帳號:guest(3.144.85.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李昀庭
作者(外文):Li, Yun-Ting
論文名稱(中文):蛋白質奈米磁性殼核膠囊製備與特性探討
論文名稱(外文):Preparation and Characteristics of Magnetic Nano Core-shell Capsules
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):張建文
姜文軒
口試委員(外文):Chang, Chien-Wen
Chiang, Wen-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012513
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:33
中文關鍵詞:奈米氧化鐵牛血清蛋白奈米膠囊
外文關鍵詞:Iron oxide nanoparticlesBovine serum albumin (BSA)Nanpcapsules
相關次數:
  • 推薦推薦:0
  • 點閱點閱:330
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
奈米藥物傳輸系統除了增強療效及降低藥物副作用外,更著重在提升生物相容性與多功能性。使用天然的分子作為藥物載體,可減少免疫反應及肝臟代謝的負擔。另外,功能性藥物載體則可整合標靶(Target therapy)、磁控(Magnetic guidance)、刺激釋放及合併治療(熱療、化療及免疫療法等…)來增強療效。在此研究中,開發一種蛋白質奈米磁性殼核膠囊,其中,以血液中重要的成分血清白蛋白作為藥物載體的基材(本研究中使用牛血清蛋白(Bovine serum albumin (BSA)),增強載體的生物相容性。為了使得藥物載體達到奈米化,我們先以熱裂解法合成油相的奈米氧化鐵(Iron Oxide Nanoparticles (IOP)),並藉由BSA作為水相界面活性劑乳化製成,達到一步驟水/油/水(Water-in-oil-in-water)的奈米穩定結構,並在本結構中,可直接穩定包覆氧化鐵奈米粒子。由於包覆磁性粒子,因此可藉由高週波(High frequency magnetic filed, HFMF)驅動載體生熱,達到熱療的目的。另外,由於蛋白質結構易受酸鹼與熱影響,本研究中也發現,在不同環境下,載體會產生聚集現象(Aggregation transition),期盼未來能夠有機會使用在自發性腫瘤標靶治療上。
Combination therapy is a very powerful approach to fight cancer disease that not only induce cancer cell death but also modulates the complex tumor microenvironment. Except for choice of multiple therapy combination, the more difficulty is how to take co-treatment to reach the synergistic therapeutic effects in a simple way.
In this study, we provide a new class of nano-hollow-capsules that can achieve magneto-thermal- and chemo- therapy in one system to kill cancerous cells effectively. The design is prepared by single-emulsion that assemble bovine serum albumin (BSA) and iron oxide nanoparticles (IOPs) into one BSA-based magnetic capsules (BSA@IOP capsule). Such hollow capsules with nanoscale enable carrying both hydrophobic and hydrophilic drugs spontaneously. The BSA@IOP capsule is anticipated accumulate in tumor directly through enhanced permeability and retention effect (EPR effect). Subsequently, IOPs of BSA@IOP capsule were actuated by high frequency magnetic field (HFMF), causing temperature rise of microenvironment and lead to bovine serum albumin (BSA) denature, which makes drug release, capsules collapse adhesion together. In this chemo-thermotherapy approach, thermotherapy is active in treating local cancer at the primary site and chemotherapy is effective in secondary treating.
These nano-hollow-capsules are bio-degradable and bio-eliminable after drug release had been triggered. These results demonstrate that the BSA@IOP capsule is an excellent new delivery platform for local, on-demand, magneto-responsive, pH-responsive combined chemotherapy/hyperthermia for tumor treatments and other biomedical applications.
中文摘要..........................................................1
Abstract.........................................................2
Table of Content.................................................3
Abbreviations....................................................6
Chapter 1 Introduction & literature review.......................7
1.1 Application of nanoparticles in medicine..................7
1.2 Revolution in drug delivery systems.......................7
1.3 Bio-mimetic drug carrier..................................8
1.4 Natural bio-nanoparticles as drug delivery vehicles.......9
1.5 Magnetic drug delivery system for cancer therapy.........10
1.6 Hollow structure nano-capsule............................11
Chapter 2 Materials and experimental methods....................13
2.1 Materials................................................13
2.2 Apparatus................................................14
2.3 Methods..................................................15
2.3.1 Synthesis of iron oxide particles (IOP)...................15
2.3.2 Evaluation of Hydrophilic-Lipophilic Balance (HLB) Value of Surfactants (Bovine Serum Albumin, BSA).........................16
2.3.3 Preparation of BSA@IOP capsule............................17
2.3.4 Characterization..........................................18
2.3.5 Magnetic thermal heating effect of nanocapsules...........19
2.4 In vitro study..............................................19
2.5 Cellular uptake of BSA@IOP capsules.........................20
2.6 Cell cytotoxicity and compatibility of BSA@IOP capsule......21
Chapter 3 Results and discussions...............................22
3.1 Iron oxide characterization..............................22
3.2 Hydrophilic-lipophilic balance value of bovine serum albumin.........................................................23
3.3 Temperature sensitivity..................................27
3.4 Cell uptake..............................................28
Chapter 4 Conclusions...........................................30
Reference.......................................................31
1. Sun S., Zeng H., Robinson D. B., Raoux S., Rice P. M., Wang S. X., Li G., Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 1, 273-279
2. Shi J., Votruba A.R., Farokhzad O. C., Langer R., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett. 2010, 10 (9), 3223–3230.
3. Vlasova, I. M., & Saletsky, A. M. Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. Journal of Applied Spectroscopy, 2009, 76(4), 536–541.
4. Lee, E. S., & Youn, Y. S. Albumin‐based potential drugs: Focus on half‐life extension and nanoparticle preparation. Journal of Pharmaceutical Investigation, 2016, 46(4), 305–315.
5. Kratz F., Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release. 2008, 132(3):171-181
6. Brule S, Levy M, Wilhelm C, Letourneur D, Gazeau F, Ménager C, Le Visage C, Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater. 2011, 23:787-90
7. Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F, Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl. 2011, 50:891–95.
8. Long NV, Yang Y, Teranishi T, Thi CM, Cao Y, Nogami M., Biomedical applications of advanced multifunctional magnetic nanoparticles. J Nanosci Nanotechnol, 2015, 15:10091–107
9. Mohammed L, Ragab D, Gomaa H, Bioactivity of hybrid polymeric magnetic nanoparticles and their applications in drug delivery. Curr Pharm Des, 2016, 22:3332–52.
10. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release, 2013, 169:165-70
11. Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release, 2008, 130:246-51.
12. Jordan A, Maier-Hauff K, Wust P, Johannsen M. Nanoparticles for thermotherapy In: Nanomaterials for cancer therapy. Weinheim, 2006, Germany: VCH.
13. Mitragotri S., Burke P. A., Langer R., Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014, 13, 655-672.
14. J.W. Yoo, D.J. Irvine, D.E. Discher, S. Mitragotri, Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10 (7), 521-535.
15. G Mani Subramanian, Michele Fiscella, Araba Lamousé-Smith, Stefan Zeuzem & John G McHutchison, Albinterferon α-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nature Biotechnology 2007, 25, 1411-1419.
16. V. K. Rustgi, Albinterferon alfa-2b, Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. Curr. Med. Res. Opin.. 2009, 25, 991-1002.
17. F. Kratz, “Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles,” Journal of Controlled Release, vol. 132, no. 3, pp. 171–181, 2008.
18. Park, J. et al. Combination delivery of TGF inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nature Mater. 11, 895-905 (2012)
19. Z. Mei, A. Dhanale, A. Gangaharan, D. K. Sardar, L. Tang, Water dispersion of magnetic nanoparticles with selective Biofunctionality for enhanced plasmonic biosensing Talanta. 2016, 1, 23-29.
20. A. Akbarzadeh, M. Samiei, S, Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 2012, 7, 144.
21. W. C. Griffin, Classification of Surface-Active Agents by “HLB”. J. Soc. Cosmetic Chemists, 1949, 1, 311-326.
22. W. C. Griffin, Calculation of HLB Values of Non-Ionic Surfactants. J. Soc. Cosmetic Chemists 1954, 5, 249-256.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
3. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
4. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
5. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
6. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
13. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
14. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
15. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
 
* *