帳號:guest(3.139.82.229)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭嘉
作者(外文):Zhang, Ting-Jia
論文名稱(中文):從反物質磁譜儀二號的正子分數數據 給出惰性希格斯二重態模型的限制
論文名稱(外文):Constraints on the Inert Higgs Doublet Model from AMS-02 Positron Fraction Data
指導教授(中文):張敬民
指導教授(外文):Cheung, Kingman
口試委員(中文):耿朝強
徐百嫻
口試委員(外文):GENG, CHAOQIANG
HSU, PAI-HSIEN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:102022532
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:19
中文關鍵詞:暗物質反物質磁譜儀二號惰性希格斯二重態模型正子分數
外文關鍵詞:Inert Higgs Doublet ModelAMS-02Dark MatterPositron Fraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:420
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
反物質磁譜儀二號觀測到過量的正子分數。我們假設這個現象是來自於暗物質湮滅,而且嘗試用惰性希格斯二重態模型來解釋這個現象。我們用MicrOMEGAs 程式來計算正子與電子的流量,使用 χ 2 來判斷是否符合實驗。我們掃描了 Z 2 反對稱粒子的質量為 500 GeV 到 12000 GeV。我們沒有得到任何點可以滿足 95% 的信賴水準,我們最小的 χ 2 是 75.9。總得來說,當 Z 2 反對稱粒子的質量小於12000 GeV 時,來自惰性希格斯二重態模型的暗物質不適合
用來解釋反物質磁譜儀二號觀測到的正子分數數據。
We assume the excess e+/(e+ +e−) in AMS-02 data comes from annihilations of dark matter and try to interpret the data by Inert Higgs Doublet Model. We calculate the e ± flux with MicrOMEGAs code and use χ 2 to describe the goodness of fitting. We scan the parameter space : the masses of the Z 2 symmetry odd particles are
between 500 GeV and 12000 GeV. However, we don’t have any points can reach 95% CL and the minimal χ 2 which we get is 7.59×10 1 . In summary, the inert Higgs Doublet Model parameter space is disfavored by AMS-02 e+/(e+ +e−) data when the masses of the Z 2 symmetry odd particles are smaller than 12000 GeV.
Contents ...........................................................1
1 Introduction .....................................................2
2 Model ............................................................4
2.1 Inert Higgs Doublet Model . . . . . . . . . . . . . . . . . . . 4
2.2 Distribution of Dark Matter . . . . . . . . . . . . . . . . . . 6
2.3 Propagation of positrons . . . . . . . . . . . . . . . . . . . .7
2.4 AMS-02 Positron Data . . . . . . . . . . . . . . . . . . . . . .9
3 Data Analysis ....................................................11
4 Conclusion .......................................................16
Reference ..........................................................18
[1] Graciela B. Gelmini, (2015), arXiv:1502.01320[hep-ph]
[2] L. Accardo et al., AMS Collaboration. Phys. Rev. Lett. 113, 121101 (2014).
[3] Gianfranco Bertone and Dan Hooper and Joseph Silk, (2004). arXiv:hep-ph/
0404175
[4] Abdesslam Arhrib and Yue-Lin Sming Tsai and Qiang Yuan and Tzu-Chiang
Yuan, (2013), arXiv:1310.0358[hep-ph]
[5] A. Goudelis and B. Herrmann and O. Stål, (2013), arXiv:1303.3010 [hep-ph]
[6] Agnieszka Ilnicka and Maria Krawczyk and Tania Robens, (2015), arXiv:
1508.01671 [hep-ph]
[7] Marco Aurelio Díaz, Benjamin Koch, Sebastián Urrutia-Quiroga, (2015),
arXiv:1511.04429 [hep-ph]
[8] Stefano Profumo, (2013), arXiv:1301.0952 [hep-ph]
[9] G. Belanger, F. Boudjema, A. Pukhov, (2014), arXiv:1402.0787 [hep-ph]
[10] Mariangela Lisanti, (2016), arXiv:1603.03797 [hep-ph]
[11] Kunz, Simon M., (2014), Constraints on Transport Models for Galactic Cos-
mic Rays and their Implications for the Anomalous Positron Abundance
[12] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, https://
lapth.cnrs.fr/micromegas/ .
[13] M. Aguilar et al., AMS Collaboration. Phys. Rev. Lett. 113, 121102 (2014).
18[14] Yu-Heng Chen and Kingman Cheung and Po-Yan Tseng, (2015), arXiv:
1505.00134 [hep-ph]
[15] Laura Lopez Honorez, Emmanuel Nezri, Josep F. Oliver, Michel H.G. Tytgat,
(2006), arXiv:hep-ph/0612275v2
[16] Vassilis C. Spanos, (2013), arXiv:1312.7841v1 [hep-ph]
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *