帳號:guest(18.119.135.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方尚唐
作者(外文):Thirunavukkarasu, Vasanthan
論文名稱(中文):極限尺寸下互補式金氧半奈米電子元件的特性研究
論文名稱(外文):Performance Investigation of extremely scaled CMOS Nano Electronic Devices
指導教授(中文):吳永俊
指導教授(外文):Wu, Yung-Chun
口試委員(中文):林育賢
李敏鴻
游信強
胡心卉
口試委員(外文):Lin, Yu-Hsien
Lee, Min-Hung
You, Hsin-Chiang
Hu, Hsin-Hui
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011870
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:123
中文關鍵詞:奈米電子元件CMOS場效應晶體管(FET)
外文關鍵詞:Nano electronic DevicesCMOSfield effect transistor (FET)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:316
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
過去四十年的技術進步是巨大的。這是由更便宜,更複雜和功能更豐富的“智能設備”。集成電路製造和應用的研究創新,發明和成長引領了這一代技術的發展。人工智能,量子計算機和物聯網承諾將推動工業革命,半導體器件將成為這三個關鍵電子新型研究領域的中堅力量。 CMOS縮放和摩爾定律是全球半導體行業的驅動力。 CMOS縮放為集成電路(IC)的每個晶體管提供(1)高性能,(2)低功率和(3)低成本。但是,隨著我們繼續大幅度縮減,統治半導體行業的Si晶體管可能無法繼續擴大規模。為了彌補這些挑戰,材料科學家的研究人員正在探索CMOS器件溝道材料以及許多新器件架構和新器件幾何結構。新材料的工藝創新和可靠性也得到了廣泛的研究。隨著我們從傳統矽器件轉向量子器件的未來,半導體器件的傳統定律不足以預測器件特性。在量子原子尺度上,亞10納米CMOSv器件中,量子限制效應不容忽視。在實際製造器件之前,由於縮放而產生的量子效應的詳細建模和仿真研究成為必須。 基於密度泛函理論(DFT),局部密度近似(LDA),廣義梯度近似(GGA),元GGA,漂移擴散,量子校正密度梯度模型,非平衡綠色函數形式化,多頻帶蒙特卡羅模擬進行了盡可能準確地預測器件特性。納米級MOSFET器件的可靠性和老化是半導體行業面臨的主要挑戰之一。當特徵尺寸被縮小時,一些必須緩解的挑戰是隨機離散摻雜劑RDD,RDD波動RDDF,多晶矽柵粒度PSG,金屬晶粒粒度MGG,隨機電信噪聲RTN,偏置溫度不穩定性BTI,陷阱輔助隧穿TAT ,界面陷阱電荷(ITC),熱預算,短溝道效應(SCE)等。使用均勻摻雜的“無接面”晶體管操作模式等新概念在10nm以下器件技術節點中具有廣闊的前景。已經提出並廣泛地研究了在溝道和源極/漏極(S / D)中包含嚴重,均勻且均勻摻雜物質的大塊和無結(JL)場效應晶體管(FET)的概念。這種JLFET器件也用適合於單片三維(3D)垂直堆疊集成電路(IC)的多晶矽薄膜晶體管(TFT)進行演示,並且繼續適用摩爾定律。而且,與JL SOI FinFET相比,通過調節襯底摻雜濃度,JL體FinFET表現出更好的短溝道特性和閾值電壓(Vth)控制。然而,JL體FinFET在製造結隔離的JL器件方面存在困難,所述JL器件不需要洩漏引起的襯底電流。另外,JL頻道必須足夠小才能實現出色的關閉特性
小維度通道使得過程控制變得困難並且可能導致增加

S / D中的串聯電阻隨著散裝和SOI JL FET的漏極電流的減小而變化。
我們探索超越傳統縮放路徑的器件縮放選項。本論文共分為五個部分:(1)尺度極限的矽鰭場效應晶體管(FinFET);(2)尺度極限的鍺場效應晶體管(FinFET);(3)矽納米線(4)研究具有不同晶體取向的鍺納米線(NW)柵極四周(GAA)晶體管。 (5)具有矽的垂直堆疊式納米薄膜柵極全能晶體管,可以擴展到FinFET之外。
Technology advancements in the last four decades is enormous. This is enabled by cheaper, more complex and functionality richer "smart devices". Research innovation, invention and growth in integrated circuit fabrication and application has lead this generation technological growth. Artificial Intelligence, Quantum computers and Internet of Things promise to take industrial revolution forward and semiconductor devices will be the backbone of these three key electronics novel research fields. CMOS scaling and Moore's law are the driving force of semiconductor industries around the globe. The CMOS scaling delivers (1) high performance, (2) low power and (3) low cost per transistor for integrated circuit (IC). But as we keep scaling down aggressively, Si transistors which ruled the semiconductor industry may not sustain the scaling anymore. To compensate the challenges, CMOS device channel materials and many new device architectures and new device geometries are being explored by researchers, material scientists. Process innovation and reliability of the new materials were also extensively researched. As we move on from conventional silicon devices to the future of quantum devices, traditional laws of semiconductor devices are not anymore enough to predict the device characteristics. At quantum atomic scales, sub 10-nm CMOS
v
devices, quantum confinement effects cannot be ignored. Detailed modeling and simulation study on quantum effects that arise due to the scaling becomes a must before actual fabrication of devices. many different simulation tools based on Density functional theory (DFT), local-density approximation (LDA), generalized gradient approximations (GGA), meta-GGA, drift diffusion, density gradient models with quantum correction, non-equilibrium green function formalism, multi-band Monte Carlo simulations were carried out to predict device characteristics as accurately as possible. Device reliability and aging in nano-scale MOSFETs is one of the main challenges within the semiconductor industry. Some of the challenges that must be alleviated when feature size is being scaled down, are random discrete Dopant RDD, RDD fluctuation RDDF, polysilicon gate granularity PSG, metal grain granularity MGG, random telegraphic noise RTN, bias temperature instabilities BTI, trap assisted tunneling TAT, interface trapped charges ITC, thermal budgets, short channel effect (SCE) etc.. New concepts like "Junctionless" transistor operation mode where homogenous doping is used has a promising future in sub 10nm device technology nodes. the concept of the bulk and junctionless (JL) field-effect-transistor (FET), which contains a heavily, uniformly, and homogeneously doping species in the channel and source/drain (S/D), has been proposed and researched extensively now. Such a JLFET device is also demonstrated with poly-Si thin film transistor (TFT), which is suitable for monolithic three dimensional (3D) vertically stacked integrated circuits (ICs) and to continue the applicability of Moore’s law. Moreover, compared with JL SOI FinFETs, JL bulk FinFETs show better short channel characteristics and threshold voltage (Vth) control by tuning substrate doping concentration. However, JL bulk FinFETs have difficulties in fabrication of the junction-isolated JL device, which needs to be free from leakage-induced substrate current. In addition, JL channel must be small enough to achieve outstanding turn-off characteristics. The small-dimensional channel makes process control difficult and possibly leads to an increase
vi
of the series resistance in the S/D accompanying a decrease of drain current in bulk and SOI JL FETs.
We explore options for device scaling beyond the conventional scaling path. This thesis is divided into five parts to investigate (1) Silicon Fin Field effect transistors (FinFET) at the scaling limit, (2) Germanium Fin Field effect transistors (FinFET) at the scaling limit, (3) Silicon nanowire (NW) Gate all around (GAA) transistors with atomically thin channel (4) studying Germanium nanowire (NW) Gate all around (GAA) transistors with different crystallographic orientations. (5) Vertically Stacked nanosheet gate-all-around transistors with Silicon to enable scaling beyond FinFET.
In the first part, we study silicon FinFET at scaling limit. We examine the performance of the optimized 3-nm FinFET with homogeneous source and drain doping concentration in all three modes (IM, AC & JL) of operation. The transfer and output characteristics of Inversion mode, Accumulation mode and Junctionless mode devices are discussed in detail. In addition, for each case, we interpret the 3-D electron density mesh plots. The main purpose of this paper is to provide a logical understanding of the transport properties through the simulated results as the device dimension approaches gate length (LG) of 3nm.
In the second part, we study Germanium FinFET at scaling limit. In this work, we analyzed the performance of scaled Germanium FinFETs and compared their device characteristics with a 3-nm bulk Silicon FinFET with similar device dimensions [13]. As Germanium is a potential material, this paper tries to explore the transport properties and the effect of quantum confinement on performance of Ge-based transistors. In this work, we for the first time report the charge distribution in different sub-bands of Ge devices. We have compared Si and Ge device density of states and band structure too. Junctionless (JL) devices with homogenous source drain doping will be the preferred mode of operation in ultra-scaled logic devices due to the various advantages such as reduced scattering and
vii
simpler device fabrication processes . Thus we comprehensively analyzed the JL mode of operation which will serve as a benchmark for future scaled device dimensions.
In the third part, we study the Silicon gate-all-around GAA transistor with atomically thin channel. A novel, high performance low-power consumption Silicon junctionless (JL) trench gate-all-around (GAA) nanowire (NWFET) transistor with atomically-thin channel for future sub-10nm technology node is demonstrated experimentally. The major problems of scaling such as, short channel effects (SCE), threshold voltage (VTH) variation, power consumption can be attenuated by using the proposed device model. The reported device with the thinnest channel shows a sub-threshold swing (SS) of 43mV/decade which has been the record to date in trench JL GAA NWFETs. Owing to the atomically-thin channel, this device has extremely high ION/IOFF current ratio of >108. Higher BTBT generation rate when channel is scaled down to <1nm leading to quantum tunneling paves a way to achieve SS value much lower than its fundamental limit. This phenomenon is confirmed with drift-diffusion (DD), density-gradient (DG) modeled 3D quantum transport TCAD device simulation.
In the fourth part, we studied the Germanium gate-all-around transistor with different crystallographic orientations. We employ a robust physics-based model solving 3D Poisson – 2D Schrödinger equation to investigate charge transport in germanium nanowire gate-all-around transistors with 3-nm gate length. We studied the effects of band structure on quantum-confined germanium and silicon nanowires. The corresponding density-of-states results were also analyzed. Different nanowire orientations have different band structure and density-of-states (DOS) due to the strong quantum-confinement effects which influence the charge carrier velocities directly. Hence, in strongly quantized germanium nanowires, change in effective masses is also significant. Analyzing the charge distribution in the different valleys and sub-bands show that multiple valley degeneracy gives high density-of-states for Ge nanowire in <110> orientation compared to <100> <111> orientations; hence, <110>
viii
oriented Ge nanowire is expected to deliver improved performance at ultra-scaled dimensions.
Finally, we modeled and simulated a stacked nanosheet gate all around GAA Silicon transistor that can enable current FinFET scaling and that had been successfully demonstrated by semiconductor leader IBM. We also analyzed the device operation in inversion and accumulation mode. Apart from the device characteristics, the circuit characteristics need to be analyzed in detailed manner. we investigated inverter operation and timing characteristics of stacked nanosheet gate all around GAA Silicon transistor operating in Junctionless mode.
Contents ..................................................................................................................................... ix
Table Captions ........................................................................................................................... xi
Figure Captions ........................................................................................................................ xii
Chapter 1 .................................................................................................................................... 1
Introduction ................................................................................................................................ 1
1-1 CMOS device Technology and evolution of Moore's law ........................................... 1
1-2 Challenges of CMOSFETs scaling .............................................................................. 5
1-3 Multi-gate structure ...................................................................................................... 5
1-4 Nano Technology based Transistors ............................................................................ 6
1-5 Junctionless Field-Effect Transistors ........................................................................... 6
A. Basic Mechanisms ................................................................................................. 7
1-6 Motivation .................................................................................................................... 9
A. Extremely Scaled Silicon Fin Field-Effect Transistor (Si FinFETs) ..................... 9
B. Extremely scaled Germanium Fin Field-Effect Transistor (Ge FinFETs)............. 9
C. Physical insights into charge transport in Germanium nanowires ....................... 10
D. Gate-All-Around Junctionless Silicon Transistors with atomically-thin nanosheet channel (0.65 nm) and Steep Subthreshold Swing (43 mV/decade) ........................ 11
1-7 Organization ............................................................................................................... 12
Chapter 2 .................................................................................................................................. 25
Extremely Scaled Silicon Fin Field-Effect Transistors ............................................................ 25
2-1 FinFET and Junctionless (JL) transistors Technology ............................................... 25
2-2 Simulation Methodology ............................................................................................ 27
A. Inversion mode (IM) .......................................................................................... 27
B. Accumulation mode (AC) .................................................................................... 27
C. Junctionless mode (JL) ........................................................................................ 28
2-3 Simulation Models ..................................................................................................... 28
2-4 Electrical Characteristics ............................................................................................ 30
2-5 3D Electron density distribution (On-state, Off-state) ............................................... 31
A. JL mode ............................................................................................................... 31
B. IM and AC mode ................................................................................................. 31
Chapter 3 .................................................................................................................................. 37
Extremely Scaled Germanium Fin Field-Effect Transistor ...................................................... 37
3-1 Introduction ................................................................................................................ 37
3-2 Device Strcuture and simulation Model ..................................................................... 38
3-3 Simulation Results and Discussion ............................................................................ 40
x
3-5 Summary of this chapter ............................................................................................ 42
Chapter 4 .................................................................................................................................. 48
Physical insights into charge transport in Germanium nanowires
4-1 Introduction ................................................................................................................ 48
4-2 Simulation method ..................................................................................................... 49
4-3 Results discussion and conclusion ............................................................................. 51
Chapter 5 .................................................................................................................................. 59
Gate-All-Around Junctionless Silicon transistors with atomically-thin Nanosheet channel (0.65 nm) and Steep Sub threshold Swing (43 mV/decade) .................................................... 59
5-1 Introduction and Device Fabrication Process ............................................................ 59
5-2 Results and Discussion ............................................................................................... 62
5-3 Conclusion .................................................................................................................. 65
Chapter 6 .................................................................................................................................. 76
Stacked Nanosheet Gate-All-Around transistor for scaling beyond FinFET ........................... 76
6-1 Stacked Nanosheet cahnnel and GAA FET in Inversion mode ................................. 76
A. Introduction ......................................................................................................... 76
6-2 Simulation Methodology ............................................................................................ 78
A. Results and Discussion ........................................................................................ 80
6-3 Conclusion.................................................................................................................82
Chapter 7 .................................................................................................................................. 88
Conclusion ................................................................................................................................ 88
Chapter 8 .................................................................................................................................. 90
Future Works Based On This Thesis ........................................................................................ 90
Reference .................................................................................................................................. 91
簡歷 Resume ......................................................................................................................... 118
著作目錄(Publication list) .................................................................................................... 122
Reference
Chapter 1
[1-1] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007.
[1-2] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, Jan., 1930.
[1-3] J. E. Lilienfeld, "Amplifier for Electric Current," U.S. Patent 1 877 140, Sep., 1932.
[1-4] J. E. Lilienfeld, "Device for Controlling Electric Current," U.S. Patent 1 900 018, Mar., 1933.
[1-5] W. Shockley and G. L. Pearson, “Modulation of Conductance of Thin Films of Semiconductors by Surface Charges,” Phy. Rev., vol. 74, pp. 232, Jul., 1948.
[1-6] D. Kahng, “A Historical Perspective on the Development of MOS Transistors and Related Devices,” IEEE Trans. Electron Devices, vol. ED-23, no. 7, pp. 655–657, Jul., 1976.
[1-7] C. T. Sah, “Evolution of the MOS Transistor-From Conception,” Proc. IEEE, vol. 76, no. 10, pp. 1280–1326, Oct., 1988.
[1-8] Chenming Calvin Hu, “Modern Semiconductor Devices for Integrated Circuits”, Pearson Higher Education, 2010, ch. 6.
92
[1-9] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K. Zhang,” A 14nm Logic Technology Featuring 2nd-Generation FinFET, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 m2 SRAM cell size,” in IEDM Tech. Dig., 2014, pp. 71–73.
[1-10] M. Lee, Y. Jeon, J.-C. Jung, S.-M. Koo, and S. Kim, “Multiple silicon nanowire complementary tunnel transistors for ultralow-power flexible logic applications,” Appl. Phys. lett., vol. 100, pp. 253506, Jun. 2012.
[1-11] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys. vol. 107, pp. 024518, Jan. 2010.
[1-12] Q. Huang, R. Huang, Z. Zhan, Y. Qiu, W. Jiang, C. Wu, and Y. Wang, “A novel Si tunnel FET with 36mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration,” in IEDM Tech. Dig., Dec. 2012, pp. 8.5.1–8.5.4.
93
[1-13] J. T. Smith, C. Sandow, S. Das, R. A. Minamisawa, S. Mantl, and Joerg Appenzeller, “Silicon Nanowire Tunneling Field-Effect Transistor Arrays: Improving Subthreshold Performance Using Excimer Laser Annealing,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1822–1829, Jul. 2011.
[1-14] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R.Murphy, “Nanowire transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010.
[1-15] L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, and J. C. Greer, “Simulation of junctionless Si nanowire transistors with 3 nm gate length,” Appl. Phys. Lett., vol. 97, pp. 062105, Aug. 2010.
[1-16] L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, J. C. Greer, “Subthreshold behavior of junctionless silicon nanowire transistors from atomic scale simulations,” Solid State Electron., vol. 71, pp. 58–62, May 2012.
[1-17] R. Yan, A. Kranti, I. Ferain, C.-W. Lee, R. Yu, N. Dehdashti, P. Razavi and J.-P. Colinge, “Investigation of high-performance sub-50 nm junctionless nanowire transistors,” Microelectronics Reliability, vol. 51, pp. 1166–1171, Feb. 2011.
[1-18] Alexei Nazarov, J.-P. Colinge, Francis Balestra, Jean-Pierre Raskin, Francisco Gamiz, V.S. Lysenko, “Semiconductor-On-Insulator Materials for Nanoelectronics
94
Applications”, Part II, Springer-Verlag Berlin Heidelberg, 2011.
[1-19] Jean-Pierre Colinge, Isabelle Ferain, Abhinav Kranti, Chi-Woo Lee, Nima Dehdashti Akhavan, Pedram Razavi, Ran Yan, and Ran Yu, “Investigation of high-performance sub-50 nm junctionless nanowire transistors,” Science of Advanced Materials, Volume 3, Number 3, June 2011, pp. 477-482.
[1-20] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, no. 2, pp. 208–215, Jan. 2014.
[1-21] Y.-J. Lee, Y.-L. Lu, F-K. Hsueh, K.-C. Huang, C.-C. Wan, T.-Y. Cheng, M.-H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H.-T. Chuang, Y. Li, T.-S. Chao, C.-Y. Wu, and F.-L. Yang, “3D 65nm CMOS with 320°C Microwave Dopant Activation,” in IEDM Tech. Dig., Dec. 2009, pp. 2.3.1-2.3.4.
[1-22] Y.-J. Lee, B.-A. Tsai, C.-H. Lai, Z.-Y. Chen, F.-K. Hsueh, P.-J. Sung, M. I. Current, and C.-W. Luo, “Low-Temperature Microwave Annealing for MOSFETs With High-k/Metal Gate Stacks” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1286–1288, Oct. 2013.
[1-23] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior Cut-Off
95
Characteristics of Lg=40nm Wfin=7nm Poly Ge Junctionless Tri-gate FET for Stacked 3D Circuits Integration,” in VLSI Symp. Tech. Dig., June 2013, pp. 94-95.
[1-24] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, “Body-Tied Germanium Tri-Gate Junctionless PMOSFET With In-Situ Boron Doped Channel,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 12–14, Jan. 2014.
[1-25] K.Usuda, Y.Kamata, Y.Kamimuta, T.Mori, M.Koike, and T.Tezuka, “High-Performance Tri-Gate Poly-Ge Junction-Less P- and N-MOSFETs Fabricated by Flash Lamp Annealing Process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1-16.6.4.
[1-26] W. Guo, M. Choi, A. Rouhi, V. Moroz, G. Eneman, J. Mitard, L. Witters, G. Van der Plas, N. Collaert, G. Beyer, P. Absil, A. Thean, and E. Beyne, “Impact of 3D integration on 7nm high mobility channel devices operating in the ballistic regime,” in IEDM Tech. Dig., Dec. 2014, pp. 7.1.1-7.1.4.
[1-27] S. Jin, A.-T. Pham, W. Choi, Y. Nishizawa, Y.-T. Kim, K.-H. Lee, Y. Park, and E. S. Jung, “Performance Evaluation of InGaAs, Si, and Ge nFinFETs based on Coupled 3D Drift-Diffusion/Multisubband Boltzmann Transport Equations Solver,” in IEDM Tech. Dig., Dec. 2014, pp. 7.5.1-7.5.4.
[1-28] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically
96
Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, no. 2, pp. 208–215, Jan. 2014.
[1-29] T. Skotnicki, G. Merckel, and T. Pedron, “The Voltage-Doping Transformation: a New Approach to the Modeling of MOSFET Short-Channel Effects,” IEEE Electron Device Lett., vol. 9, no. 3, pp.109 - 112, 1988.
[1-30] T. Skotnicki, “Heading for Decananometer CMOS-Is Navigation Among Icebergs Still a Viable Strategy?” Proc. of the 30th European Solid- State Device Research Conference, Gif-Sur-Yvette, France, 2000, pp. 19 - 33.
[1-31] M.C. Lemme, T. Mollenhauer, W. Henschel, T. Wahlbrink, M. Baus, O. Winkler, R. Granzner, F. Schwierz, B. Spangenberg, and H. Kurz, “Subthreshold Behavior of Triple-Gate MOSFETs on SOI Material,” Solid-State Electron., vol. 48, no. 4, pp. 529 - 534, 2004.
[1-32] X. Baie, J.P. Colinge, V. Bayot, and E. Grivei, “Quantum-Wire Effects in Thin and Narrow SOI MOSFETs,” IEEE International SOI Conference, Tucson, AZ, 1995, pp. 66 - 67.
[1-33] J.P. Colinge, X. Baie, V. Bayot, and E. Grivei, “A Silicon-on-Insulator Quantum Wire,” Solid-State Electron., vol. 39, no. 1, pp. 49 - 51, 1996.
[1-34] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, and S. Datta, “Advanced Depleted-Substrate Transistors: Single-Gate
97
Double-Gate and Tri-Gate,” International Conference on Solid State Devices and Materials (SSDM), Nagoya Congress Center, Nagoya, 2002, pp. 68 - 69.
[1-35] B.S. Doyle, S. Datta, M. Doczy, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High Performance Fully-Depleted Tri-Gate CMOS Transistors,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 263 - 265, 2003.
[1-36] J.T. Park, J.P. Colinge, and C. H. Diaz, “Pi-Gate SOI MOSFET,” IEEE Electron Device Lett., vol. 22, no. 8, pp. 405 - 406, 2001.
[1-37] J.T. Park, and J.P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2222 - 2229, 2002.
[1-38] F.L. Yang, H.Y. Chen, F.C. Cheng, C.C. Huang, C.Y. Chang, H.K. Chiu, C.C. Lee, C.C. Chen H.T. Huang, C.J. Chen, H.J. Tao, Y.C. Yeo, M.S. Liang, and C. Hu, “25 nm CMOS Omega FETs,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, USA, 2002, pp. 255 - 258.
[1-39] F.L. Yang, D.H. Lee, H.Y. Chen, C.Y. Chang, S.D. Liu, C.C. Huang, T.X. Chung, H.W. Chen, C.C. Huang, Y.H. Liu, C.C. Wu, C.C. Chen, S.C. Chen, Y.T. Chen, Y.H. Chen, C.J. Chen, B.W. Chan, P.F. Hsu, J.H. Shieh, H.J. Tao, Y.C. Yeo, Y. Li, J.W. Lee, P. Chen, M.S. Liang, and C. Hu, “5 nm-Gate Nanowire FinFET,” in Proc. Symp. VLSI Technol. Circuits (VLSI), Honolulu, Hawaii, USA,
98
2004, pp. 196 - 197.
[1-40] R. Ritzenthaler, C. Dupre, X. Mescot, O. Faynot, T. Ernst, J.C. Barbe, C. Jahan, L. Brevard, F. Andrieu, S. Deleonibus, and S. Cristoloveanu, “Mobility Behavior in Narrow Omega-GateFETs Devices,” IEEE International SOI Conference, Niagara Falls, NY, 2006, pp.77 - 78.
[1-41] C.W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.P. Colinge, “Performance Estimation of Junctionless Multigate Transistors,” Solid-State Electron., vol. 54, no. 2, pp. 97 - 103, 2010.
[1-42] J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire Transistors without Junctions,” Nature Nanotechnol., vol. 5, no. 3, pp. 225 - 229, 2010.
[1-43] H.C. Lin, C.I Lin, Z.M. Lin, B.S. Shie and T.Y. Huang, “Characteristics of Planar Junctionless Poly-Si Thin-Film Transistors with Various Channel Thickness,” IEEE Electron Device Lett., vol. 60, no. 3, pp. 1142 - 1148, 2013
99
Chapter 2
[2-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., Jun. 2004, pp. 4-5.
[2-2] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Ultra-thin Body SOI MOSFET for Deep-sub-tenth Micron Era,” in IEDM Symp. Tech. Dig., Dec. 1999, pp. 919-921.
[2-3] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V.Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K., Zhang, "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size," Electron Devices Meeting (IEDM), 2014 IEEE International , vol. 3.7.1, no. 3.7.3, pp.15-17, Dec. 2014.
[2-4] Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K., Zhang, "A 14nm logic technology featuring
100
2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size," Electron Devices Meeting (IEDM), 2014 IEEE International , vol. 3.7.1, no. 3.7.3, pp.15-17, Dec. 2014.
[2-5] Y. Li, C.-H. Hwang, T.-Y. Li, and M.-H. Han, “Process Variation Effect, Metal-Gate Work function and Random Dopant Fluctuations in Emerging CMOS Technologies,” IEEE Trans. Electron Device, vol. 57, no. 2, pp. 437-447, Feb. 2010.
[2-6] N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, “Si, SiGe nanowire devices by top–down technology and their applications,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3107–3118, Nov. 2008.
[2-7] M. H. Han, C. Y. Chang, H. B. Chen, J. J. Wu, Y. C. Cheng, and Y. C. Wu, “Performance comparison between bulk and SOI junctionless transistors,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 169–171, Feb. 2013.
[2-8] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Letters, vol. 32, no. 9, pp. 1170-1172, Sept. 2011.
[2-9] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P.
101
Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire Transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010.
[2-10] Online: <http://www.itrs.net/reports.html> Table ORTC1, Summary 2013 ORTC Technology Trend Targets.
[2-11] TCAD Sentaurus Device, Synopsys SDevice Ver. J-2014.09, Synopsys, Inc., Mountain View, CA, USA.
102
Chapter 3
[3-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359
[3-2] K. Suzuki, K Ikeda, Y. Yamashita, M. Harada, N. Taoka, O. Kiso, T. Yamamoto, N. Sugiyama, S. Takagi, "Ion-Implanted Impurity Profiles in Ge Substrates and Amorphous Layer Thickness Formed by Ion Implantation," in Electron Devices, IEEE Transactions on , vol.56, no.4, pp.627-633, April 2009. doi: 10.1109/TED.2009.2014193
[3-3] S. Migita, Y. Morita, M. Masahara, H. Ota, “Fabrication and Demonstration of 3-nm-Channel-Length Junctionless Field-Effect Transistors on Silicon-on-Insulator Substrates Using Anisotropic Wet Etching and Lateral Diffusion of Dopants “in Jpn. J. Appl. Phys., 52 pp.04CA01-01 - 04CA01-5, Feb. 2013. doi: 10.7567/JJAP.52.04CA01
[3-4] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, E. D. Kurniawan, Y. R. Lin, S. Y. Yang, C. H. Cheng, Y. C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope (43 mV/dec)" in Applied Physics Letters, vol. 110, no.3, pp. 032101-1 - 032101-5, Jan. 2017. doi: 10.1063/1.4974255
[3-5] P. Bhatt, and K. Chaudhuri, S. Kothari, A. Nainani, and S. Lodha, "Germanium oxynitride gate interlayer dielectric formed on Ge(100) using decoupled plasma
103
nitridation", Applied Physics Letters, 103, pp.172107-1 - 172107-5 , Oct. 2013. doi:10.1063/1.4826142
[3-6] T. Low, Y. T. Hou, M. F. Li, Chunxiang Zhu, D. L. Kwong and A. Chin, "Germanium MOS: an evaluation from carrier quantization and tunneling current," Symposium on VLSI Technology. Digest of Technical Papers, Kyoto, Japan, 2003, pp. 117-118. doi: 10.1109/VLSIT.2003.1221113
[3-7] V. P. H. Hu, M. L. Fan; P. Su, C. T. Chuang, "Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET," in Electron Devices, IEEE Transactions on , vol.60, no.10, pp.3596-3600, Oct. 2013. doi: 10.1109/TED.2013.2278032
[3-8] W. Choi, J. Lee and M. Shin, "p-Type Nanowire Schottky Barrier MOSFETs: Comparative Study of Ge- and Si-Channel Devices," in IEEE Transactions on Electron Devices, vol. 61, no. 1, pp. 37-43, Jan. 2014. doi: 10.1109/TED.2013.2292008
[3-9] J. Lee and M. Shin, "Simulation Study of Germanium p-Type Nanowire Schottky Barrier MOSFETs," in IEEE Electron Device Letters, vol. 34, no. 3, pp. 342-344, March 2013. doi: 10.1109/LED.2012.2237375
[3-10] V. P. H. Hu, Y. S. Wu and P. Su, "Investigation of Electrostatic Integrity for Ultrathin-Body Germanium-On-Nothing MOSFET," in IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 325-330, March 2011. doi: 10.1109/TNANO.2010.2041010
[3-11] K. H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, G. Groeseneken and
104
K. De Meyer, "Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs," in IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. doi: 10.1109/TED.2011.2175228
[3-12] I. H. Wong, Y. T. Chen, S. H. Huang, W. H. Tu, Y. S. Chen and C. W. Liu, "Junctionless Gate-All-Around pFETs Using In-situ Boron-Doped Ge Channel on Si," in IEEE Transactions on Nanotechnology, vol. 14, no. 5, pp. 878-882, Sept. 2015. doi: 10.1109/TNANO.2015.2456182
[3-13] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu and Y. C. Wu, "Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length," in IEEE Electron Device Letters, vol. 36, no. 7, pp. 645-647, July 2015. doi:10.1109/LED.2015.2433303
[3-14] Atomistix ToolKit v.2016.3 Quantumwise, [online] Available: http://quantumwise.com/.
[3-15] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport” Phys. Rev. B 65, 165401, March 2002, doi: 10.1103/PhysRevB.65.16540.
[3-16] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation” J. Phys. Condens. Matter 14, 11, 2745, March 2002. doi.org/10.1088/0953-8984/14/11/302
[3-17] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation
105
made simple", Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996. doi.org/10.1103/PhysRevLett.77.3865
[3-18] C. Zhan, J. Neal, J. Wu, D. E. Jiang, “Quantum Effects on the Capacitance of Graphene-Based Electrodes” J. Phys. Chem. C 2015, vol. 119, pp. 22297– 22303, 2015. doi: 10.1021/acs.jpcc.5b05930
[3-19] TCAD Sentaurus Device, Synopsys SDevice Ver. J-2014.09, Synopsys, Inc., Mountain View, CA, USA.
[3-20] R. Kim, U. E. Avci and I. A. Young, "Source/Drain Doping Effects and Performance Analysis of Ballistic III-V n-MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 3, no. 1, pp. 37-43, Jan. 2015. doi: 10.1109/JEDS.2014.2363389
[3-21] T. Krishnamohan, "Band-engineering of novel channel materials for high performance nanoscale MOSFETs," 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, 2008, pp. 97-100. doi: 10.1109/SISPAD.2008.4648246
[3-22] G. Eneman, A.S. Verhulst, A. De Keersgieter, A. Mocuta, N. Collaert, A. Thean, L.Smith, V. Moroz, "Band-to-band tunneling off-state leakage in Ge fins and nanowires: Effect of quantum confinement," 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 27-30. doi: 10.1109/SISPAD.2016.7605140
106
[3-23] GSS (now part of Synopsys) statistical 3D TCAD Simulator, Ver. 2015.1 [Online] http://www.goldstandardsimulations.com/.
[3-24] T. Sadi, E. Towie, M. Nedjalkov, C. Riddet, C. Alexander, L. Wang, V. Georgiev, A. Brown, C. Millar and A. Asenov, “One-Dimensional Multi-Subband Monte Carlo Simulation of Charge Transport in Si Nanowire Transistors”, 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 23-26. doi: 10.1109/SISPAD.2016.7605139
[3-25] M. Bescond, N. Cavassilas, K. Kalna, K. Nehari, L.Raymond, J.L. Autran, M.Lannoo, A. Asenov, "Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 526-529. doi: 10.1109/IEDM.2005.1609398
[3-26] S. Sahay and M. J. Kumar, "Diameter Dependence of Leakage Current in Nanowire Junctionless Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 1330-1335, March 2017. doi: 10.1109/TED.2016.2645640
107
Chapter 4
[4-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359
[4-2] L.C. Chen, M.S. Yeh, Y.R. Lin, K.W. Lin, M.H. Wu, V. Thirunavukkarasu, Y.C. Wu, "The physical analysis on electrical junction of junctionless FET" in AIP Advances, vol. 7, no.2, pp. 025301, Jan. 2017. doi : http://dx.doi.org/10.1063/1.4975768
[4-3] T. Krishnamohan, "Band-engineering of novel channel materials for high performance nanoscale MOSFETs," 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, 2008, pp. 97-100. doi: 10.1109/SISPAD.2008.4648246
[4-4] T. Low et al., “Investigation of performance limits of germanium double-gated MOSFETs,” IEDM Tech. Dig., p.691, 2003.
[4-5] D. Gracia, D. Nirmal, A. Nisha Justeena, Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials, Superlattices and Microstructures, Available online 26 April 2017, ISSN 0749-6036, https://doi.org/10.1016/j.spmi.2017.04.045
[4-6] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, E. D. Kurniawan, Y. R. Lin, S. Y. Yang, C. H. Cheng, Y. C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope
108
(43 mV/dec)" in Applied Physics Letters, vol. 110, no.3, pp. 032101-1 - 032101-5, Jan. 2017. doi: 10.1063/1.4974255
[4-7] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu and Y. C. Wu, "Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length," in IEEE Electron Device Letters, vol. 36, no. 7, pp. 645-647, July 2015. doi:10.1109/LED.2015.2433303.
[4-8] Y. C. Cheng et al., "Characteristics of a Novel Poly-Si P-Channel Junctionless Thin-Film Transistor With Hybrid P/N-Substrate," in IEEE Electron Device Letters, vol. 36, no. 2, pp. 159-161, Feb. 2015. doi: 10.1109/LED.2014.2379673
[4-9] G. Eneman, A.S. Verhulst, A. De Keersgieter, A. Mocuta, N. Collaert, A. Thean, L.Smith, V. Moroz, "Band-to-band tunneling off-state leakage in Ge fins and nanowires: Effect of quantum confinement," 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 27-30. doi: 10.1109/SISPAD.2016.7605140
[4-10] Vasanthan Thirunavukkarasu, Jaehyun Lee, Toufik Sadi, Vihar P. Georgiev, Fikru-Adamu Lema, Karuppasamy Pandian Soundarapandian, Yi-Ruei Jhan, Shang-Yi Yang, Yu-Ru Lin, Erry Dwi Kurniawan, Yung-Chun Wu, Asen Asenov, Investigation of inversion, accumulation and junctionless mode bulk Germanium FinFETs, Superlattices and Microstructures, 2017, ISSN 0749-6036, http://dx.doi.org/10.1016/j.spmi.2017.07.020.
[4-11] S. Sahay and M. J. Kumar, "Diameter Dependence of Leakage Current in
109
Nanowire Junctionless Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 1330-1335, March 2017. doi: 10.1109/TED.2016.2645640
[4-12] Atomistix ToolKit v.2016.3 Quantumwise, [online] Available: http://quantumwise.com/
[4-13] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport” Phys. Rev. B 65, 165401, March 2002, doi: 10.1103/PhysRevB.65.16540
[4-14] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation” J. Phys. Condens. Matter 14, 11, 2745, March 2002. doi.org/10.1088/0953-8984/14/11/302
[4-15] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation made simple", Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996. doi.org/10.1103/PhysRevLett.77.3865
[4-16] C. Zhan, J. Neal, J. Wu, D. E. Jiang, “Quantum Effects on the Capacitance of Graphene-Based Electrodes” J. Phys. Chem. C 2015, vol. 119, pp. 22297– 22303, 2015. doi: 10.1021/acs.jpcc.5b05930
[4-17] GSS (now part of Synopsys) statistical 3D TCAD Simulator, Ver. 2015.1 [Online] http://www.goldstandardsimulations.com/
[4-18] Y. Wang et al., "Simulation Study of the Impact of Quantum Confinement on the
110
Electrostatically Driven Performance of n-type Nanowire Transistors," in IEEE Transactions on Electron Devices, vol. 62, no. 10, pp. 3229-3236, Oct. 2015. doi: 10.1109/TED.2015.2470235
[4-19] M. Bescond, N. Cavassilas, K. Kalna, K. Nehari, L.Raymond, J.L. Autran, M.Lannoo, A. Asenov, "Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 526-529. doi: 10.1109/IEDM.2005.1609398
[4-20] R. Kim, U. E. Avci and I. A. Young, "Ge Nanowire nMOSFET Design With Optimum Band Structure for High Ballistic Drive Current," in IEEE Electron Device Letters, vol. 36, no. 8, pp. 751-753, Aug. 2015. doi: 10.1109/LED.2015.2445915
[4-21] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini and T. Elewa, "Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance," in IEEE Electron Device Letters, vol. 8, no. 9, pp. 410-412, Sep 1987. doi: 10.1109/EDL.1987.26677
111
Chapter 5
[5-1] Xiaojun Guo, Tomoyuki Ishii, and S. R. P. Silva, “Improving Switching Performance of Thin-Film Transistors in Disordered Silicon,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 588–590, Dec. 2008.
[5-2] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior Cut-Off Characteristics of Lg=40nm Wfin=7nm Poly Ge Junctionless Tri-gate FET for Stacked 3D Circuits Integration,” in VLSI Symp. Tech. Dig., June 2013, pp. 94-95.
[5-3] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, “Body-Tied Germanium Tri-Gate Junctionless PMOSFET With In-Situ Boron Doped Channel,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 12–14, Jan. 2014.
[5-4] K.Usuda, Y.Kamata, Y.Kamimuta, T.Mori, M.Koike, and T.Tezuka, “High-Performance Tri-Gate Poly-Ge Junction-Less P- and N-MOSFETs Fabricated by Flash Lamp Annealing Process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1-16.6.4.
[5-5] W. Guo, M. Choi, A. Rouhi, V. Moroz, G. Eneman, J. Mitard, L. Witters, G. Van der Plas, N. Collaert, G. Beyer, P. Absil, A. Thean, and E. Beyne, “Impact of 3D integration on 7nm high mobility channel devices operating in the ballistic regime,” in IEDM Tech. Dig., Dec. 2014, pp. 7.1.1-7.1.4.
[5-6] S. Jin, A.-T. Pham, W. Choi, Y. Nishizawa, Y.-T. Kim, K.-H. Lee, Y. Park, and E. S. Jung, “Performance Evaluation of InGaAs, Si, and Ge nFinFETs based on Coupled 3D
112
Drift-Diffusion/Multisubband Boltzmann Transport Equations Solver,” in IEDM Tech. Dig., Dec. 2014, pp. 7.5.1-7.5.4.
[5-7] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R.Murphy, “Nanowire transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010.
[5-8] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, pp.208, 2014.
[5-9] Kian Hui Goh, Yan Guo, Xiao Gong, Geng-Chiau Liang and Yee-Chia Yeo, “Near Ballistic Sub-7 nm Junctionless FET Featuring 1 nm Extremely-Thin Channel and Raised S/D Structure,” in IEDM Tech. Dig., Dec. 2013, pp. 433-436.
[5-10] Mu-Shih Yeh, Yung-Chun Wu, Min-Hsin Wu, Yi-Ruei Jhan, Ming-Hsien Chung, and Min-Feng Hung, “High Performance Ultra-Thin Body (2.4nm) Poly-Si Junctionless Thin Film Transistors with a Trench Structure,” in IEDM Tech. Dig., Dec. 2014, pp. 618-621.
[5-11] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329–337, Nov. 2011.
[5-12] Synopsys TCAD, Version J-2014.09.
[5-13] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. M. White, A. Kelleher, B. McCarthy and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).
[5-14] R. D. Trevisoli, R. T. Doria, M. de Souza and M. A. Pavanello, Semi. Sci. and
113
Tech., 10 (2011).
[5-15] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S.Kraemer, P.M. Ajayan, K.Banerjee, Nat. Lett. 526, 91 (2015).
[5-16] A. M. Ionescu and H. Riel, Nature 479, 329 (2011).
[5-17] Q. Zhang, W. Zhao, and A. Seabaugh, IEEE Electron Dev. Lett., 27, 297 (2006).
[5-18] Y. Khatami, and K. Banerjee, IEEE Trans. Electron Devices. 56, 2752–2761(2009).
[5-19] D. Sarkar, M. Krall, and K. Banerjee, Appl. Phys. Lett. 97, 263109(2010).
[5-20] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee IEEE Electron Dev. Lett. 32, 1504 (2011).
[5-21] W. Y. Choi, B. Park, J. D. Lee, and T. K. Liu, IEEE Electron Dev. Lett. 28, 743–745 (2007).
[5-22] J. Appenzeller, Y. M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 196805 (2004).
[5-23] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, IEEE Trans. Electron. Devices., 9, 1853 ( 2003).
[5-24] L. Ansari, B. Feldman, G. Fagas J. P. Colinge and J. C. Greer, Appl. Phys. Lett. 97, 062105 (2010).
[5-25] M. T. Björk, J. Knoch, H. Schmid, H. Riel and W. Riess, W., Appl. Phys. Lett. 92, 193504 (2008).
[5-26] F. Giorgos and J. C. Greer, Nano Letters 9 (5), 1856 (2009).
[5-27] M. S. Yeh, Y. C. Wu, M. H. Wu, Y. R. Jhan, M. H. Chung and M. F. Hung, 2014 IEEE International Electron Devices Meeting, San Francisco, CA (2014 ).
[5-28] H. B. Chen, Y.C. Wu, C.Y. Chang, M.H. Han, N.H. Lu and Y.C. Cheng, VLSI Tech. Dig, T232 (2013).
114
[5-29] K.H. Goh, Y. Guo, X. Gong, G.C. Liang and Y.C. Yeo, IEDM Proc, 16.5.1 (2013).
[5-30] TCAD Sentaurus Device, Synopsys S Device Ver. K-2015.06, Synopsys, Inc., Mountain View, CA, USA.
[5-31] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, and Y. C. Wu., IEEE Electron Dev. Lett., 36, 7, 645 (2015).
[5-32] Y. R. Jhan, V. Thirunavukkarasu, C.P. Wang, Y. C. Wu, IEEE Electron Dev. Lett., 36, 654 (2015).
[5-33] Y. C. Cheng, H. B. Chen; J. J. Su, C.S. Shao, V. Thirunavukkarasu, C. Y. Chang, Y. C. Wu, IEEE Electron Dev. Lett., 36, 159 (2015).
[5-34] A. Martinez, N. Seoane, A. R. Brown, J. R. Barker, and A. Asenov, IEEE Transactions on Electron Devices, 57, 7, 1626-1635 (2010).
[5-35] X. Guo, T. Ishii and S. R. P. Silva, IEEE Electron Device Letters, 29, 6, 588 (2008).
115
Chapter 6
[6-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359
[6-2]http://spectrum.ieee.org/nanoclast/semiconductors/devices/nanosheets-ibms-path-to-5nanometer-transistors.
[6-3] H. B. Chen, Y. C. Wu, C. Y. Chang, M. H. Han, N. H. Lu and Y. C. Cheng, "Performance of GAA poly-Si nanosheet (2nm) channel of junctionless transistors with ideal subthreshold slope," 2013 Symposium on VLSI Technology, Kyoto, 2013, pp. T232-T233.
[6-4] S. Barraud et al., "Opportunities and challenges of nanowire-based CMOS technologies," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, 2015, pp. 1-3. doi: 10.1109/S3S.2015.7333520
[6-5] Y. B. Liao and M. H. Chiang, "Multi-threshold design methodology of stacked Si-nanowire FETs," 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Millbrae, CA, 2014, pp. 1-3. doi: 10.1109/S3S.2014.7028206
[6-6] M. H. Han, H. W. Cheng, C. H. Hwang and Y. Li, "Effect of process variation on 15-nm-gate stacked multichannel surrounding-gate field effect transistor," 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, 2009, pp. 222-225.
[6-7] B. C. Paz et al., "Performance and transport analysis of vertically stacked p-FET SOI nanowires," 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Athens, 2017, pp. 79-82. doi:
116
10.1109/ULIS.2017.7962606
[6-8] T. Al-Ameri and A. Asenov, "Vertically stacked lateral Si80Ge20 nanowires transistors for 5 nm CMOS applications," 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Athens, 2017, pp. 101-104. doi: 10.1109/ULIS.2017.7962612
[6-9] S. Barraud et al., "Vertically stacked-NanoWires MOSFETs in a replacement metal gate process with inner spacer and SiGe source/drain," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 17.6.1-17.6.4. doi: 10.1109/IEDM.2016.7838441
[6-10] H. Mertens et al., "Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 19.7.1-19.7.4. doi: 10.1109/IEDM.2016.7838456
[6-11] M. Karner et al., "Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 30.7.1-30.7.4.doi: 10.1109/IEDM.2016.7838516
[6-12] S. H. Chen et al., "ESD diodes in a bulk Si gate-all-around vertically stacked horizontal nanowire technology," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 35.4.1-35.4.4. doi: 10.1109/IEDM.2016.7838548
[6-13] T. Al-Ameri et al., "Performance of vertically stacked horizontal Si nanowires
117
transistors: A 3D Monte Carlo/2D Poisson Schrodinger simulation study," 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), Toulouse, 2016, pp. 1-2. doi: 10.1109/NMDC.2016.7777117 H. Mertens et al., "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2. doi: 10.1109/VLSIT.2016.7573416
[6-14] J. Hur et al., "Comprehensive Analysis of Gate-Induced Drain Leakage in Vertically Stacked Nanowire FETs: Inversion-Mode Versus Junctionless Mode," in IEEE Electron Device Letters, vol. 37, no. 5, pp. 541-544, May 2016. doi: 10.1109/LED.2016.2540645
118
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *