帳號:guest(13.59.229.87)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅尉辰
作者(外文):Lo, Wei-Chen
論文名稱(中文):以龍捲風為靈感之漩渦式超音波聲鉗用於微氣泡之捕捉與操控
論文名稱(外文):Tornado-Inspired Acoustic Vortex Tweezers for Trapping and Manipulating Microbubbles
指導教授(中文):葉秩光
指導教授(外文):Yeh, Chih-Kuang
口試委員(中文):范景翔
黃執中
林玉俊
李夢麟
口試委員(外文):Fan, Ching-Hsiang
Huang, Chih-Chung
Lin, Yu-Chun
Li, Meng-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012510
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:108
中文關鍵詞:超音波微氣泡聲鉗超音波聲鉗捕捉
外文關鍵詞:UltrasoundMicrobubblesAcoustic TweezersAcoustic VortexTrapping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:428
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現有的藥物遞送技術中,如何能夠穩定且精準的在複雜的人體環境下將藥物遞送至病灶區極具挑戰。研究指出縱使透過先進的標靶藥物技術進行治療,藥物的遞送效率仍難有效提升(<0.7%),而且連帶的可能須付出更高額的醫療成本。因此,如果能夠開發出高效、簡易且非侵入式的藥物遞送技術,將能夠大幅提升藥物治療效果與病患的醫療品質。因此我們提出以龍捲風為靈感之漩渦式聲鉗技術,藉由超音波產生類似於龍捲風的效果於組織中對藥物進行非侵入式的捕捉與精確操控。在研究中結合了超音波顯影劑微氣泡作為藥物載體進行高效的藥物遞送測試,其結果顯示漩渦式聲鉗可對微氣泡產生將近 0.75 nN 的強大捕捉力並成功於流場中累積微氣泡進行藥物遞送的效果。結合功能性的超音波釋藥脈衝序列可有效提升遞送效率至少7.2倍,除此之外,在活體複雜血流環境中遞送的測試結果也證實有顯著的局部藥物濃度提升至少1.7倍並且沒有毒性反應。這些結果反應出漩渦式聲鉗有機會在未來發展為一種更安全可靠的藥物遞送技術。
Spatially concentrating and manipulating biotherapeutic agents within the circulatory system is a longstanding challenge in medical applications due to the high velocity of blood flow, which greatly limits drug leakage and retention of the drug in the targeted region. To circumvent the disadvantages of current methods for systemic drug delivery, we propose tornado-inspired acoustic vortex tweezer (AVT) that generate net forces for noninvasive intravascular trapping of lipid-shelled gaseous microbubbles (MBs). MBs are used in a diverse range of medical applications, including as ultrasound contrast agents, for permeabilizing vessels, and as drug/gene carriers. We demonstrate that AVT can produce strong trapping force of nearly 0.75 nN and can successfully accumulate MBs to increase their local concentration in both static and flow conditions at least 7.2–fold efficiency improvement. Furthermore, MBs signals within mouse capillaries could be locally improved 1.7–fold and the location of trapped MBs could still be manipulated during the initiation of AVT. The proposed AVT technique is a compact, easy-to-use, and biocompatible method that enables systemic drug administration with extremely low doses.
內容
中文摘要 i
Abstract ii
致謝 iii
List of Symbols viii
List of Figures 9
List of Tables 19
Chapter 1 20
Introduction 20
1.1 Need and Concept 20
1.2 Contactless trapping technique 21
1.3 Acoustic tweezers 25
1.4 Acoustic vortex tweezers 28
1.5 Microbubbles as drug carriers 31
Chapter 2 34
Tornado-inspired Acoustic Vortex Tweezers for Trapping and Manipulating Microbubbles 34
2.1 Introduction 34
2.2 Materials and Methods 37
2.2.1 The Acoustic Vortex Principle and Transducer Design 37
2.2.2 The Experiment Design for Implementing Drug Delivery Application 44
2.2.3 The Feasibility Assessment of In Vivo Experiments 46
2.2.4 Window Chamber Model Preparation for In Vivo Study 49
2.2.5 2D Array Transducer and Asymmetric Acoustic Vortex 51
2.2.6 Verasonics Open Source Research Ultrasound System 52
2.2.7 Microscope Photography Experimental Setup 53
Chapter 3 55
Result 55
3.1 The Acoustic Vortex Field 55
3.2 Acoustic Vortex Trapping Force on Microbubble 56
3.3 The Feasibility Study of Acoustic Vortex Trapping Microbubbles in Static Condition 57
3.3.1 The Trapping Behavior of Microbubbles in Static Condition 57
3.3.2 Effects of Trapping Efficiency on the Microbubbles 60
3.3.3 Dynamic Manipulation of Trapped Microbubbles 62
3.4 In Vitro Acoustic Vortex Enhanced Drug Delivery 63
3.4.1 The Spatial Distribution of Microbubbles in the Static Chamber 63
3.4.2 The Outcomes with Different Drug Delivery Sequence 66
3.5 Acoustic Vortex Trapping Microbubbles in the Flow Condition 68
3.5.1 The Relation Between Trapping Capability and Flow Velocity 68
3.5.2 The Stability and Manipulation of the Trapped Cluster in the Flow 71
3.6 The Risk Assessment to Performing Acoustic Vortex Trapping In Vivo 71
3.6.1 Measured Acoustic Vortex Field after Penetrating Brain Tissue 71
3.6.2 The Effect of Red Blood Cell after the Acoustic Vortex Trapping 73
3.6.3 The Size Distribution of Microbubbles after the Acoustic Vortex Trapping 76
3.7 Application of Acoustic Vortex Tweezers to the Mouse Circulation 77
3.7.1 Trapping and Manipulating Microbubbles In Vivo 77
3.7.2 The Safety of Trapping Microbubbles In Vivo 79
3.8 Simulated and Measured Asymmetric Acoustic Vortex Field 84
3.9 Microbubbles Dynamics of Asymmetric Acoustic Vortex Trapping in Flow and In Vivo 86
Chapter 4 91
Discussion 91
Chapter 5 95
Conclusion and Future Work 95
References 99
Publication List 108
1. S. Wilhelm et al., Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1 (2016).
2. S. Bae et al., Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33, 1536-1546 (2012).
3. R. Holzel, Single particle characterization and manipulation by opposite field dielectrophoresis. J Electrostat 56, 435-447 (2002).
4. A. R. Minerick, R. H. Zhou, P. Takhistov, H. C. Chang, Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24, 3703-3717 (2003).
5. L. Altomare et al., Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol Bioeng 82, 474-479 (2003).
6. C. Gosse, V. Croquette, Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophys J 82, 3314-3329 (2002).
7. R. Pethig, Dielectrophoresis: An assessment of its potential to aid the research and practice of drug discovery and delivery. Adv Drug Deliver Rev 65, 1589-1599 (2013).
8. J. Owen, Q. Pankhurst, E. Stride, Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination. Int J Hyperther 28, 362-373 (2012).
9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt Lett 11, 288-290 (1986).
10. I. De Vlaminck, C. Dekker, Recent Advances in Magnetic Tweezers. Annu Rev Biophys 41, 453-472 (2012).
11. H. Chen et al., Improved High-Force Magnetic Tweezers for Stretching and Refolding of Proteins and Short DNA. Biophys J 100, 517-523 (2011).
12. A. Ashkin, Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophys J 61, 569-582 (1992).
13. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. P Natl Acad Sci USA 94, 4853-4860 (1997).
14. K. Dholakia, G. Spalding, M. MacDonald, Optical tweezers: the next generation. Phys World 15, 31-+ (2002).
15. H. Yin et al., Transcription against an Applied Force. Science 270, 1653-1657 (1995).
16. N. Leijnse, L. B. Oddershede, P. M. Bendix, Helical buckling of actin inside filopodia generates traction. P Natl Acad Sci USA 112, 136-141 (2015).
17. W. J. Greenleaf, M. T. Woodside, S. M. Block, High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Bioph Biom 36, 171-190 (2007).
18. P. V. Cornish, T. Ha, A survey of single-molecule techniques in chemical biology. Acs Chem Biol 2, 53-61 (2007).
19. S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283, 1676-1683 (1999).
20. E. Toprak, P. R. Selvin, New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annu Rev Bioph Biom 36, 349-369 (2007).
21. B. van den Broek et al., Visualizing the Formation and Collapse of DNA Toroids. Biophys J 98, 1902-1910 (2010).
22. S. B. Smith, L. Finzi, C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science 258, 1122-1126 (1992).
23. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33, 941-951 (2015).
24. J. Huang et al., Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39, 105-113 (2015).
25. W. Wu, Z. Wu, T. Yu, C. Jiang, W. S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16, 023501 (2015).
26. T. Nakamura et al., Mesoporous silica nanoparticles for F-19 magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem Sci 6, 1986-1990 (2015).
27. J. V. I. Timonen, B. A. Grzybowski, Tweezing of Magnetic and Non-Magnetic Objects with Magnetic Fields. Adv Mater 29 (2017).
28. Q. Wang, Royal Society of Chemistry (Great Britain), Smart materials for tissue engineering : fundamental principles, Smart materials series (Royal Society of Chemistry, Cambridge, UK, 2017), pp. xxii, 636 pages.
29. C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog Solid State Ch 31, 5-147 (2003).
30. M. Law, J. Goldberger, P. D. Yang, Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34, 83-122 (2004).
31. Y. N. Xia et al., One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 15, 353-389 (2003).
32. T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, Fabrication and Magnetic-Properties of Arrays of Metallic Nanowires. Science 261, 1316-1319 (1993).
33. D. L. Fan, F. Q. Zhu, R. C. Cammarata, C. L. Chien, Electric tweezers. Nano Today 6, 339-354 (2011).
34. D. L. Fan, F. Q. Zhu, R. C. Cammarata, C. L. Chien, Controllable high-speed rotation of nanowires. Phys Rev Lett 94 (2005).
35. D. L. Fan, R. C. Cammarata, C. L. Chien, Precision transport and assembling of nanowires in suspension by electric fields. Appl Phys Lett 92 (2008).
36. D. L. Fan et al., Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotechnol 5, 545-551 (2010).
37. A. Wixforth et al., Acoustic manipulation of small droplets. Anal Bioanal Chem 379, 982-991 (2004).
38. C. Haber, D. Wirtz, Magnetic tweezers for DNA micromanipulation. Rev Sci Instrum 71, 4561-4570 (2000).
39. C. Alexiou et al., Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60, 6641-6648 (2000).
40. A. L. Bernassau et al., Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation. Ultrasonics 54, 268-274 (2014).
41. Y. Ochiai, T. Hoshi, J. Rekimoto, Pixie Dust: Graphics Generated by Levitated and Animated Objects in Computational Acoustic-Potential Field. Acm T Graphic 33 (2014).
42. H. M. Hertz, Standing-Wave Acoustic Trap for Nonintrusive Positioning of Microparticles. J Appl Phys 78, 4845-4849 (1995).
43. J. Lee, K. Ha, K. K. Shung, A theoretical study of the feasibility of acoustical tweezers: Ray acoustics approach. J Acoust Soc Am 117, 3273-3280 (2005).
44. J. Lee et al., Single beam acoustic trapping. Appl Phys Lett 95 (2009).
45. Y. Li, C. Y. Lee, R. M. Chen, Q. F. Zhou, K. K. Shung, A feasibility study of in vivo applications of single beam acoustic tweezers. Appl Phys Lett 105 (2014).
46. J. Liu et al., Endothelial Adhesion of Targeted Microbubbles in Both Small and Great Vessels Using Ultrasound Radiation Force. Mol Imaging 11, 58-66 (2012).
47. J. J. Rychak, A. L. Klibanov, J. Hossack, Acoustic radiation force enhances adhesion of microbubbles targeted to P-selectin. Ultrason, 1110-1113 (2004).
48. P. Dayton, A. Klibanov, G. Brandenburger, K. Ferrara, Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25, 1195-1201 (1999).
49. L. Meng et al., Acoustic tweezers. J Phys D Appl Phys 52 (2019).
50. A. Ozcelik et al., Acoustic tweezers for the life sciences. Nat Methods 15, 1021-1028 (2018).
51. X. Y. Ding et al., On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. P Natl Acad Sci USA 109, 11105-11109 (2012).
52. L. Meng et al., Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves. Appl Phys Lett 100 (2012).
53. D. J. Collins et al., Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6 (2015).
54. X. Y. Ding et al., Cell separation using tilted-angle standing surface acoustic waves. P Natl Acad Sci USA 111, 12992-12997 (2014).
55. D. Ahmed et al., Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7 (2016).
56. M. X. Wu et al., Isolation of exosomes from whole blood by integrating acoustics and microfluidics. P Natl Acad Sci USA 114, 10584-10589 (2017).
57. S. T. Kang, C. K. Yeh, Trapping of a Mie Sphere by Acoustic Pulses: Effects of Pulse Length. Ieee T Ultrason Ferr 60, 1487-1497 (2013).
58. H. G. Lim, K. K. Shung, Quantification of Inter-Erythrocyte Forces with Ultra-High Frequency (410 MHz) Single Beam Acoustic Tweezer. Ann Biomed Eng 45, 2174-2183 (2017).
59. K. H. Lam et al., Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci Rep-Uk 6 (2016).
60. J. Y. Hwang et al., Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells. Ultrasonics 63, 94-101 (2015).
61. J. Y. Hwang et al., Cell Membrane Deformation Induced by a Fibronectin-Coated Polystyrene Microbead in a 200-MHz Acoustic Trap. Ieee T Ultrason Ferr 61, 399-406 (2014).
62. J. J. Rychak, A. L. Klibanov, J. A. Hossack, Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: In vitro verification. Ieee T Ultrason Ferr 52, 421-433 (2005).
63. P. Dayton, A. Klibanov, G. Brandenburger, K. Ferrara, Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25, 1195-1201 (1999).
64. S. T. Kang, C. K. Yeh, Potential-Well Model in Acoustic Tweezers. Ieee T Ultrason Ferr 57, 1451-1459 (2010).
65. B. T. Hefner, P. L. Marston, An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J Acoust Soc Am 106, 3313-3316 (1999).
66. D. Baresch, J. L. Thomas, R. Marchiano, Spherical vortex beams of high radial degree for enhanced single-beam tweezers. J Appl Phys 113 (2013).
67. D. Baresch, J. L. Thomas, R. Marchiano, Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Phys Rev Lett 116 (2016).
68. Z. Y. Hong, J. Zhang, B. W. Drinkwater, Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures. Phys Rev Lett 114 (2015).
69. C. Demore et al., A Sonic Screwdriver: Acoustic Angular Momentum Transfer for Ultrasonic Manipulation. Ieee Int Ultra Sym 10.1109/Ultsym.2011.0045, 180-183 (2011).
70. J. F. Li et al., Three dimensional acoustic tweezers with vortex streaming. Commun Phys-Uk 4 (2021).
71. M. Baudoin et al., Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat Commun 11 (2020).
72. E. Stride, Physical principles of microbubbles for ultrasound imaging and therapy. Front Neurol Neurosci 36, 11-22 (2015).
73. F. Kiessling, S. Fokong, P. Koczera, W. Lederle, T. Lammers, Ultrasound Microbubbles for Molecular Diagnosis, Therapy, and Theranostics. J Nucl Med 53, 345-348 (2012).
74. T. R. Porter, F. Xie, A. Kricsfeld, The Mechanism and Clinical Implication of Improved Left-Ventricular Videointensity Following Intravenous-Injection of Multi-Fold Dilutions of Albumin with Dextrose. Int J Cardiac Imag 11, 117-125 (1995).
75. J. R. Lindner, K. Wei, S. Kaul, Imaging of myocardial perfusion with SonoVue (TM) in patients with a prior myocardial infarction. Echocardiogr-J Card 16, 753-760 (1999).
76. C. Caiati, P. Aragona, S. Iliceto, P. Rizzon, Improved Doppler detection of proximal left anterior descending coronary artery stenosis after intravenous injection of a lung-crossing contrast agent: A transesophageal Doppler echocardiographic study. J Am Coll Cardiol 27, 1413-1421 (1996).
77. S. F. Huang et al., Analysis of tumor vascularity using three-dimensional power Doppler ultrasound images. Ieee T Med Imaging 27, 320-330 (2008).
78. D. M. McDonald, P. L. Choyke, Imaging of angiogenesis: from microscope to clinic. Nat Med 9, 713-725 (2003).
79. K. H. Martin, P. A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics. Wires Nanomed Nanobi 5, 329-345 (2013).
80. K. Hynynen, N. McDannold, N. Vykhodtseva, F. A. Jolesz, Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220, 640-646 (2001).
81. C. Y. Ting et al., Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33, 704-712 (2012).
82. I. Lentacker et al., Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 22, 7273-7278 (2006).
83. E. L. Chang et al., Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release 255, 164-175 (2017).
84. I. Lentacker, S. C. De Smedt, N. N. Sanders, Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 5, 2161-2170 (2009).
85. L. C. Phillips, A. L. Klibanov, B. R. Wamhoff, J. A. Hossack, Localized ultrasound enhances delivery of rapamycin from microbubbles to prevent smooth muscle proliferation. J Control Release 154, 42-49 (2011).
86. K. Hettiarachchi, A. P. Lee, S. Zhang, S. Feingold, P. A. Dayton, Controllable Microfluidic Synthesis of Multiphase Drug-Carrying Lipospheres for Site-Targeted Therapy. Biotechnol Progr 25, 938-945 (2009).
87. E. C. Unger, T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, Y. Q. Wu, Acoustically active lipospheres containing paclitaxel - A new therapeutic ultrasound contrast agent. Invest Radiol 33, 886-892 (1998).
88. A. Kheirolomoom et al., Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. J Control Release 118, 275-284 (2007).
89. A. F. H. Lum et al., Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111, 128-134 (2006).
90. J. E. Chomas, P. Dayton, D. May, K. Ferrara, Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 6, 141-150 (2001).
91. D. Cosgrove, Ultrasound contrast agents: An overview. Eur J Radiol 60, 324-330 (2006).
92. P. Tho, R. Manasseh, A. Ooi, Cavitation microstreaming patterns in single and multiple bubble systems. J Fluid Mech 576, 191-233 (2007).
93. N. Hosseinkhah, H. Chen, T. J. Matula, P. N. Burns, K. Hynynen, Mechanisms of microbubble-vessel interactions and induced stresses: A numerical study. J Acoust Soc Am 134, 1875-1885 (2013).
94. Y. Luan et al., Acoustical Properties of Individual Liposome-Loaded Microbubbles. Ultrasound Med Biol 38, 2174-2185 (2012).
95. K. Kooiman, H. J. Vos, M. Versluis, N. de Jong, Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliver Rev 72, 28-48 (2014).
96. D. J. May, J. S. Allen, K. W. Ferrara, Dynamics and fragmentation of thick-shelled microbubbles. Ieee T Ultrason Ferr 49, 1400-1410 (2002).
97. P. A. Dayton et al., A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents. Ieee T Ultrason Ferr 44, 1264-1277 (1997).
98. J. A. Jensen, N. B. Svendsen, Calculation of Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers. Ieee T Ultrason Ferr 39, 262-267 (1992).
99. M. J. Shortencarier et al., A method for radiation-force localized drug delivery using gas-filled lipospheres. Ieee T Ultrason Ferr 51, 822-831 (2004).
100. H. D. Papenfuss, J. F. Gross, M. Intaglietta, F. A. Treese, A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18, 311-318 (1979).
101. S. T. Kang, C. K. Yeh, Potential-well model in acoustic tweezers. IEEE Trans Ultrason Ferroelectr Freq Control 57, 1451-1459 (2010).
102. W. C. Lo, C. H. Fan, Y. J. Ho, C. W. Lin, C. K. Yeh, Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. P Natl Acad Sci USA 118 (2021).
103. L. H. Treat et al., Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121, 901-907 (2007).
104. F. Y. Yang et al., Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med Biol 33, 1421-1427 (2007).
105. A. J. Pappano, W. G. Wier, M. N. Levy, Cardiovascular physiology, Mosby physiology monograph series (Elsevier/Mosby, Philadelphia, PA, ed. 10th, 2013), pp. xii, 292 p.
106. G. J. Tortora, B. Derrickson, Principles of anatomy & physiology (Wiley, Hoboken, NJ, ed. 13th, 2012).
107. S. E. Langille, Particulate matter in injectable drug products. PDA J Pharm Sci Technol 67, 186-200 (2013).
108. Y. Z. Zhao, L. N. Du, C. T. Lu, Y. G. Jin, S. P. Ge, Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomed 8, 1621-1633 (2013).
109. H. N. Yang et al., The effects of ultrasound-targeted microbubble destruction (UTMD) carrying IL-8 monoclonal antibody on the inflammatory responses and stability of atherosclerotic plaques. Biomed Pharmacother 118 (2019).
110. K. Un et al., Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 31, 7813-7826 (2010).
111. M. A. Ghanem et al., Noninvasive acoustic manipulation of objects in a living body. Proc Natl Acad Sci U S A 117, 16848-16855 (2020).
112. P. Augustsson, J. T. Karlsen, H. W. Su, H. Bruus, J. Voldman, Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat Commun 7 (2016).
113. B. Raiton et al., The capture of flowing microbubbles with an ultrasonic tap using acoustic radiation force. Appl Phys Lett 101 (2012).
114. J. Kim et al., Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light-Sci Appl 8 (2019).
115. V. Hingot et al., Microvascular flow dictates the compromise between spatial resolution and acquisition time in Ultrasound Localization Microscopy. Sci Rep-Uk 9 (2019).
116. C. C. Church, Frequency, pulse length, and the mechanical index. Acoust Res Lett Onl 6, 162-168 (2005).
117. T. Sen, O. Tufekcioglu, Y. Koza, Mechanical index. Anatol J Cardiol 15, 334-336 (2015).
118. K. P. Morrison, G. W. Keilman, P. J. Kaczkowski, Single Archimedean Spiral Close Packed Phased Array HIFU. 2014 Ieee International Ultrasonics Symposium (Ius) 10.1109/Ultsym.2014.0099, 400-404 (2014).
119. A. Kyriakou et al., A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperther 30, 36-46 (2014).
120. M. O. Culjat, D. Goldenberg, P. Tewari, R. S. Singh, A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol 36, 861-873 (2010).
121. P. Qin, L. Xu, T. Han, L. F. Du, A. C. H. Yu, Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles. Ultrason Sonochem 31, 107-115 (2016).
122. M. Tanter, M. Fink, Ultrafast Imaging in Biomedical Ultrasound. Ieee T Ultrason Ferr 61, 102-119 (2014).
123. O. Couture, M. Fink, M. Tanter, Ultrasound Contrast Plane Wave Imaging. Ieee T Ultrason Ferr 59, 2676-2683 (2012).
124. M. Correia, J. Provost, M. Tanter, M. Pernot, 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat. Phys Med Biol 61 (2016).
125. J. Provost et al., 3D ultrafast ultrasound imaging in vivo. Phys Med Biol 59, L1-L13 (2014).
126. C. Rabut et al., 4D functional ultrasound imaging of whole-brain activity in rodents. Nature Methods 16, 994-+ (2019).
127. C. Errico et al., Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499-+ (2015).
128. J. A. Jensen, S. I. Nikolov, A. C. H. Yu, D. Garcia, Ultrasound Vector Flow Imaging-Part I: Sequential Systems. Ieee T Ultrason Ferr 63, 1704-1721 (2016).
129. J. A. Jensen, S. I. Nikolov, A. C. H. Yu, D. Garcia, Ultrasound Vector Flow Imaging-Part II: Parallel Systems. Ieee T Ultrason Ferr 63, 1722-1732 (2016).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *