帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宗樺
作者(外文):Hsieh, Tsung-Hua
論文名稱(中文):電磁引發透明: 垂直相交之探測及耦合光束之研究
論文名稱(外文):Electromagnetically induced transparency with orthogonally propagating probe and coupling fields
指導教授(中文):褚志崧
指導教授(外文):Chuu, Chih-Sung
口試委員(中文):余怡德
劉怡維
口試委員(外文):Yu, Ite A.
Liu, Yi-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:102022543
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:二維磁光陷阱電磁引發透明垂直相交架設
外文關鍵詞:2D MOTEITright-angle setup
相關次數:
  • 推薦推薦:0
  • 點閱點閱:373
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本實驗以二維磁光陷阱(2D Magneto-Optical Trap;2D MOT)作為核心,藉 以實現電磁引發透明(Electromagnetically Induced Transparency;EIT)以及未來偏 振糾纏光子對的產生。
由於 2D MOT 其中一軸的位能井近似於 0,因此原子團會沿此量子軸 (quantization axis)延伸而呈現橢球形。若將光子沿量子軸入射可增加光子與物質 交互作用的機率,並且由於此軸路徑上近乎無磁場梯度,在 EIT 與四波混頻 (Four Wave Mixing;FWM)時不需在意磁場所產生的量子退相干(quantum decoherence)。
我們的系統由兩台雷射及一台 tapered amplifier(TA)的架構組成,其中一台 雷射為外腔雷射,作為 master laser,另一台則是一般二極體雷射,作為 slave laser。
此次主要的目標在於穩定 MOT 以及 EIT 的量測,其中的原理參考了史丹 佛大學的 S. E. Harris 教授的文章 1,2,並選用 Rb87 直交架設 (right-angle setup, 即 coupling & probe 呈 90 度夾角) ,以便為後續 FWM 做準備。
In this thesis, we utilize 2D MOT (Magneto-Optical Trap) for realizing EIT (Electromagnetically Induced Transparency) and generating polarization-entangled photon pairs in the near future.
The cold atoms may expand as ellipsoidal cloud due to the zero-line field which we consider as quantum axis in 2D MOT. The photon-atom interaction could be enhanced if the photons propagate in this direction. Besides, there is almost no magnetic field gradient on the quantum axis. As a result, we can neglect quantum decoherence in EIT and FWM (Four Wave Mixing).
There are two lasers and a TA (tapered amplifier) in our system. One of them is ECDL (external cavity diode laser), as a master laser; another is a regular diode laser, as a slave.
Our goals are MOT stabilization and EIT measurements. We consult the articles1,2 from professor S. E. Harris at Stanford before building the system, and chose Rb 87 right-angle setup in order to get fully entangled biphotons by FWM in the future.
摘要 ...........................................................................................................................i
誌謝 ..........................................................................................................................iii
第一章 實驗相關理論 ...................................................................................................1
1.1 MOT 理論 .............................................................................................................1
1.2 EIT 理論 ...............................................................................................................5
1.2.1 EIT Hamiltonian...............................................................................................6
1.2.2 Von Neumann Equations...............................................................................11
1.2.3 Density matrix 之解 ......................................................................................13
1.2.4 電擊化率(Electric Susceptibility) χ ...............................................................15
1.2.5 都卜勒效應 20 1.2.6 超精細結構與偏振光下的 EIT..........................................21
第二章 實驗儀器與架設...............................................................................................26
2.1 Master Laser 光路...............................................................................................27
2.2 飽和吸收光譜(Saturation Spectroscopy)優化.....................................................28
2.3 Tapered Amplifier(TA)頻譜 ................................................................................31
2.4 TA controller—LDC2500B 操作......................................................................... 33
2.5 Probe beam 光路 ...............................................................................................34
2.6 Coupling beam 光路 ..........................................................................................38
2.7 光電倍增管(Photomultiplier tube;PMT) ..............................................................40
2.8 時序控制裝置:Timing box——SRS_DG535 .........................................................42
2.9 EOM 掃頻 ...........................................................................................................46
2.10 水冷機(Chiller)—NESLAB_HX150 .....................................................................48
第三章 實驗 結果與數據處理 ......................................................................................49
3.1 原子團 OD(Optical Density) ................................................................................49
3.2 Small-angle measurements(小角度量測) ...........................................................50
3.3 Right-angle measurements(直交量測) ...............................................................52
3.4 結論 ...................................................................................................................59
實驗注意事項 .............................................................................................................60
參考文獻 ....................................................................................................................61
[1] K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[2] Lene Vestergaard Hau, S. E. Harris, Zachary Dutton & Cyrus H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594-598(1999).
[3] 陳保鋼,碩士論文,銣 87 原子的二維磁光陷阱之設計及架設,國立清華大 學物理系(2015)。
[4] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phys. Rev. Lett. 59, 2631- 2634(1987).
[5] Jung-Jung Su and Ite A. Yu, “The Study of Coherence-Induced Phenomena Using Double-Sided Feynman Diagrams,” CHINESE J PHYS 41, No. 6, 627- 642(2003)
[6] Wesley W. Erickson, undergraduate thesis, Electromagnetically Induced Transparency, Reed College (2012).
[7] K. Hornberger: Introduction to Decoherence Theory, Arxiv preprint quant- ph/0612118(2006), (last revised, 5 November 2008).
[8] Mark Fox, Quantum Optics An Introduction (Oxford University Press, 2006).
[9] D. A. Steck, “Rubidium 87 D Line Data,” (2010), (revision 2.1.3, 23 December
2010)
[10] B. Gouraud, Ph. D thesis, Optical Nanofibers Interfacing Cold Atoms A Tool for Quantum Optics, Pierre and Marie Curie University (2016).
[11] B. Wang, Y. Han, J. Xiao, X. Yang, C. Xie, H. Wang, and M. Xiao, “Multi-dark- state resonances in cold multi-Zeeman-sublevel atoms,” Opt. Lett. 31, No. 24, 3647-3649(2006).
[12] J. F. Chen, Ph. D thesis, Manipulating Classical and Neoclassicals Light with Cold Atoms, Hong Kong University of Science and Technology, PhD thesis (2011).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *