帳號:guest(3.15.192.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林冠丞
作者(外文):Lin, Kuan-Chen
論文名稱(中文):以氧化石墨烯結合化療藥物Cisplatin應用於癌症治療:機轉探討及應用
論文名稱(外文):Combination of GO with Cisplatin for Cancer Therapy:Studies of Mechanisms and applications
指導教授(中文):江啟勳
胡育誠
指導教授(外文):Chiang, Chi-Shiun
Hu, Yu-Chen
口試委員(中文):段興宇
陳冠宇
口試委員(外文):Tuan, Hsing-Yu
Chen, Guan-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:102012504
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:氧化石墨烯細胞自噬癌症治療化學治療核傳輸現象
外文關鍵詞:graphene oxideautophagycancer therapychemotherapynuclear transport
相關次數:
  • 推薦推薦:0
  • 點閱點閱:623
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室先前以石墨烯氧化物(graphene oxide, GO)結合化療藥物cisplatin (CDDP)用於癌症治療,發現GO結合CDDP (GO/CDDP)可以降低CT26大腸癌細胞對於CDDP之抗藥性,進而提升化療效果。GO/CDDP會引發CT26的細胞自噬(autophagy)、改變CT26之自噬流(autophagic flux)、引發自噬標記蛋白LC3與CDDP的核傳輸(nuclear transport)現象並造成大量細胞壞死。本研究發現GO/CDDP在不同癌細胞(A549、Tramp-C1、HeLa以及Skov-3)會造成不同程度的毒殺效果、自噬、核傳輸現象,以及不同程度的癌細胞壞死。此外,我們以免疫螢光染色證實GO/CDDP在引發細胞自噬後,會提升tubulin乙醯化程度、使microtubule聚合並提升核傳輸現象,因此促進LC3複合物的進核傳輸。為了瞭解細胞核中LC3 複合物組成,我們以LC/MS/MS進行蛋白質鑑定,分析結果顯示,LC3複合物中含有histone H1/H4,因此,我們推測GO/CDDP會影響histone轉譯後修飾的情形。我們以基因表現分析發現,GO/CDDP會提升乙醯化酵素(HAT)及抑制去乙醯化酵素(HDAC) 之表現並造成H4K16ac增加,而在抑制乙醯化/去乙醯化酵素活性並以GO/CDDP處理後,核傳輸現象未受到影響,但從細胞生長狀況發現抑制去乙醯化酵素後,以GO/CDDP處理後之細胞死亡情形大幅提升,我們推測H4K16為此機轉中細胞死亡下游調控蛋白。藉由提升細胞自噬、促進核傳輸現象並造成細胞壞死,GO在具有抗藥性或細胞凋亡卻失的癌細胞中可以作為CDDP之化療增敏劑,因此本研究證實GO/CDDP為具有潛力之化學治療手段。
We previously demonstrated that GO/CDDP could decrease the drug resistance and increase the cytotoxicity in mouse colon cancer cell line (CT26). Our previous study showed that GO/CDDP triggered cell autophagy, elevated nuclear import and induced cell necrosis in CT26. In this study, we found that GO/CDDP caused different degrees of cell cytotoxicity, cell autophagy, nuclear import and necrosis in different cancer cell lines (A549、Tramp-C1、HeLa and Skov-3). Furthermore, the immunostaining showed that GO/CDDP would enhance the acetylation of tubulin which polymerized microtubule and elicited nuclear transport of LC3 complex. To evaluate the LC3 complex in nuclear, we applied LC/MS/MS to proceed protein identification. The results revealed that histone H1/H4 bound to LC3. Therefore, we suggested that GO/CDDP may affect the post-translational modifications. From the results of microarray, GO/CDDP increased the expression level of histone acetyltransferase (HAT) but decreased the expression level of histone deacetylase (HDAC). In addition, GO/CDDP enhanced H4K16ac level. When treated with inhibitors (HATi and HDACi), it did not affect the phenomenon of nuclear transport. But from the observation of cell morphology, pre-treated with HDACi would lead to severe cell death after GO/CDDP treatment. We suggested that histone acetylation was in the downstream of the regulation by GO/CDDP. With the enhancement of autophagy, nuclear import and cell necrosis, GO can be a chemosensitizer of CDDP in drug-resistant/apoptosis-deficient cancer for chemotherapy.
致謝 I
摘要 II
Abstract III
目錄 IV
圖表目錄 VI
第一章 文獻回顧 1
1-1 氧化石墨烯 (Graphene Oxide, GO) 1
1-1-1 GO之介紹 1
1-1-2 GO與奈米碳管(Carbon Nanotubes, CNTs)之比較 1
1-2 細胞自噬 (Autophagy) 1
1-2-1 細胞自噬介紹 2
1-2-2 細胞自噬與組織蛋白(histone)之相關性 3
1-2-3 細胞自噬於癌症上之應用 4
1-3 細胞核傳輸機制介紹 5
1-4 癌症與治療方式 6
1-4-1 癌症介紹 6
1-4-2 癌症治療方式 6
1-5 氧化石墨烯結合化療藥物之應用 7
1-6 實驗動機 8
第二章 實驗材料與方法 17
2-1 細胞培養 17
2-2 實驗材料及化療藥物 17
2-2-1 氧化石墨烯 17
2-2-2 化療藥物 (Cisplatin) 17
2-2-3 氧化石墨烯結合化療藥物(GO/CDDP)處理細胞 17
2-2-4 抑制劑及前處理 18
2-3 細胞毒性測試 (MTT assay) 19
2-4 細胞免疫螢光染色 (Immunofluorescence staining) 20
2-5 螢光顯微鏡分析 22
2-5-1 LC3/p62、LC3/Lamp-2共位現象及LC3 puncta進核定量 22
2-6 核質分離 22
2-7 感應耦合電漿質譜分析 (ICP-MS) 23
2-8 細胞壞死(necrosis)與細胞凋亡(apoptosis)之分析 23
2-9 流式細胞儀 (Flow Cytometry) 24
2-10 西方墨點法蛋白質分析 (Western blot analysis) 24
2-10-1 聚丙烯醯胺膠體電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 24
2-10-2 西方墨點法 25
2-11 細胞免疫沉澱 (Immunoprecipitation) 27
第三章 實驗結果 28
3-1 GO結合CDDP對不同癌細胞之細胞存活率影響 28
3-2 GO/CDDP對不同癌細胞之細胞自噬流之影響 28
3-3 GO/CDDP對不同癌細胞之核傳輸現象及細胞壞死之影響。 29
3-4 GO/CDDP對不同癌細胞之核傳輸機制影響 30
3-5 利用抑制細胞自噬及核傳輸路徑探討LC3核傳輸現象及細胞壞死情形 31
3-6 利用免疫沉澱探討核內LC3複合物組成情形 32
3-7 Histone相關基因表現 35
3-8 GO/CDDP對histone H1/H4轉譯後修飾之影響 35
3-9 利用histone乙醯化/去乙醯化酵素抑制劑探討GO/CDDP對細胞之影響 36
3-10 利用HATi及HDACi觀察GO/CDDP對histone H4 lysine16之影響 37
3-11 利用HATi及HDACi觀察GO/CDDP對核傳輸之影響 37
3-12 結論 38
第四章 討論與未來展望 51
第五章 參考文獻 54

圖目錄
圖1-1、以電子顯微鏡觀察細胞不同死亡情形。 10
圖1-2、細胞自噬示意圖。 11
圖1-3、細胞自噬相關蛋白調控示意圖。 12
圖1-4、SNAREs參與自噬溶酶體形成之機制。 13
圖1-5、細胞核傳輸機制。 14
圖1-6、105年國人十大死因。 15
圖1-7、105年十大癌症死因。 16
圖3-1 GO結合CDDP對不同癌細胞之細胞存活率影響。 39
圖3-2 GO/CDDP對不同癌細胞之細胞自噬流之影響。 40
圖3-3 GO/CDDP對不同癌細胞之核傳輸現象及細胞壞死之影響。 41
圖3-4 GO/CDDP對不同癌細胞核傳路徑之影響。 42
圖3-5 利用抑制細胞自噬及核傳輸路徑探討LC3核傳輸現象及細胞壞死情形。 43
圖3-6 利用免疫沉澱分離LC3複合物。 44
圖3-7 Histone相關基因表現。 45
圖3-8 GO/CDDP對histone H1/H4轉譯後修飾之影響。 46
圖3-9 利用histone乙醯化/去乙醯化酵素抑制劑探討GO/CDDP對細胞之影響。 47
圖3-10 利用HATi及HDACi觀察GO/CDDP對H4K16ac之影響。 48
圖3-11 利用HATi及HDACi觀察GO/CDDP對核傳輸之影響。 49
圖3-12 GO/CDDP引發癌細胞之機轉。 50

表目錄
表2-1 基因抑制所使用之siRNA及抑制劑 19
表2-2 免疫螢光染色之一級抗體 21
表2-3 免疫螢光染色之二級抗體 22
表2-4 西方墨點法之一級抗體 26
表2-5 西方墨點法之二級抗體 26
表3-1 蛋白質鑑定結果(蛋白質大小約25-35 kDa) 34
表3-2 蛋白質鑑定結果(蛋白質大小約11 kDa) 34


Badding MA, Dean DA. 2013. Highly acetylated tubulin permits enhanced interactions with and trafficking of plasmids along microtubules. Gene Ther 20: 616-624.
Bellmunt J, Powles T, Vogelzang NJ. 2017. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat Rev 54: 58-67.
Chen GY, Meng CL, Lin KC, Tuan HY, Yang HJ, Chen CL, Li KC, Chiang CS, Hu YC. 2015. Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials 40: 12-22.
Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC. 2012. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33: 418-427.
Chook YM, Suel KE. 2011. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 1813: 1593-1606.
Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740: 364-378.
de la Cruz-Morcillo MA, Valero ML, Callejas-Valera JL, Arias-Gonzalez L, Melgar-Rojas P, Galan-Moya EM, Garcia-Gil E, Garcia-Cano J, Sanchez-Prieto R. 2012. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene 31: 1073-1085.
Eberharter A, Becker PB. 2002. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3: 224-229.
Edinger AL, Thompson CB. 2004. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663-669.
Fleming A, Noda T, Yoshimori T, Rubinsztein DC. 2011. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7: 9-17.
Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19: 2092-2100.
Fullgrabe J, Heldring N, Hermanson O, Joseph B. 2014. Cracking the survival code: autophagy-related histone modifications. Autophagy 10: 556-561.
Fullgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B. 2013. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500: 468-471.
Furuta S, Miura K, Copeland T, Shang WH, Oshima A, Kamata T. 2002. Light Chain 3 associates with a Sos1 guanine nucleotide exchange factor: its significance in the Sos1-mediated Rac1 signaling leading to membrane ruffling. Oncogene 21: 7060-7066.
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. 2012. Molecular mechanisms of cisplatin resistance. Oncogene 31: 1869-1883.
Goldberg SB, Supko JG, Neal JW, Muzikansky A, Digumarthy S, Fidias P, Temel JS, Heist RS, Shaw AT, McCarthy PO, Lynch TJ, Sharma S, Settleman JE, Sequist LV. 2012. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J Thorac Oncol 7: 1602-1608.
Guo WJ, Zhang YM, Zhang L, Huang B, Tao FF, Chen W, Guo ZJ, Xu Q, Sun Y. 2013. Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin. Autophagy 9: 996-1008.
Gurunathan S, Kim JH. 2016. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine 11: 1927-1945.
Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, Ge W, Feng L, Lin X, Wang X, Wang X, Jin H. 2011. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One 6: e18691.
Howes SC, Alushin GM, Shida T, Nachury MV, Nogales E. 2014. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 25: 257-266.
Ishiguro K, Ando T, Maeda O, Watanabe O, Goto H. 2011. Cutting Edge: Tubulin alpha Functions as an Adaptor in NFAT-Importin beta Interaction. Journal of Immunology 186: 2710-2713.
Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151: 1256-1269.
Kau TR, Way JC, Silver PA. 2004. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4: 106-117.
Kaur J, Debnath J. 2015. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16: 461-472.
Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY. 2016. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J Control Release 226: 217-228.
Kim H, Namgung R, Singha K, Oh IK, Kim WJ. 2011. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22: 2558-2567.
Kraft LJ, Manral P, Dowler J, Kenworthy AK. 2016. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic 17: 369-399.
Lee IH, Finkel T. 2009. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284: 6322-6328.
Levy JM, Thorburn A. 2011. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 131: 130-141.
Li JL, Tang B, Yuan B, Sun L, Wang XG. 2013. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials 34: 9519-9534.
Mahipal A, Malafa M. 2016. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther 164: 135-143.
Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15: 81-94.
Martinez-Lopez N, Athonvarangkul D, Mishall P, Sahu S, Singh R. 2013. Autophagy proteins regulate ERK phosphorylation. Nat Commun 4: 2799.
Moreau K, Renna M, Rubinsztein DC. 2013. Connections between SNAREs and autophagy. Trends Biochem Sci 38: 57-63.
Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. 2014. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10: 2251-2268.
Nakatogawa H, Ichimura Y, Ohsumi Y. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130: 165-178.
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. 2013. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833: 3448-3459.
Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro MI, Velasco G, Dagorn JC, Iovanna JL. 2009. The TP53INP2 protein is required for autophagy in mammalian cells. Mol Biol Cell 20: 870-881.
Paillas S, Causse A, Marzi L, de Medina P, Poirot M, Denis V, Vezzio-Vie N, Espert L, Arzouk H, Coquelle A, Martineau P, Del Rio M, Pattingre S, Gongora C. 2012. MAPK14/p38alpha confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy 8: 1098-1112.
Pan Y, Sahoo NG, Li L. 2012. The application of graphene oxide in drug delivery. Expert Opin Drug Deliv 9: 1365-1376.
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, Sigl V, Aumayr K, Schmauss G, Fellner N, Handschuh S, Glosmann M, Pasierbek P, Schlederer M, Resch GP, Ma Y, Yang H, Popper H, Kenner L, Kroemer G, Penninger JM. 2014. A dual role for autophagy in a murine model of lung cancer. Nat Commun 5: 3056.
Shao Y, Gao Z, Marks PA, Jiang X. 2004. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 101: 18030-18035.
Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, Clay R, Adams RA, Baird RD, Billingham L, Brown SR, Buckland S, Bulbeck H, Chalmers AJ, Clack G, Cranston AN, Damstrup L, Ferraldeschi R, Forster MD, Golec J, Hagan RM, Hall E, Hanauske AR, Harrington KJ, Haswell T, Hawkins MA, Illidge T, Jones H, Kennedy AS, McDonald F, Melcher T, O'Connor JP, Pollard JR, Saunders MP, Sebag-Montefiore D, Smitt M, Staffurth J, Stratford IJ, Wedge SR, Group NCA-PJW. 2016. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol 13: 627-642.
Shen DW, Pouliot LM, Hall MD, Gottesman MM. 2012. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 64: 706-721.
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4: e838.
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. 2011. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795-800.
Tanida I, Komatsu M, Ueno T, Kominami E. 2003. GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem Biophys Res Commun 300: 637-644.
Tanida I, Tanida-Miyake E, Ueno T, Kominami E. 2001. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276: 1701-1706.
Verdin E, Ott M. 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16: 258-264.
Wagstaff KM, Jans DA. 2009. Nuclear drug delivery to target tumour cells. Eur J Pharmacol 625: 174-180.
Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y. 2010. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132: 9274-9276.
Wang Y, Peng RQ, Li DD, Ding Y, Wu XQ, Zeng YX, Zhu XF, Zhang XS. 2011. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin J Cancer 30: 690-700.
White E. 2015. The role for autophagy in cancer. J Clin Invest 125: 42-46.
Xiong HY, Guo XL, Bu XX, Zhang SS, Ma NN, Song JR, Hu F, Tao SF, Sun K, Li R, Wu MC, Wei LX. 2010. Autophagic cell death induced by 5-FU in Bax or PUMA deficient human colon cancer cell. Cancer Lett 288: 68-74.
Xu CX, Zhao L, Yue P, Fang G, Tao H, Owonikoko TK, Ramalingam SS, Khuri FR, Sun SY. 2011. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biol Ther 12: 549-555.
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. 2012. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33: 2206-2214.
Yang ZJ, Chee CE, Huang S, Sinicrope FA. 2011. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10: 1533-1541.
You P, Yang Y, Wang M, Huang X, Huang X. 2015. Graphene Oxide-Based Nanocarriers for Cancer Imaging and Drug Delivery. Curr Pharm Des 21: 3215-3222.
Zhang J, Ng S, Wang J, Zhou J, Tan SH, Yang N, Lin Q, Xia D, Shen HM. 2015. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy 11: 629-642.
Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. 2011. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7: 460-464.
Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. 2010. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6: 537-544.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *