帳號:guest(3.15.1.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅浥瑄
作者(外文):Lo, I-Hsuan
論文名稱(中文):核能級石墨於超高溫氣冷式反應器空氣進氣事故下之氧化行為探討
論文名稱(外文):Impact of Air Ingress on the Oxidation Behaviour of Various Graphite Materials in High Temperature Inert-Gas Environments
指導教授(中文):葉宗洸
Patterson, Eann
Tzelepi, Anthanasia
指導教授(外文):Yeh, Tsung-Kuang
Patterson, Eann
Tzelepi, Anthanasia
口試委員(中文):歐陽汎怡
開物
Jones, Abbie
Chalker, Paul
Patel, Maulik
口試委員(外文):OuYang, Fan-Yi
Kai, Wu
Jones, Abbie
Chalker, Paul
Patel, Maulik
學位類別:博士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:102013507
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:228
中文關鍵詞:超高溫氣冷式反應器核能級石墨極高溫氧化現象
外文關鍵詞:Very High Temperature Gas-Cooled ReactorVHTRHTGRNuclear Graphiteoxidatbon behaviour at ultra-high temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:768
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
核能級石墨因具等向性、高熱導率、低熱膨脹係數和較佳的中子特性,故被擇為超高溫氣冷式反應器(Very High Temperature Gas-Cooled Reactor, VHTR)的緩速劑和爐心結構材料。世界各國同時針對傳統和新型的核能石墨測試,探討其應用於超高溫氣冷式反應器不同運轉環境下的變化。其中最嚴重的反應器運轉事故之一為進氣事故(Air-ingress Accident),當高溫氣冷式反應器破管,爐心溫度可能達到1600 ℃,爐心石墨石墨暴露在含氧環境下並發生嚴重氧化,進而影響石墨機械性質,造成爐心崩塌和輻射物質外洩等事故。因此,完整的測試和研究核能石墨在高溫下於不同氣體環境的氧化機制,對於可靠的預測核能石墨運用於高溫氣冷式反應器至關重要。
本論文討論核能級石墨在超高溫度區間下氧化行為的變化,並基於量測結果比較氧化抗性較佳的核能級石墨的抗氧化性。實驗選擇八種核能級石墨進行氧化測試,包含IG 110,IG-430,MA,MB,ATR-2E,PGA,G347A和G458A,並使用三區加熱爐管架設動態氧化測試系統,量測核能級石墨在超高溫度區間(700-1600 ℃)於不同氣體環境下質量損失,以此計算氧化速率和活化能。本實驗結果提供詳盡的氧化數據以供事故模擬使用。
研究亦發現石墨在超高溫度的氧化趨勢推翻過去文獻預測,文獻推斷氧化速率在1100 ℃後達到飽和,但本實驗結果顯示在溫度高於1200 ℃後,氧化速率再度顯著上升,而此趨勢直到溫度達1500 oC後才趨緩。八種核能級石墨的氧化測試結果證實此發現,不同核能級石墨雖氧化趨勢相近但氧化速率仍具差異,只細晶粒級別的石墨之間在900 ℃以上氧化速率的差異較小。
本研究亦針對不同溫度下氧化的石墨進行表徵研究,進一步探討石墨在不同溫度區間的氧化機制。氧化前後的試片以場發射掃描式電子顯微鏡(FEG-SEM)觀察表面形貌,以水銀測孔儀(Mercury Porosimetry)和氦氣密度分析儀(Helium Pycnometry)分析孔洞分佈,X光繞設儀(XRD)和拉曼光譜儀(Raman Spectrometry)分析材料晶體常數,化學分析電子能譜儀(XPS)和霍氏轉換紅外光譜儀(FTIR)測量表面或界面的電子結構,以瞭解原子的鍵結狀態。在溫度高於1200 ℃觀察到石墨材料中填充物(Filler Particles)的表面型態和微晶結構的變化,其變化與氧化速率呈正相關。
本論文亦在不同溫度區間下討論石墨組成性質和抗氧化性的關係,以及可能影響氧化行為的內在因子,此外單獨針對溫度影響造成的石墨微結構變化做深入探討。
Graphite is used in the gas-cooled nuclear reactors as both a neutron moderator and structural components, while both traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. One of several accident scenarios for VHTRs is caused by a depressurisation accident, also known as an air ingress accident. These can occur during an air ingress accident when the fuel temperature is likely to reach 1600 ℃ when atmospheric air may ingress into the reactor core and the graphite components are predicted to be severely oxidised thereby changing their mechanical properties. Therefore, a comprehensive investigation of the oxidation mechanisms of graphite in various gaseous environments at elevated temperatures is essential for the reliable prediction of the behaviour of graphite under such conditions.
This research study investigated of graphite oxidation behaviour under conditions where air ingresses accidentally at very high temperatures. The aim, therefore, was to investigate the oxidation behaviour of proposed graphite grades for VHTRs and to recommend the appropriate form for use in VHTRs based on levels of oxidation resistance. In addition, related characterisation examinations for graphite oxidised at different temperatures were conducted, in order to understand the detailed mechanisms of graphite oxidation corresponding to the simulation of actual graphite components.
The materials selected were nuclear graphite grade IG-110, IG430, MA, MB, ATR-2E, PGA, G347A, and G458A. A dynamic oxidation system was constructed with a 3-zone furnace. The oxidation characteristics of graphite pellets in both air-rich environments and helium-containing environments at temperatures ranging from 700 to 1600 ℃ were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 ℃, the significant increases in oxidation rates observed at very high temperatures suggest that the oxidation behaviour of the selected graphite materials at temperatures higher than 1200 ℃ is different. In addition, it was discovered that, at temperatures above 900 ℃, the difference in oxidation behaviour between fine grain graphite grades was less.
The surface microstructure of each graphite pellet sample was characterized by Scanning Electron Microscopy, Mercury Porosimetry, Helium Pycnometry, Raman Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy, before and after oxidation. An overall comparison of surface morphology, pore structure, crystallite structure, and surface functional group was revealed. The changes in surface morphology and crystallite structure of the filler particles in the graphite materials were observed at temperatures above 1200 ℃.
This study also demonstrates the relationship between graphite properties and oxidation resistance, and possible intrinsic factors that contribute to oxidation at different temperature ranges, and these are discussed taking into account the dominant role played by temperature.
摘要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Tables xii
List of Figures xiii
1 Introduction 1
1.1. Background 1
1.2 The Aims and Objectives of the Study 3
2 Literature Review 4
2.1 Very High-Temperature Gas-Cooled Reactors 4
2.1.1 History 5
2.1.2 Core Design of VHTRs 6
2.1.3 Reactor Structural Design 8
2.1.4 Coolant Properties 9
2.1.5 Reactor Safety Design 11
2.2 Air Ingress Accident 11
2.3 Nuclear Graphite 15
2.3.1 Basic Structure and Properties 16
2.3.2 Manufacturing Process 18
2.4 The Theory of Graphite Oxidation 24
2.5 Thermal Oxidation Behaviour of Nuclear Graphite 26
2.5.1 Oxidation on Atomic-scale 27
2.5.2 Oxidation on the Micro-scale 29
2.5.3 Oxidation on Macro-scale 31
2.6 Past Graphite Oxidation Studies at High Temperatures 34
2.7 Summary 38
3 Methods and Materials 39
3.1 Materials 39
3.1.1 Introduction 39
3.1.2 Specimen Preparation 41
3.2 Oxidation Test System 42
3.2.1 Oxidation System Setup 42
3.2.2 Experimental Procedures 44
3.3 Oxidation Behaviour Analyses 48
3.3.1 Determination of Oxidation Rate 48
3.3.2 Determination of Activation Energy 48
3.3.3 Bulk Density Profile 49
3.4 Characterisation Techniques 51
3.4.1 Scanning Electron Microscopy (SEM) 53
3.4.2 Optical Microscopy 57
3.4.3 Mercury Porosimetry 60
3.4.4 Helium Pycnometry 62
3.4.5 X-Ray Diffraction (XRD) 62
3.4.6 Raman Spectroscopy 65
3.4.7 X-ray Photoelectron Spectrometry (XPS) 68
3.4.8 Fourier Transform Infrared Spectroscopy (FTIR) 69
4 Thermal Oxidation Behaviour 73
4.1 Oxidation Rate 73
4.1.1 The Effect of Temperature 76
4.1.2 Discussion of the Reliability of the Oxidation Test 79
4.1.3 The Effect of Various Inert-Gas Environments 83
4.2. Activation Energy 89
4.3 Bulk Density Profile 92
4.4 Summary 97
5 Surface Morphologies of Oxidised Graphite 99
5.1 Optical Microscopy (OM) 99
5.2 Scanning Electron Microscopy (SEM) 104
5.2.1 IG-110 and IG-430 104
5.2.2 MA and MB 110
5.2.3 PGA and ATR-2E 117
5.3 Analysis 121
5.3.1 Roughness 121
5.3.2 Volume Reduction of Filler Particles 122
5.4 Summary 128
6 Characterisation of Pore Structure 129
6.1 Mercury Porosimetry 129
6.2 Surface porosity 133
6.3 Helium Pycnometry 140
6.4 Summary 142
7 Characterisation of Crystal Structure 143
7.1 X-Ray Diffraction (XRD) 144
7.2 Raman Spectroscopy 150
7.2.1 Preliminary Measurements 150
7.2.2 Mapping Measurements 156
7.2.2.1 IG-430 Specimens Oxidised in Dry Air 156
7.2.2.2 IG-430 Specimens Oxidised in 10%O2 164
7.2.3 Specific Measurements 165
7.3 Summary 175
8 Characterisation of Surface Chemical Compositions 176
8.1 Energy Dispersive Spectroscopy (EDS) 176
8.2 X-ray Photoelectron Spectrometry (XPS) 178
8.2.1 Qualitative and Quantitative Analysis 180
8.2.2 Chemical-state Analysis 182
8.2.3 Catalytic effect of Aluminium 185
8.3 Fourier Transform Infrared Spectroscopy (FTIR) 187
8.4 Summary 195
9 General Discussions 197
9.1 Oxidation Mechanism at Very High Temperatures 197
9.1.1 Microscopic Scale 200
9.1.2 Crystallite Scale 203
9.2 Intrinsic and Extrinsic Factors for Thermal Bulk Oxidation 207
9.3 Graphite Oxidation occurring in an Air Ingress Accident 211
10 Conclusions and Future Work 216
10.1 Conclusions 216
10.2 Future Work 218
References 221

[1] J.Skea, Global warming: The Greenpeace report, Energy Policy. 20 (2003) 589–590.
[2] V.Tulpulé, S.Brown, J.Lim, C.Polidano, H.Pant, B.Fisher, The Kyoto protocol: An economic analysis using GTEM, Energy J. 20 (1999) 257–285.
[3] JAERI, Design of high temperature engineering test reactor (HTTR), (1994).
[4] C.Contescu, S.Azad, D.Miller, M.Lance, F.Baker, T.Burchell, Practical aspects for characterizing air oxidation of graphite, J. Nucl. Mater. 381 (2008) 15–24.
[5] C.Oh, H.No, Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents PI, 1400 (2004).
[6] E.Kim, H.No, B.Kim, C.Oh, Estimation of graphite density and mechanical strength variation of VHTR during air-ingress accident, Nucl. Eng. Des. 238 (2008) 837–847.
[7] E.Kim, H.No, Experimental study on the oxidation of nuclear graphite and development of an oxidation model, J. Nucl. Mater. 349 (2006) 182–194.
[8] C.Contescu, T.Guldan, P.Wang, T.Burchell, The effect of microstructure on air oxidation resistance of nuclear graphite, Carbon N. Y. 50 (2012) 3354–3366.
[9] M.El-Genk, J.Tournier, Comparison of oxidation model predictions with gasification data of IG-110, IG-430 and NBG-25 nuclear graphite, J. Nucl. Mater. 420 (2012) 141–158.
[10] S.Shiozawa, S.Fujikawa, T.Lyoku, K.Kunitomi, Y.Tachibana, Overview of HTTR design features, Nucl. Eng. Des. 233 (2004) 11–21.
[11] DOE, Multi-Year Research, Development and Demonstration Plan, 2012.
[12] E.Fermi, Elementary Theory of the Chain-reacting Pile, Science 105 (1947) 27–32.
[13] P.Cameron, The background and status of the gas cooled reactor in the United Kingdom, Ann. Nucl. Energy. 5 (1978) 489–505.
[14] M.Ogawa, T.Nishihara, Present status of energy in Japan and HTTR project, in: Nucl. Eng. Des. (2004) 5–10.
[15] S.Shiozawa, S.Fujikawa, T.Lyoku, K.Kunitomi, Y.Tachibana, Overview of HTTR design features, Nucl. Eng. Des. 233 (2004) 11–21.
[16] S.Penner, R.Seiser, K.R.Schultz, Steps toward passively safe, proliferation-resistant nuclear power, Prog. Energy Combust. Sci. 34 (2008) 275–287.
[17] S.Shiozawa, S.Fujikawa, T.Lyoku, K.Kunitomi, Y.Tachibana, Overview of HTTR design features, in: Nucl. Eng. Des. (2004) 11–21.
[18] T.Oku, M.Ishihara, Lifetime evaluation of graphite components for HTGRs, Nucl. Eng. Des. 227 (2004) 209–217.
[19] T.Takeda, M.Hishida, Study on the passive safe technology for the prevention of air ingress during the primary-pipe rupture accident of HTGR, Nucl. Eng. Des. 200 (2000) 251–259.
[20] T.Takeda, M.Hishida, Studies on molecular diffusion and natural convection in a multicomponent gas system, Int. J. Heat Mass Transf. 39 (1996) 527–536.
[21] J.Lee, T.Ghosh, S.Loyalka, Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios, J. Nucl. Mater. 446 (2014) 38–48.
[22] K.Minato, T.Ogawa, Advanced concepts in triso fuel, in: Compr. Nucl. Mater., (2012) 215–236.
[23] S.Ball, M.Richards, S.Shepelev, Sensitivity studies of air ingress accidents in modular HTGRs, Nucl. Eng. Des. 238 (2008) 2935–2942.
[24] Y.Ferng, C.Chi, CFD investigating the air ingress accident for a HTGR simulation of graphite corrosion oxidation, Nucl. Eng. Des. 248 (2012) 55–65.
[25] D.Chung, Review: Graphite, J. Mater. Sci. 37 (2002) 1475–1489.
[26] H.Pierson, Handbook of carbon, graphite, diamond and fullerenes: Properties, Processing, and Applications, Noyes Publ. (1993) 1–399.
[27] S.Schimmelpfennig, B.Glaser, One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars, J. Environ. Qual. 41 (2012) 1001.
[28] J.Fachinger, W.vonLensa, T.Podruhzina, Decontamination of nuclear graphite, Nucl. Eng. Des. 238 (2008) 3086–3091.
[29] M.Stempniewicz, L.Winters, S.A.Caspersson, Analysis of dust and fission products in a pebble bed NGNP, in: Nucl. Eng. Des. 2012: pp. 433–442.
[30] Z.Li, D.Chen, X.Fu, W.Miao, Z.Zhang, The influence of pores on irradiation property of selected nuclear graphites, Adv. Mater. Sci. Eng. 2012 (2012) 1–7.
[31] G.Hall, B.Marsden, S.Fok, The microstructural modelling of nuclear grade graphite, J. Nucl. Mater. 353 (2006) 12–18.
[32] Y.Shtrombakh, B.Gurovich, P.Platonov, V.Alekseev, Radiation damage of graphite and carbon-graphite materials, J. Nucl. Mater. 225 (1995) 273–301.
[33] P.Fanning, M.Vannice, A DRIFTS study of the formation of surface groups on carbon by oxidation, Carbon N. Y. 31 (1993) 721–730.
[34] J.Kane, C.Contescu, R.Smith, G.Strydom, W.Windes, Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution, J. Nucl. Mater. 493 (2017) 343–367.
[35] J.Bonal, A.Kohyama, J.Laan, L.Snead, Graphite, Ceramics, and Ceramic Composites for Nuclear Power Systems, MRS Bull. 34 (2009) 28–34.
[36] J.Bulau, A Monitoring for Control of Carbon-Carbon Pyrolysis, Ultrason. Symp. (1988) 1057–1063.
[37] R.Krishna, A.Jones, L.McDermott, B.Marsden, Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy, J. Nucl. Mater. 467 (2015) 557–565.
[38] K.Wen, T.Marrow, B.Marsden, The microstructure of nuclear graphite binders, Carbon N. Y. 46 (2008) 62–71.
[39] J.Okada, T.Ikegawa, Combustion rate of artificial graphites from 700°C to 2000°C in air [5], J. Appl. Phys. 24 (1953) 1249–1250.
[40] E.Loren Fuller, J.M.Okoh, Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110, J. Nucl. Mater. 240 (1997) 241–250.
[41] F.Emmerich, Evolution with heat treatment of crystallinity in carbons, Carbon N. Y. 33 (1995) 1709–1715.
[42] P.Wang, C.Contescu, S.Yu, T.D.Burchell, Pore structure development in oxidized IG-110 nuclear graphite, J. Nucl. Mater. 430 (2012) 229–238.
[43] S.Ahmed, M.Back, The role of the surface complex in the kinetics of the reaction of oxygen with carbon, Carbon N. Y. 23 (1985) 513–524.
[44] M.El-Genk, J.Tournier, Development and validation of a model for the chemical kinetics of graphite oxidation, J. Nucl. Mater. 411 (2011) 193–207.
[45] P.Walker, R.Taylor, J.Ranish, An update on the carbon-oxygen reaction, Carbon N. Y. 29 (1991) 411–421.
[46] L.Radovic, H.Jiang, A.Lizzio, A Transient Kinetics Study of Char Gasification in Carbon Dioxide and Oxygen, Energy and Fuels. 5 (1991) 68–74.
[47] Z.Pan, R.Yang, Strongly Bonded Oxygen in Graphite: Detection by High-Temperature TPD and Characterization, Ind. Eng. Chem. Res. 31 (1992) 2675–2680.
[48] W.Jiang, G.Nadeau, K.Zaghib, K.Kinoshita, Thermal analysis of the oxidation of natural graphite - Effect of particle size, Thermochim. Acta. 351 (2000) 85–93.
[49] G.Miessen, F.Behrendt, O.Deutschmann, J.Warnatz, Numerical studies of the heterogeneous combustion of char using detailed chemistry, Chemosphere. 42 (2001) 609–613.
[50] J.Kane, C.Karthik, D.Butt, W.Windes, R.Ubic, Microstructural characterization and pore structure analysis of nuclear graphite, J. Nucl. Mater. 415 (2011) 189–197.
[51] F.Kang, K.Shen, W.Shen, Z.Huang, Status of Isotropic Graphite Manufacture and Carbon Industry in China, (2014).
[52] C.Contescu, Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis, 2009.
[53] ASTM Standard D7542–15, Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime, ASTM International, West Conshohocken, PA, USA, 2015.
[54] J.Lee, T.Ghosh, S.Loyalka, Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios, J. Nucl. Mater. 451 (2014) 48–54.
[55] J.ONG, On the kinetics of oxidation of graphite, Carbon 2 (1964) 281–297.
[56] E.Kim, K.Lee, H.No, Analysis of geometrical effects on graphite oxidation through measurement of internal surface area, J. Nucl. Mater. 348 (2006) 174–180.
[57] M.Takahashi, M.Kotaka, H.Sekimoto, Burn-off and production of CO and CO2 in the oxidation of nuclear reactor- grade graphites in a flow system, J. Nucl. Sci. Technol. 31 (1994) 1275–1286.
[58] Z.Hu, Z.Li, D.Chen, W.Miao, Z.Zhang, CO2 corrosion of IG-110 nuclear graphite studied by gas chromatography, J. Nucl. Sci. Technol. 51 (2014) 487–492.
[59] D.Macdonald, M.Urquidi-Macdonald, J.Mahaffy, A.Jain, H.Kim, C.Gupta, J.Pitt, Electrochemistry of Water-Cooled Nuclear Reactors. NEER, PA, USA, 2006.
[60] M.El-genk, J.Tournier, C.Contescu, Chemical kinetics parameters and model validation for the gasification of PCEA nuclear graphite, J. Nucl. Mater. 444 (2014) 112–128.
[61] S.Chi, G.Kim, Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades, J. Nucl. Mater. 381 (2008) 9–14.
[62] X.Luo, J.Robin, S.Yu, Comparison of Oxidation Behaviors of Different Grades of Nuclear Graphite, Nucl. Sci. Eng. 151 (2005) 121–127.
[63] J.Jo, T.K.Ghosh, S.K.Loyalka, Comparison of NBG-18 , NBG-17 , IG-110 and IG-11 oxidation kinetics in, J. Nucl. Mater. 500 (2018) 64–71.
[64] W.Huang, S.Tsai, C.Yang, J.Kai, The relationship between microstructure and oxidation effects of selected IG- and NBG-grade nuclear graphites, J. Nucl. Mater. 454 (2014) 149–158.
[65] W.Huang, S.Tsai, I.Chiu, C.Chen, J.Kai, The oxidation effects of nuclear graphite during air-ingress accidents in HTGR, Nucl. Eng. Des. 271 (2014) 270–274.
[66] X.Sun, Y.Dong, Y.Zhou, Z.Li, L.Shi, Y.Sun, Z.Zhang, Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM, J. Nucl. Sci. Technol. 54 (2017) 196–204.
[67] X.Luo, S.Yu, X.Sheng, S.He, Temperature effect on IG-11 graphite wear performance, Nucl. Eng. Des. 235 (2005) 2261–2274.
[68] J.Eapen, R.Krishna, T.Burchell, K.Murty, Early damage mechanisms in nuclear grade graphite under irradiation, Mater. Res. Lett. 2 (2014) 43–50.
[69] T.Burchell, R.Bratton, W.Windes, NGNP Graphite Selection and Acquisition Strategy, 2007.
[70] B.J.Marsden, G.N.Hall, Graphite in gas-cooled reactors, Elsevier Inc., 2012.
[71] J.Sumita, T.Shibata, I.Fujita, E.Kunimoto, M.Yamaji, M.Eto, T.Konishi, K.Sawa, Development of evaluation method with X-ray tomography for material property of IG-430 graphite for VHTR/HTGR, Nucl. Eng. Des. 271 (2014) 314–317.
[72] A.Campbell, Y.Katoh, M.Snead, K.Takizawa, Property changes of G347A graphite due to neutron irradiation, Carbon N. Y. 109 (2016) 860–873.
[73] G.Haag, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation (Jülich-4183), Jülich-4183. 4183 (2005) 177.
[74] C.Oh, H.No, Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents PI, 1400 (2004).
[75] ASTM Standard C559-90, Standard Test Method for Bulk Density by Physical Measurements of Manufactured Carbon and Graphite Articles, ASTM International, West Conshohocken, PA, USA, 2000.
[76] 材料電子顯微鏡學 ,國科會精儀中心叢書 ,科儀叢書 3, n.d.
[77] P.Webb, Micromeritics, Data Collect. Reduct. Present. An Int. Sales Support Doc. (1993).
[78] P.Webb, An Introduction To The Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis On Reduction And Presentation of Experimental Data, Micrometrics Instrum. Corp. (2001) 23.
[79] D.Baker, J.Morris, Structural damage in graphite occurring during pore size measurements by high pressure mercury, Carbon N. Y. 9 (1971) 687–690.
[80] K.Mergia, K.Stefanopoulos, N.Ordás, C.García-Rosales, A comparative study of the porosity of doped graphites by small angle neutron scattering, nitrogen adsorption and helium pycnometry, Microporous Mesoporous Mater. 134 (2010) 141–149.
[81] M.Seeh, A.Pavlovic, X-ray diffraction, thermal expansion, electrical conductivity, and optical microscopy studies of coal based graphites, Carbon N. Y. 31 (1993) 557–564.
[82] S.Seo, J.Roh, S.Kim, S.Chi, E.Kim, Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (1): Effects of Density, Porosity, and Microstructure, Carbon Lett. 12 (2011) 8–15.
[83] D.Yang, A.Velamakanni, G.Bozoklu, S.Park, M.Stoller, R.Piner, S.Stankovich, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (2009) 145–152.
[84] M.Pimenta, G.Dresselhaus, M.Dresselhaus, L.Cançado, A.Jorio, R.Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276–1291.
[85] F.Tuinstra, J.Koenig, Raman Spectrum of Graphite, J. Chem. Phys. 53 (1970) 1126–1130.
[86] Y.Yamada, H.Yasuda, K.Murota, M.Nakamura, T.Sodesawa, S.Sato, Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy, J. Mater. Sci. 48 (2013) 8171–8198.
[87] C.Tang, Y.Kwon, J.Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination. 242 (2009) 149–167.
[88] B.Kartick, S.Srivastava, I.Srivastava, Green synthesis of graphene., J. Nano sci. 13 (2013) 4320–4.
[89] J.Chalmers, N.Everall, S.Ellison, Specular reflectance: A convenient tool for polymer characterisation by FTIR-microscopy, Micron. 27 (1996) 315–328.
[90] IR / FTIR 樣品處理及測定 IR / FTIR 樣品處理及測定, National Tsing Hua University (2016) 1–11.
[91] S.Chi, G.Kim, Effects of air flow rate on the oxidation of NBG-18 and NBG-25 nuclear graphite, J. Nucl. Mater. 491 (2017) 37–42.
[92] X.Luo, R.Jean-Charles, Y.Suyuan, Theoretical analysis of mass transfer and reaction in a porous medium applied to the gasification of graphite by water vapor, Nucl. Eng. Des. 236 (2006) 938–947.
[93] J.Lee, T.Ghosh, S.Loyalka, Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios, J. Nucl. Mater. 446 (2014) 38–48.
[94] A.Theodosiou, A.Jones, B.Marsden, Thermal oxidation of nuclear graphite: A large scale waste treatment option, PLoS One. 12 (2017)
[95] E.Kim, H.No, Experimental study on the oxidation of nuclear graphite and development of an oxidation model, J. Nucl. Mater. 349 (2006) 182–194.
[96] R.Moormann, H.Hinssen, K.Kühn, Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite, Nucl. Eng. Des. 227 (2004) 281–284.
[97] P.Campbell, R.Mitchell, The impact of the distributions of surface oxides and their migration on characterization of the heterogeneous carbon-oxygen reaction, Combust. Flame. 154 (2008) 47–66.
[98] K.Jones, G.Laudone, G.Matthews, A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite, Carbon N. Y. 128 (2018) 1–11.
[99] J.Dickinson, J.Shore, Observations concerning the determination of porosities in graphites, Carbon N. Y. 6 (1968) 937–941.
[100] H.Hinssen, K.Kühn, R.Moormann, B.Schlögl, M.Fechter, M.Mitchell, Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR, Nucl. Eng. Des. 238 (2008) 3018–3025.
[101] R.Moormann, H.K.Hinssen, K.Kühn, Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite, Nucl. Eng. Des. 227 (2004) 281–284.
[102] R.Ubic, D.Butt, W.Windes, Irradiation Creep in Graphite, United States, 2014.
[103] P.Thrower, J.Bognet, G.Mathew, The influence of oxidation on the structure and strength of graphite-I. Materials of different structure, Carbon. 20 (1982) 457–464.
[104] A.Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47–57.
[105] R.Krishna, A.Jones, R.Edge, B.Marsden, Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy, Radiat. Phys. Chem. 111 (2015) 14–23.
[106] B.März, K.Jolley, R.Smith, H.Wu, Near-surface structure and residual stress in as-machined synthetic graphite, Mater. Des. 159 (2018) 1–27.
[107] R.Krishna, J.Wade, A.Jones, M.Lasithiotakis, P.Mummery, B.Marsden, An understanding of lattice strain, defects and disorder in nuclear graphite, Carbon 124 (2017) 314–333.
[108] H.Freeman, A.Jones, M.Ward, F.Hage, N.Tzelepi, Q.Ramasse, A.Scott, R.M.D.Brydson, On the nature of cracks and voids in nuclear graphite, Carbon 103 (2016) 45–55.
[109] O.Frank, G.Tsoukleri, I.Riaz, K.Papagelis, J.Parthenios, A.C.Ferrari, A.K.Geim, K.S.Novoselov, C.Galiotis, Development of a universal stress sensor for graphene and carbon fibres, Nat. Commun. 2 (2011).
[110] B.März, K.Jolley, T.Marrow, Z.Zhou, M.Heggie, R.Smith, H.Wu, Data related to the mesoscopic structure of iso-graphite for nuclear applications, Data Br. 19 (2018) 651–659.
[111] R.VanGrieken, A.Markowicz, Handbook of X-ray spectrometry. Second edition, 2002.
[112] G.Kothleitner, Fundamentals of electron energy-loss spectroscopy, IOP Conf. Ser. Mater. Sci. Eng. 109 (2016) 12007.
[113] E.Heintz, W.Parker, Catalytic effect of major impurities on graphite oxidation, Carbon N. Y. 4 (1966) 473–482.
[114] D.McKee, Metal oxides as catalysts for the oxidation of graphite, Carbon 8 (1970) 623–635.
[115] J.Han, K.Cho, K.Lee, H.Kim, Porous graphite matrix for chemical heat pumps, Carbon 36 (1998) 1801–1810.
[116] A.Baranov, A.Bekhterev, Y.Bobovich, V.Petrov, Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon, Opt. Spektrosk. 62 (1987) 1036.
[117] C.Thomsen, S.Reich, Double resonant raman scattering in graphite, Phys. Rev. Lett. 85 (2000) 5214–5217.
[118] A.Eckmann, A.Felten, A.Mishchenko, L.Britnell, R.Krupke, K.S.Novoselov, C.Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett. 12 (2012) 3925–3930.
[119] D.Carlson, S.Ball, Perspectives on understanding and verifying the safety terrain of modular high temperature gas-cooled reactors, Nucl. Eng. Des. 306 (2016) 117–123.
[120] E.Kim, H.No, B.Kim, C.Oh, Estimation of graphite density and mechanical strength variation of VHTR during air-ingress accident, Nucl. Eng. Des. 238 (2008) 837–847.
[121] H.No, H.Lim, J.Kim, C.Oh, L.Siefken, C.Davis, Multi-component diffusion analysis and assessment of GAMMA code and improved RELAP5 code, Nucl. Eng. Des. 237 (2007) 997–1008.
[122] C.Oh, E.Kim, R.Schultz, M.Patterson, D.Petti, H.Kang, Comprehensive thermal hydraulics research of the very high temperature gas cooled reactor, in: Nucl. Eng. Des., (2010) 3361–3371.
[123] C.Oh, E.Kim, Conceptual study on air ingress mitigation for VHTRs, Nucl. Eng. Des. 250 (2012) 448–464.
[124] M.Davies, M.Bradford, A revised description of graphite irradiation induced creep, J. Nucl. Mater. 381 (2008) 39–45.
[125] T.Burchell, K.Murty, J.Eapen, Irradiation induced creep of graphite, JOM. 62 (2010) 93–99.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *