In-terminated In0.75Bi/Si(111)-(2×2) surface. Our DFT calculations confirm that the surface energy of In-terminated In0.75Bi/Si(111)-(2×2) is lower than of Bi-terminated Bi0.75In/Si(111)-(2×2). Deposition of the 0.43-ML of Bi on the In-Si(111)-4×1 and the subsequent annealing to 400 ~ 460 ℃ would lead to a few defects and flat film of In0.86Bi0.43-(√7×√7) on the surface. Co-deposition 1.2 and 0.8 ML of Bi and In on the Si(111) surface is found to result in the In0.86Bi0.43-(√7×√7) structure upon higher temperature (500 ℃) annealing. The DFT calculations demonstrate that this structure is the 2D topological insulator.
Although III-V compound semiconductors have been investigated a lot in the last decades, the initial growing models haven’t been revealed clearly. This thesis has addressed the growth mechanism of the single bilayer InSb on the Ge(111) surface. In addition, in the second part, the two stable forms of the InxBiy-(2×2) phases are discovered on the Si(111) surface and an unexpected structure phase transition is found at 460 ℃. We believe that these studies provide a viable direction of the growth processes of Bi-contained III-V compounds and material application in the future.
Chapter 1 Introduction------------------------------------------1
1.1 Background and Motivations-----------------------------------1
1.2 Principle of Topological insulator---------------------------4
1.3 Application of III-V compound Semiconductor------------------9
1.4 Literature Review-------------------------------------------14
Chapter 2 Experimental Apparatus and Methods-------------------32
2.1 Ultra-High Vacuum-------------------------------------------32
2.2 Scanning Tunneling Microscopy-------------------------------34
2.3 X-ray Photoemission Spectroscopy (XPS)----------------------38
2.4 Experimental Details----------------------------------------42
Chapter 3 Growth of a In0.75Sb Bi-layer on the Ge(111) surface-44
3.1 The Surface Structure of Preparation of Ge(111)-------------44
3.2 The Sb Pre-layer on Ge(111)---------------------------------46
3.3 Growth Process of In on the Sb/Si(111) Surface--------------50
Chapter 4 Growth of a InxBiy Nano film on the Si(111) Surface--59
4.1 The Surface Structure and of Preparation Si(111)------------59
4.2 The In and Bi Pre-layer on Si(111)--------------------------61
4.2.1 STM Results-----------------------------------------------61
4.2.2 Photoemission Result--------------------------------------65
4.4 Photoemission Study of the InxBiy Growth on the Si(111) Surface---------------------------------------------------------70
4.4.1 The Growth Process of In on the Bi/Si(111) Surface--------70
4.4.2 The Growth Process of Bi on the In/Si(111) Surface--------74
4.5 DFT Study of the In0.75Bi, Bi0.75In-2×2 Structure-----------78
4.6 STM Study of the InxBiy Growth on the Si(111) Surface-------83
4.6.1 The Growth Process of In on the Bi/Si(111) Surface--------83
4.6.2 The Growth Process of Bi on the In/Si(111) Surface--------92
4.6.3 The (√7×√7) Structure by Co-deposition In, Bi on the Si(111) Surface--------------------------------------------------------102
4.6.4 New Growth Process for the (√7×√7)-In0.86Bi0.43 structure on the Si(111) Surface--------------------------------------------106
Chapter 5 Conclusions-----------------------------------------109
References-----------------------------------------------------113
[1] H.C. Chin, X. Gong, L. Wang, H.K. Lee, L. Shi, Y.C. Yeo, III-V Multiple-Gate Field-Effect Transistors With High-Mobility In0.7Ga0.3As Channel and Epi-Controlled Retrograde-Doped Fin, IEEE Electron Device Letters, 32 (2011) 146-148.
[2] S.H. Park, Y. Liu, N. Kharche, M.S. Jelodar, G. Klimeck, M.S. Lundstrom, M. Luisier, Performance Comparisons of III-V and Strained-Si in Planar FETs and Nonplanar FinFETs at Ultrashort Gate Length (12 nm), IEEE Transactions on Electron Devices, 59 (2012) 2107-2114.
[3] E. Amat, A. Calomarde, C.G. Almud, x00E, ver, N. Aymerich, R. Canal, A. Rubio, Impact of FinFET and III-V/Ge Technology on Logic and Memory Cell Behavior, IEEE Transactions on Device and Materials Reliability, 14 (2014) 344-350.
[4] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M.D. Rossell, R. Erni, J. Fompeyrine, Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates, in: 2015 Symposium on VLSI Technology (VLSI Technology), 2015, pp. T172-T173.
[5] H. Schmid, M. Borg, K. Moselund, L. Gignac, C.M. Breslin, J. Bruley, D. Cutaia, H. Riel, T.J. Grassmann, J.A. Carlin, B. Galiana, L.-M. Yang, F. Yaang, M.J. Mills, S.A. Ringel, Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si, Applied Physics Letters, 106 (2015) 233101.
[6] V. Djara, V. Deshpande, E. Uccelli, N. Daix, D. Caimi, C. Rossel, M. Sousa, H. Siegwart, C. Marchiori, J.M. Hartmann, K.T. Shiu, C.W. Weng, M. Krishnan, M. Lofaro, R. Steiner, D. Sadana, D. Lubyshev, A. Liu, L. Czornomaz, J. Fompeyrine, An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch, in: 2015 Symposium on VLSI Technology (VLSI Technology), 2015, pp. T176-T177.
[7] X. Dai, B.-M. Nguyen, Y. Hwang, C. Soci, S.A. Dayeh, Novel Heterogeneous Integration Technology of III–V Layers and InGaAs FinFETs to Silicon, Advanced Functional Materials, 24 (2014) 4420-4426.
[8] J.A. del Alamo, Nanometre-scale electronics with III-V compound semiconductors, Nature, 479 (2011) 317-323.
[9] V. Djara, V. Deshpande, M. Sousa, D. Caimi, L. Czornomaz, J. Fompeyrine, CMOS-Compatible Replacement Metal Gate InGaAs-OI FinFET With ION=156 uA/um at VDD=0.5V and IOFF=100 nA/um, IEEE Electron Device Letters, 37 (2016) 169-172.
[10] F. Yang, L. Miao, Z.F. Wang, M.-Y. Yao, F. Zhu, Y.R. Song, M.-X. Wang, J.-P. Xu, A.V. Fedorov, Z. Sun, G.B. Zhang, C. Liu, F. Liu, D. Qian, C.L. Gao, J.-F. Jia, Spatial and Energy Distribution of Topological Edge States in Single Bi(111) Bilayer, Physical Review Letters, 109 (2012) 016801.
[11] T. Hirahara, N. Fukui, T. Shirasawa, M. Yamada, M. Aitani, H. Miyazaki, M. Matsunami, S. Kimura, T. Takahashi, S. Hasegawa, K. Kobayashi, Atomic and Electronic Structure of Ultrathin Bi(111) Films Grown on Ultrathin Bi(111) Films Grown on Bi2Te3(111) Substrates: Evidence for a Strain-Induced Topological Phase Transition, Physical Review Letters, 109 (2012) 227401.
[12] B. Marco, C.H. Richard, G. Dandan, P. Tilo, M. Jianli, I. Bo Brummerstedt, H. Philip, The electronic structure of clean and adsorbate-covered Bi2Se 3 : an angle-resolved photoemission study, Semiconductor Science and Technology, 27 (2012) 124001.
[13] F. Virot, R. Hayn, M. Richter, J. van den Brink, Metacinnabar (beta-HgS): A Strong 3D Topological Insulator with Highly Anisotropic Surface States, Physical Review Letters, 106 (2011) 236806.
[14] H.L. Zhuang, A.K. Singh, R.G. Hennig, Computational discovery of single-layer III-V materials, Physical Review B, 87 (2013) 165415.
[15] A.K. Singh, H.L. Zhuang, R.G. Hennig, Ab initio synthesis of single-layer III-V materials, Physical Review B, 89 (2014) 245431.
[16] C.P. Crisostomo, L.-Z. Yao, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin, M.A. Albao, A. Bansil, Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III–V Buckled Honeycombs, Nano Letters, 15 (2015) 6568-6574.
[17] S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, N. Otsuka, Gallium arsenide and other compound semiconductors on silicon, Journal of Applied Physics, 68 (1990) R31-R58.
[18] J.R. Patel, P.E. Freeland, M.S. Hybertsen, D.C. Jacobson, J.A. Golovchenko, Location of atoms in the first monolayer of GaAs on Si, Physical Review Letters, 59 (1987) 2180-2183.
[19] M. Kitabatake, T. Kawasaki, T. Korechika, Heteroepitaxial growth of InSb(111) on Si(111), Thin Solid Films, 281 (1996) 17-19.
[20] H. Shinsuke, M. Ryuto, Y. Kazuki, I. Katsumi, M. Hirofumi, K. Akira, I.F. Hiroki, Study of GaSb Layers Grown on Ga/Si(111)-√3×√3 by Scanning Tunneling Microscopy, Japanese Journal of Applied Physics, 51 (2012) 08KB01.
[21] A. Ohtake, K. Mitsuishi, Polarity controlled InAs{111} films grown on Si(111), Journal of Vacuum Science & Technology B, 29 (2011) 031804.
[22] S. Hara, R. Machida, K. Yoshiki, K. Irokawa, H. Miki, A. Kawazu, H.I. Fujishiro, Growth process and morphology of three-dimensional GaSb islands on Ga/Si(111), Physica Status solidi (c), 10 (2013) 865-868.
[23] T. Ichikawa, RHEED study of In-induced superstructures on Ge(111) surfaces, Surface Science, 111 (1981) 227-259.
[24] G. Lee, S.-Y. Yu, H. Kim, J.-Y. Koo, H.-I. Lee, D.W. Moon, Absolute In coverage and bias-dependent STM images of the Si(111)4X1-In surface, Physical Review B, 67 (2003) 035327.
[25] M. Kuzmin, P. Laukkanen, R.E. Perälä, M. Ahola-Tuomi, I.J. Väyrynen, Atomic geometry and electronic properties of the Ge(1 1 1)2 × 1-Sb surface studied by scanning tunneling microscopy/spectroscopy and core-level photoemission, Surface Science, 601 (2007) 837-843.
[26] L.H. Chan, E.I. Altman, Effect of surface intermixing on the morphology of Sb-terminated Ge(100) surfaces, Physical Review B, 63 (2001) 195309.
[27] T. Yodo, M. Tamura, Initial growth of GaAs on Si(111) substrates by molecular beam epitaxy, Journal of Crystal Growth, 154 (1995) 85-91.
[28] S.C. Lee, L.R. Dawson, S.R.J. Brueck, Y.-B. Jiang, GaAs on Si(111)—crystal shape and strain relaxation in nanoscale patterned growth, Applied Physics Letters, 87 (2005) 023101.
[29] H. Shinsuke, F. Kazuhiro, M. Ryuto, Y. Kazuki, I. Katsumi, M. Hirofumi, K. Akira, I.F. Hiroki, Study of Initial Growth Layer of GaSb on Si(111) by Scanning Tunneling Microscopy, Japanese Journal of Applied Physics, 50 (2011) 08LB03.
[30] B.V. Rao, D. Gruznev, T. Tambo, C. Tatsuyama, Growth of high-quality InSb films on Si(1 1 1) substrates without buffer layers, Journal of Crystal Growth, 224 (2001) 316-322.
[31] B.V. Rao, T. Okamoto, A. Shinmura, D. Gruznev, M. Mori, T. Tambo, C. Tatsuyama, Growth temperature effect on the heteroepitaxy of InSb on Si(111), Applied Surface Science, 159–160 (2000) 335-340.
[32] M. Mori, M. Saito, K. Nagashima, K. Ueda, T. Yoshida, K. Maezawa, High-temperature growth of heteroepitaxial InSb films on Si(1 1 1) substrate via the InSb bi-layer, Journal of Crystal Growth, 311 (2009) 1692-1695.
[33] M. Mori, M. Saito, K. Nagashima, K. Ueda, Y. Yamashita, C. Tatsuyama, T. Tambo, K. Maezawa, Heteroepitaxial InSb films grown via Si(111)-√7×√3-In surface reconstruction, Physica Status Solidi (c), 5 (2008) 2772-2774.
[34] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature, 452 (2008) 970-974.
[35] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nature Physics, 5 (2009) 398-402.
[36] Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3, Science, 325 (2009) 178-181.
[37] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3, Physical Review Letters, 103 (2009) 146401.
[38] M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao, C.L. Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C. Zhang, D. Qian, J.-F. Jia, Q.-K. Xue, The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films, Science, 336 (2012) 52-55.
[39] C.-L. Gao, D. Qian, C.-H. Liu, J.-F. Jia, F. Liu, Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111), Chinese Physics B, 22 (2013) 067304.
[40] Z.-Y. Jia, Y.-H. Song, X.-B. Li, K. Ran, P. Lu, H.-J. Zheng, X.-Y. Zhu, Z.-Q. Shi, J. Sun, J. Wen, D. Xing, S.-C. Li, Direct visualization of a two-dimensional topological insulator in the single-layer 1T'-WTe2, Physical Review B, 96 (2017) 041108.
[41] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science, (2017).
[42] H.-H. Sun, M.-X. Wang, F. Zhu, G.-Y. Wang, H.-Y. Ma, Z.-A. Xu, Q. Liao, Y. Lu, C.-L. Gao, Y.-Y. Li, C. Liu, D. Qian, D. Guan, J.-F. Jia, Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film, Nano Letters, 17 (2017) 3035-3039.
[43] L.-Z. Yao, C.P. Crisostomo, C.-C. Yeh, S.-M. Lai, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin, A. Bansil, Predicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate, Scientific Reports, 5 (2015) 15463.
[44] N.V. Denisov, A.A. Alekseev, O.A. Utas, S.G. Azatyan, A.V. Zotov, A.A. Saranin, Bismuth–indium two-dimensional compounds on Si(111) surface, Surface Science, 651 (2016) 105-111.
[45] O.A. Pankratov, S.V. Pakhomov, B.A. Volkov, Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1-xSnxTe and Hg1-xCdxTe, Solid State Communications, 61 (1987) 93-96.
[46] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science, 318 (2007) 766-770.
[47] L. Fu, C.L. Kane, Topological insulators with inversion symmetry, Physical Review B, 76 (2007) 045302.
[48] M. Shuichi, Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase, New Journal of Physics, 9 (2007) 356.
[49] M.Z. Hasan, C.L. Kane, Colloquium, Reviews of Modern Physics, 82 (2010) 3045-3067.
[50] D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature, 460 (2009) 1101-1105.
[51] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M.Z. Hasan, Y.P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nature Physics, 10 (2014) 956-963.
[52] E. Wang, H. Ding, A.V. Fedorov, W. Yao, Z. Li, Y.-F. Lv, K. Zhao, L.-G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S.-H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q.-K. Xue, X. Chen, S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor, Nature Physics, 9 (2013) 621-625.
[53] X.-L. Qi, S.-C. Zhang, K.K. v., D. G., P. M., The quantum spin Hall effect and topological insulators, Physics Today, 63 (2010) 33-38.
[54] G. Malandrino, Chemical Vapour Deposition. Precursors, Processes and Applications. Edited by Anthony C. Jones and Michael L. Hitchman, 2009.
[55] Light Emitting Diode, in, 2013.
[56] D.V. Gruznev, L.V. Bondarenko, A.V. Matetskiy, A.N. Mihalyuk, A.Y. Tupchaya, O.A. Utas, S.V. Eremeev, C.-R. Hsing, J.-P. Chou, C.-M. Wei, A.V. Zotov, A.A. Saranin, Synthesis of two-dimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure, Scientific Reports, 6 (2016) 19446.
[57] K. Nagaoka, T. Uchihashi, T. Nakayama, Observation of lateral band-bending in the edge vicinity of atomically-thin Bi insulating film formed on Si(111) surface, Surface Science, 644 (2016) 41-45.
[58] T. Eguchi, T. Miura, S.-P. Cho, T. Kadohira, N. Naruse, T. Osaka, Structures and electronic states of the InSb{1 1 1}A,B-(2×2) surfaces, Surface Science, 514 (2002) 343-349.
[59] Bommisetty V. Rao, Dimitry V. Gruznev, Toyokazu Tambo, Chiei Tatsuyama, Structural Transformations During Sb Adsorption on Si(111)–In(4×1) Reconstruction, Japanese Journal of Applied Physics, 40 (2001) 4304.
[60] http://home.iitk.ac.in/~gopan/index_files/STM.htm.
[61] J.A. Kubby, J.J. Boland, Surf. Sci. Reports, 26 (1996) 61.
[62] A. Selloni, P. Carnevali, E. Tosatti, C.-D. Chen, Phys. Rev. B, 31 (1985) 2602.
[63] N.D. Lang, Phys. Rev. B, 34 (1986) 5947.
[64] R.M. Feenstra, J.A. Stroscio, A.P. Fein, Surf. Sci., 181 (1987) 295.
[65] T. Suzuki, T. Lutz, G. Costantini, K. Kern, Terephthalic acid adsorption on Si(111)-(R3xR3)-Bi surfaces: Effect of Bi coverage, Surface Science, 605 (2011) 1994-1998.
[66] I. Razado-Colambo, J. He, H.M. Zhang, G.V. Hansson, R.I.G. Uhrberg, Electronic structure of Ge(111) c(2 x 8): STM, angle-resolved photoemission, and theory, Physical Review B, 79 (2009) 205410.
[67] N. Takeuchi, A. Selloni, E. Tosatti, Atomic dynamics and structure of the Ge(111) c(2 x 8) surface, Physical Review B, 51 (1995) 10844-10850.
[68] N. Takeuchi, Structure determination of a Sb monolayer on Ge(111) from first-principles calculations, Physical Review B, 53 (1996) 7996-8000.
[69] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136 (1964) B864-B871.
[70] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77 (1996) 3865-3868.
[71] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 59 (1999) 1758-1775.
[72] G. Kresse, J. Hafner, Ab initio, Physical Review B, 47 (1993) 558-561.
[73] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, 140 (1965) A1133-A1138.
[74] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 54 (1996) 11169-11186.
[75] R.S. Becker, B.S. Swartzentruber, J.S. Vickers, T. Klitsner, Dimer–adatom–stacking-fault (DAS) and non-DAS (111) semiconductor surfaces: A comparison of Ge(111)-c(2×8) to Si(111)-(2×2), -(5×5), -(7×7), and -(9×9) with scanning tunneling microscopy, Physical Review B, 39 (1989) 1633-1647.
[76] M. Göthelid, T.M. Grehk, M. Hammar, U.O. Karlsson, S.A. Flodström, Adatom and rest-atom contributions in Ge(111)c(2×8) and Ge(111)-Sn(7×7) core-level spectra, Physical Review B, 48 (1993) 2012-2015.
[77] R.D. Schnell, F.J. Himpsel, A. Bogen, D. Rieger, W. Steinmann, Surface core-level shifts for clean and halogen-covered Ge(100) and Ge(111), Physical Review B, 32 (1985) 8052-8056.
[78] C.T. Lou, H.D. Li, J.Y. Chung, D.S. Lin, T.C. Chiang, Electronic reconstruction at a buried ionic-covalent interface driven by surface reactions, Physical Review B, 80 (2009) 195311.
[79] D. Haneman, Surface Structures and Properties of Diamond-Structure Semiconductors, Physical Review, 121 (1961) 1093-1100.
[80] K.W. Haberern, M.D. Pashley, GaAs(111) A- (2 X 2) reconstruction studied by scanning tunneling microscopy, Physical Review B, 41 (1990) 3226-3229.
[81] S.Y. Tong, G. Xu, W.N. Mei, Vacancy-Buckling Model for the (2 x 2) GaAs(111) Surface, Physical Review Letters, 52 (1984) 1693-1696.
[82] J. Yang, C. Nacci, J. Martínez-Blanco, K. Kanisawa, S. Fölsch, Vertical manipulation of native adatoms on the InAs(111)A surface, Journal of Physics: Condensed Matter, 24 (2012) 354008.
[83] A. Paszuk, S. Brückner, M. Steidl, W. Zhao, A. Dobrich, O. Supplie, P. Kleinschmidt, W. Prost, T. Hannappel, Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth, Applied Physics Letters, 106 (2015) 231601.
[84] G. Xu, W.Y. Hu, M.W. Puga, S.Y. Tong, J.L. Yeh, S.R. Wang, B.W. Lee, Atomic geometry of the 2 x 2 GaP(111) surface, Physical Review B, 32 (1985) 8473-8476.
[85] D.V. Gruznev, L.V. Bondarenko, A.V. Matetskiy, A.A. Yakovlev, A.Y. Tupchaya, S.V. Eremeev, E.V. Chulkov, J.-P. Chou, C.-M. Wei, M.-Y. Lai, Y.-L. Wang, A.V. Zotov, A.A. Saranin, A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer, Scientific Reports, 4 (2014) 4742.
[86] R. Shioda, A. Kawazu, A.A. Baski, C.F. Quate, J. Nogami, Bi on Si(111): Two phases of the Root3 X Root3 surface reconstruction, Physical Review B, 48 (1993) 4895-4898.
[87] J.M. Roesler, M.T. Sieger, T. Miller, T.C. Chiang, New experimental technique of photoelectron holography applied to Bi trimers on Si(111), Surface Science, 380 (1997) L485-L490.
[88] K.J. Wan, T. Guo, W.K. Ford, J.C. Hermanson, Initial growth of Bi films on a Si(111) substrate: Two phases of root3 x root3 low-energy-electron-diffraction pattern and their geometric structures, Physical Review B, 44 (1991) 3471-3474.
[89] J.C. Woicik, G.E. Franklin, C. Liu, R.E. Martinez, I.S. Hwong, M.J. Bedzyk, J.R. Patel, J.A. Golovchenko, Structural determination of the Si(111) Root3 X Root3-Bi by x-ray standing waves and scanning tunneling microscopy, Physical Review B, 50 (1994) 12246-12249.
[90] G. Bian, T. Miller, T.C. Chiang, Electronic structure and surface-mediated metastability of Bi films on Si(111)-7 x 7 studied by angle-resolved photoemission spectroscopy, Physical Review B, 80 (2009) 245407.
[91] J.M. Roesler, T. Miller, T.C. Chiang, Photoelectron holography studies of Bi on Si(111), Surface Science, 417 (1998) L1143-L1147.
[92] T. Kuzumaki, T. Shirasawa, S. Mizuno, N. Ueno, H. Tochihara, K. Sakamoto, Re-investigation of the Bi-induced Si(111)-(R3×R3) surfaces by low-energy electron diffraction, Surface Science, 604 (2010) 1044-1048.
[93] P.E.J. Eriksson, R.I.G. Uhrberg, Surface core-level shifts on clean Si(001) and Ge(001) studied with photoelectron spectroscopy and density functional theory calculations, Physical Review B, 81 (2010) 125443.
[94] T. Abukawa, M. Sasaki, F. Hisamatsu, M. Nakamura, T. Kinoshita, A. Kakizaki, T. Goto, S. Kono, Core-level photoemission study of the Si(111)4×1-In surface, Journal of Electron Spectroscopy and Related Phenomena, 80 (1996) 233-236.
[95] M. Nishizawa, T. Eguchi, T. Misima, J. Nakamura, T. Osaka, Structure of the InSb(111)A-(2 root 3 x 2 root 3)-R30 surface and its dynamical formation processes, Physical Review B, 57 (1998) 6317-6320.
[96] C. Sung-Pyo, N. Jun, T. Nobuo, O. Toshiaki, Direct observation of Au deposition processes on InSb{111}A,B - (2 × 2) surfaces, Nanotechnology, 15 (2004) S393.
[97] C. Cheng, K. Kunc, Structure and stability of Bi layers on Si(111) and Ge(111) surfaces, Physical Review B, 56 (1997) 10283-10288.
[98] S. Mizuno, Y.O. Mizuno, H. Tochihara, Structural determination of indium-induced Si(111) reconstructed surfaces by LEED analysis: (R3XR3)R30 and (4X1), Physical Review B, 67 (2003) 195410.
[99] H.-J. Kim, J.-H. Cho, Driving Force of Phase Transition in Indium Nanowires on Si(111), Physical Review Letters, 110 (2013) 116801.
[100] S. Wippermann, N. Koch, W.G. Schmidt, Adatom-Induced Conductance Modification of In Nanowires: Potential-Well Scattering and Structural Effects, Physical Review Letters, 100 (2008) 106802.
[101] S.J. Park, H.W. Yeom, S.H. Min, D.H. Park, I.W. Lyo, Direct Evidence of the Charge Ordered Phase Transition of Indium Nanowires on Si(111), Physical Review Letters, 93 (2004) 106402.
[102] H. Shim, H. Lim, Y. Kim, S. Kim, G. Lee, H.-K. Kim, C. Kim, H. Kim, Initial stages of oxygen adsorption on oxygen adsorption on In/Si(111)-4x1, Physical Review B, 90 (2014) 035420.
[103] S.H. Uhm, H.W. Yeom, Metal-insulator transition on the Si(111)4 x 1-In surface with oxygen impurity, Physical Review B, 88 (2013) 165419.
[104] G. Lee, S.-Y. Yu, H. Kim, J.-Y. Koo, Defect-induced perturbation on Si(111)4 X 1-In: Period-doubling modulation and its origin, Physical Review B, 70 (2004) 121304.
[105] A.A. Saranin, E.A. Khramtsova, K.V. Ignatovich, V.G. Lifshits, T. Numata, O. Kubo, M. Katayama, I. Katayama, K. Oura, Indium-induced Si(111)4 X 1 silicon substrate atom reconstruction, Physical Review B, 55 (1997) 5353-5359.
[106] J. Kraft, M.G. Ramsey, F.P. Netzer, Surface reconstructions of In on Si(111), Physical Review B, 55 (1997) 5384-5393.
[107] C.-H. Hsu, Z.-Q. Huang, C.-Y. Lin, G.M. Macam, Y.-Z. Huang, D.-S. Lin, T.C. Chiang, H. Lin, F.-C. Chuang, L. Huang, Growth of a predicted two-dimensional topological insulator based on InBi-Si(111)-R7XR7, Physical Review B, 98 (2018) 121404.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *