|
Reference Chapter 1 [1-1] S. M. SZE, KWOK K. NG, “Physics of Semiconductor Devices” 3rd Ed., ch. 6, New Jersey: Wiley-InterScience, 2007. [1-2] J. E. Lilienfeld, "Method and Apparatus for Controlling Electric Current," U.S. Patent 1 745 175, Jan., 1930. [1-3] J. E. Lilienfeld, "Amplifier for Electric Current," U.S. Patent 1 877 140, Sep., 1932. [1-4] J. E. Lilienfeld, "Device for Controlling Electric Current," U.S. Patent 1 900 018, Mar., 1933. [1-5] W. Shockley and G. L. Pearson, “Modulation of Conductance of Thin Films of Semiconductors by Surface Charges,” Phy. Rev., vol. 74, pp. 232, Jul., 1948. [1-6] D. Kahng, “A Historical Perspective on the Development of MOS Transistors and Related Devices,” IEEE Trans. Electron Devices, vol. ED-23, no. 7, pp. 655–657, Jul., 1976. [1-7] C. T. Sah, “Evolution of the MOS Transistor-From Conception,” Proc. IEEE, vol. 76, no. 10, pp. 1280–1326, Oct., 1988. [1-8] Chenming Calvin Hu, “Modern Semiconductor Devices for Integrated Circuits”, Pearson Higher Education, 2010, ch. 6. 92 [1-9] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K. Zhang,” A 14nm Logic Technology Featuring 2nd-Generation FinFET, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 m2 SRAM cell size,” in IEDM Tech. Dig., 2014, pp. 71–73. [1-10] M. Lee, Y. Jeon, J.-C. Jung, S.-M. Koo, and S. Kim, “Multiple silicon nanowire complementary tunnel transistors for ultralow-power flexible logic applications,” Appl. Phys. lett., vol. 100, pp. 253506, Jun. 2012. [1-11] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor,” J. Appl. Phys. vol. 107, pp. 024518, Jan. 2010. [1-12] Q. Huang, R. Huang, Z. Zhan, Y. Qiu, W. Jiang, C. Wu, and Y. Wang, “A novel Si tunnel FET with 36mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration,” in IEDM Tech. Dig., Dec. 2012, pp. 8.5.1–8.5.4. 93 [1-13] J. T. Smith, C. Sandow, S. Das, R. A. Minamisawa, S. Mantl, and Joerg Appenzeller, “Silicon Nanowire Tunneling Field-Effect Transistor Arrays: Improving Subthreshold Performance Using Excimer Laser Annealing,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1822–1829, Jul. 2011. [1-14] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R.Murphy, “Nanowire transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010. [1-15] L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, and J. C. Greer, “Simulation of junctionless Si nanowire transistors with 3 nm gate length,” Appl. Phys. Lett., vol. 97, pp. 062105, Aug. 2010. [1-16] L. Ansari, B. Feldman, G. Fagas, J.-P. Colinge, J. C. Greer, “Subthreshold behavior of junctionless silicon nanowire transistors from atomic scale simulations,” Solid State Electron., vol. 71, pp. 58–62, May 2012. [1-17] R. Yan, A. Kranti, I. Ferain, C.-W. Lee, R. Yu, N. Dehdashti, P. Razavi and J.-P. Colinge, “Investigation of high-performance sub-50 nm junctionless nanowire transistors,” Microelectronics Reliability, vol. 51, pp. 1166–1171, Feb. 2011. [1-18] Alexei Nazarov, J.-P. Colinge, Francis Balestra, Jean-Pierre Raskin, Francisco Gamiz, V.S. Lysenko, “Semiconductor-On-Insulator Materials for Nanoelectronics 94 Applications”, Part II, Springer-Verlag Berlin Heidelberg, 2011. [1-19] Jean-Pierre Colinge, Isabelle Ferain, Abhinav Kranti, Chi-Woo Lee, Nima Dehdashti Akhavan, Pedram Razavi, Ran Yan, and Ran Yu, “Investigation of high-performance sub-50 nm junctionless nanowire transistors,” Science of Advanced Materials, Volume 3, Number 3, June 2011, pp. 477-482. [1-20] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, no. 2, pp. 208–215, Jan. 2014. [1-21] Y.-J. Lee, Y.-L. Lu, F-K. Hsueh, K.-C. Huang, C.-C. Wan, T.-Y. Cheng, M.-H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H.-T. Chuang, Y. Li, T.-S. Chao, C.-Y. Wu, and F.-L. Yang, “3D 65nm CMOS with 320°C Microwave Dopant Activation,” in IEDM Tech. Dig., Dec. 2009, pp. 2.3.1-2.3.4. [1-22] Y.-J. Lee, B.-A. Tsai, C.-H. Lai, Z.-Y. Chen, F.-K. Hsueh, P.-J. Sung, M. I. Current, and C.-W. Luo, “Low-Temperature Microwave Annealing for MOSFETs With High-k/Metal Gate Stacks” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1286–1288, Oct. 2013. [1-23] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior Cut-Off 95 Characteristics of Lg=40nm Wfin=7nm Poly Ge Junctionless Tri-gate FET for Stacked 3D Circuits Integration,” in VLSI Symp. Tech. Dig., June 2013, pp. 94-95. [1-24] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, “Body-Tied Germanium Tri-Gate Junctionless PMOSFET With In-Situ Boron Doped Channel,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 12–14, Jan. 2014. [1-25] K.Usuda, Y.Kamata, Y.Kamimuta, T.Mori, M.Koike, and T.Tezuka, “High-Performance Tri-Gate Poly-Ge Junction-Less P- and N-MOSFETs Fabricated by Flash Lamp Annealing Process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1-16.6.4. [1-26] W. Guo, M. Choi, A. Rouhi, V. Moroz, G. Eneman, J. Mitard, L. Witters, G. Van der Plas, N. Collaert, G. Beyer, P. Absil, A. Thean, and E. Beyne, “Impact of 3D integration on 7nm high mobility channel devices operating in the ballistic regime,” in IEDM Tech. Dig., Dec. 2014, pp. 7.1.1-7.1.4. [1-27] S. Jin, A.-T. Pham, W. Choi, Y. Nishizawa, Y.-T. Kim, K.-H. Lee, Y. Park, and E. S. Jung, “Performance Evaluation of InGaAs, Si, and Ge nFinFETs based on Coupled 3D Drift-Diffusion/Multisubband Boltzmann Transport Equations Solver,” in IEDM Tech. Dig., Dec. 2014, pp. 7.5.1-7.5.4. [1-28] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically 96 Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, no. 2, pp. 208–215, Jan. 2014. [1-29] T. Skotnicki, G. Merckel, and T. Pedron, “The Voltage-Doping Transformation: a New Approach to the Modeling of MOSFET Short-Channel Effects,” IEEE Electron Device Lett., vol. 9, no. 3, pp.109 - 112, 1988. [1-30] T. Skotnicki, “Heading for Decananometer CMOS-Is Navigation Among Icebergs Still a Viable Strategy?” Proc. of the 30th European Solid- State Device Research Conference, Gif-Sur-Yvette, France, 2000, pp. 19 - 33. [1-31] M.C. Lemme, T. Mollenhauer, W. Henschel, T. Wahlbrink, M. Baus, O. Winkler, R. Granzner, F. Schwierz, B. Spangenberg, and H. Kurz, “Subthreshold Behavior of Triple-Gate MOSFETs on SOI Material,” Solid-State Electron., vol. 48, no. 4, pp. 529 - 534, 2004. [1-32] X. Baie, J.P. Colinge, V. Bayot, and E. Grivei, “Quantum-Wire Effects in Thin and Narrow SOI MOSFETs,” IEEE International SOI Conference, Tucson, AZ, 1995, pp. 66 - 67. [1-33] J.P. Colinge, X. Baie, V. Bayot, and E. Grivei, “A Silicon-on-Insulator Quantum Wire,” Solid-State Electron., vol. 39, no. 1, pp. 49 - 51, 1996. [1-34] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, and S. Datta, “Advanced Depleted-Substrate Transistors: Single-Gate 97 Double-Gate and Tri-Gate,” International Conference on Solid State Devices and Materials (SSDM), Nagoya Congress Center, Nagoya, 2002, pp. 68 - 69. [1-35] B.S. Doyle, S. Datta, M. Doczy, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High Performance Fully-Depleted Tri-Gate CMOS Transistors,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 263 - 265, 2003. [1-36] J.T. Park, J.P. Colinge, and C. H. Diaz, “Pi-Gate SOI MOSFET,” IEEE Electron Device Lett., vol. 22, no. 8, pp. 405 - 406, 2001. [1-37] J.T. Park, and J.P. Colinge, “Multiple-Gate SOI MOSFETs: Device Design Guidelines,” IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2222 - 2229, 2002. [1-38] F.L. Yang, H.Y. Chen, F.C. Cheng, C.C. Huang, C.Y. Chang, H.K. Chiu, C.C. Lee, C.C. Chen H.T. Huang, C.J. Chen, H.J. Tao, Y.C. Yeo, M.S. Liang, and C. Hu, “25 nm CMOS Omega FETs,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, USA, 2002, pp. 255 - 258. [1-39] F.L. Yang, D.H. Lee, H.Y. Chen, C.Y. Chang, S.D. Liu, C.C. Huang, T.X. Chung, H.W. Chen, C.C. Huang, Y.H. Liu, C.C. Wu, C.C. Chen, S.C. Chen, Y.T. Chen, Y.H. Chen, C.J. Chen, B.W. Chan, P.F. Hsu, J.H. Shieh, H.J. Tao, Y.C. Yeo, Y. Li, J.W. Lee, P. Chen, M.S. Liang, and C. Hu, “5 nm-Gate Nanowire FinFET,” in Proc. Symp. VLSI Technol. Circuits (VLSI), Honolulu, Hawaii, USA, 98 2004, pp. 196 - 197. [1-40] R. Ritzenthaler, C. Dupre, X. Mescot, O. Faynot, T. Ernst, J.C. Barbe, C. Jahan, L. Brevard, F. Andrieu, S. Deleonibus, and S. Cristoloveanu, “Mobility Behavior in Narrow Omega-GateFETs Devices,” IEEE International SOI Conference, Niagara Falls, NY, 2006, pp.77 - 78. [1-41] C.W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.P. Colinge, “Performance Estimation of Junctionless Multigate Transistors,” Solid-State Electron., vol. 54, no. 2, pp. 97 - 103, 2010. [1-42] J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire Transistors without Junctions,” Nature Nanotechnol., vol. 5, no. 3, pp. 225 - 229, 2010. [1-43] H.C. Lin, C.I Lin, Z.M. Lin, B.S. Shie and T.Y. Huang, “Characteristics of Planar Junctionless Poly-Si Thin-Film Transistors with Various Channel Thickness,” IEEE Electron Device Lett., vol. 60, no. 3, pp. 1142 - 1148, 2013 99 Chapter 2 [2-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., Jun. 2004, pp. 4-5. [2-2] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Ultra-thin Body SOI MOSFET for Deep-sub-tenth Micron Era,” in IEDM Symp. Tech. Dig., Dec. 1999, pp. 919-921. [2-3] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V.Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K., Zhang, "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size," Electron Devices Meeting (IEDM), 2014 IEEE International , vol. 3.7.1, no. 3.7.3, pp.15-17, Dec. 2014. [2-4] Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, K., Zhang, "A 14nm logic technology featuring 100 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm2 SRAM cell size," Electron Devices Meeting (IEDM), 2014 IEEE International , vol. 3.7.1, no. 3.7.3, pp.15-17, Dec. 2014. [2-5] Y. Li, C.-H. Hwang, T.-Y. Li, and M.-H. Han, “Process Variation Effect, Metal-Gate Work function and Random Dopant Fluctuations in Emerging CMOS Technologies,” IEEE Trans. Electron Device, vol. 57, no. 2, pp. 437-447, Feb. 2010. [2-6] N. Singh, K. D. Buddharaju, S. K. Manhas, A. Agarwal, S. C. Rustagi, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, “Si, SiGe nanowire devices by top–down technology and their applications,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3107–3118, Nov. 2008. [2-7] M. H. Han, C. Y. Chang, H. B. Chen, J. J. Wu, Y. C. Cheng, and Y. C. Wu, “Performance comparison between bulk and SOI junctionless transistors,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 169–171, Feb. 2013. [2-8] R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-orabi, and K. Kuhn, “Comparison of Junctionless and Conventional Trigate Transistors With Lg Down to 26 nm,” IEEE Electron Device Letters, vol. 32, no. 9, pp. 1170-1172, Sept. 2011. [2-9] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. 101 Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire Transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010. [2-10] Online: <http://www.itrs.net/reports.html> Table ORTC1, Summary 2013 ORTC Technology Trend Targets. [2-11] TCAD Sentaurus Device, Synopsys SDevice Ver. J-2014.09, Synopsys, Inc., Mountain View, CA, USA. 102 Chapter 3 [3-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359 [3-2] K. Suzuki, K Ikeda, Y. Yamashita, M. Harada, N. Taoka, O. Kiso, T. Yamamoto, N. Sugiyama, S. Takagi, "Ion-Implanted Impurity Profiles in Ge Substrates and Amorphous Layer Thickness Formed by Ion Implantation," in Electron Devices, IEEE Transactions on , vol.56, no.4, pp.627-633, April 2009. doi: 10.1109/TED.2009.2014193 [3-3] S. Migita, Y. Morita, M. Masahara, H. Ota, “Fabrication and Demonstration of 3-nm-Channel-Length Junctionless Field-Effect Transistors on Silicon-on-Insulator Substrates Using Anisotropic Wet Etching and Lateral Diffusion of Dopants “in Jpn. J. Appl. Phys., 52 pp.04CA01-01 - 04CA01-5, Feb. 2013. doi: 10.7567/JJAP.52.04CA01 [3-4] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, E. D. Kurniawan, Y. R. Lin, S. Y. Yang, C. H. Cheng, Y. C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope (43 mV/dec)" in Applied Physics Letters, vol. 110, no.3, pp. 032101-1 - 032101-5, Jan. 2017. doi: 10.1063/1.4974255 [3-5] P. Bhatt, and K. Chaudhuri, S. Kothari, A. Nainani, and S. Lodha, "Germanium oxynitride gate interlayer dielectric formed on Ge(100) using decoupled plasma 103 nitridation", Applied Physics Letters, 103, pp.172107-1 - 172107-5 , Oct. 2013. doi:10.1063/1.4826142 [3-6] T. Low, Y. T. Hou, M. F. Li, Chunxiang Zhu, D. L. Kwong and A. Chin, "Germanium MOS: an evaluation from carrier quantization and tunneling current," Symposium on VLSI Technology. Digest of Technical Papers, Kyoto, Japan, 2003, pp. 117-118. doi: 10.1109/VLSIT.2003.1221113 [3-7] V. P. H. Hu, M. L. Fan; P. Su, C. T. Chuang, "Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET," in Electron Devices, IEEE Transactions on , vol.60, no.10, pp.3596-3600, Oct. 2013. doi: 10.1109/TED.2013.2278032 [3-8] W. Choi, J. Lee and M. Shin, "p-Type Nanowire Schottky Barrier MOSFETs: Comparative Study of Ge- and Si-Channel Devices," in IEEE Transactions on Electron Devices, vol. 61, no. 1, pp. 37-43, Jan. 2014. doi: 10.1109/TED.2013.2292008 [3-9] J. Lee and M. Shin, "Simulation Study of Germanium p-Type Nanowire Schottky Barrier MOSFETs," in IEEE Electron Device Letters, vol. 34, no. 3, pp. 342-344, March 2013. doi: 10.1109/LED.2012.2237375 [3-10] V. P. H. Hu, Y. S. Wu and P. Su, "Investigation of Electrostatic Integrity for Ultrathin-Body Germanium-On-Nothing MOSFET," in IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 325-330, March 2011. doi: 10.1109/TNANO.2010.2041010 [3-11] K. H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, G. Groeseneken and 104 K. De Meyer, "Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs," in IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012. doi: 10.1109/TED.2011.2175228 [3-12] I. H. Wong, Y. T. Chen, S. H. Huang, W. H. Tu, Y. S. Chen and C. W. Liu, "Junctionless Gate-All-Around pFETs Using In-situ Boron-Doped Ge Channel on Si," in IEEE Transactions on Nanotechnology, vol. 14, no. 5, pp. 878-882, Sept. 2015. doi: 10.1109/TNANO.2015.2456182 [3-13] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu and Y. C. Wu, "Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length," in IEEE Electron Device Letters, vol. 36, no. 7, pp. 645-647, July 2015. doi:10.1109/LED.2015.2433303 [3-14] Atomistix ToolKit v.2016.3 Quantumwise, [online] Available: http://quantumwise.com/. [3-15] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport” Phys. Rev. B 65, 165401, March 2002, doi: 10.1103/PhysRevB.65.16540. [3-16] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation” J. Phys. Condens. Matter 14, 11, 2745, March 2002. doi.org/10.1088/0953-8984/14/11/302 [3-17] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation 105 made simple", Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996. doi.org/10.1103/PhysRevLett.77.3865 [3-18] C. Zhan, J. Neal, J. Wu, D. E. Jiang, “Quantum Effects on the Capacitance of Graphene-Based Electrodes” J. Phys. Chem. C 2015, vol. 119, pp. 22297– 22303, 2015. doi: 10.1021/acs.jpcc.5b05930 [3-19] TCAD Sentaurus Device, Synopsys SDevice Ver. J-2014.09, Synopsys, Inc., Mountain View, CA, USA. [3-20] R. Kim, U. E. Avci and I. A. Young, "Source/Drain Doping Effects and Performance Analysis of Ballistic III-V n-MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 3, no. 1, pp. 37-43, Jan. 2015. doi: 10.1109/JEDS.2014.2363389 [3-21] T. Krishnamohan, "Band-engineering of novel channel materials for high performance nanoscale MOSFETs," 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, 2008, pp. 97-100. doi: 10.1109/SISPAD.2008.4648246 [3-22] G. Eneman, A.S. Verhulst, A. De Keersgieter, A. Mocuta, N. Collaert, A. Thean, L.Smith, V. Moroz, "Band-to-band tunneling off-state leakage in Ge fins and nanowires: Effect of quantum confinement," 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 27-30. doi: 10.1109/SISPAD.2016.7605140 106 [3-23] GSS (now part of Synopsys) statistical 3D TCAD Simulator, Ver. 2015.1 [Online] http://www.goldstandardsimulations.com/. [3-24] T. Sadi, E. Towie, M. Nedjalkov, C. Riddet, C. Alexander, L. Wang, V. Georgiev, A. Brown, C. Millar and A. Asenov, “One-Dimensional Multi-Subband Monte Carlo Simulation of Charge Transport in Si Nanowire Transistors”, 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 23-26. doi: 10.1109/SISPAD.2016.7605139 [3-25] M. Bescond, N. Cavassilas, K. Kalna, K. Nehari, L.Raymond, J.L. Autran, M.Lannoo, A. Asenov, "Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 526-529. doi: 10.1109/IEDM.2005.1609398 [3-26] S. Sahay and M. J. Kumar, "Diameter Dependence of Leakage Current in Nanowire Junctionless Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 1330-1335, March 2017. doi: 10.1109/TED.2016.2645640 107 Chapter 4 [4-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359 [4-2] L.C. Chen, M.S. Yeh, Y.R. Lin, K.W. Lin, M.H. Wu, V. Thirunavukkarasu, Y.C. Wu, "The physical analysis on electrical junction of junctionless FET" in AIP Advances, vol. 7, no.2, pp. 025301, Jan. 2017. doi : http://dx.doi.org/10.1063/1.4975768 [4-3] T. Krishnamohan, "Band-engineering of novel channel materials for high performance nanoscale MOSFETs," 2008 International Conference on Simulation of Semiconductor Processes and Devices, Hakone, 2008, pp. 97-100. doi: 10.1109/SISPAD.2008.4648246 [4-4] T. Low et al., “Investigation of performance limits of germanium double-gated MOSFETs,” IEDM Tech. Dig., p.691, 2003. [4-5] D. Gracia, D. Nirmal, A. Nisha Justeena, Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials, Superlattices and Microstructures, Available online 26 April 2017, ISSN 0749-6036, https://doi.org/10.1016/j.spmi.2017.04.045 [4-6] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, E. D. Kurniawan, Y. R. Lin, S. Y. Yang, C. H. Cheng, Y. C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope 108 (43 mV/dec)" in Applied Physics Letters, vol. 110, no.3, pp. 032101-1 - 032101-5, Jan. 2017. doi: 10.1063/1.4974255 [4-7] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu and Y. C. Wu, "Performance of Inversion, Accumulation, and Junctionless Mode n-Type and p-Type Bulk Silicon FinFETs With 3-nm Gate Length," in IEEE Electron Device Letters, vol. 36, no. 7, pp. 645-647, July 2015. doi:10.1109/LED.2015.2433303. [4-8] Y. C. Cheng et al., "Characteristics of a Novel Poly-Si P-Channel Junctionless Thin-Film Transistor With Hybrid P/N-Substrate," in IEEE Electron Device Letters, vol. 36, no. 2, pp. 159-161, Feb. 2015. doi: 10.1109/LED.2014.2379673 [4-9] G. Eneman, A.S. Verhulst, A. De Keersgieter, A. Mocuta, N. Collaert, A. Thean, L.Smith, V. Moroz, "Band-to-band tunneling off-state leakage in Ge fins and nanowires: Effect of quantum confinement," 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, 2016, pp. 27-30. doi: 10.1109/SISPAD.2016.7605140 [4-10] Vasanthan Thirunavukkarasu, Jaehyun Lee, Toufik Sadi, Vihar P. Georgiev, Fikru-Adamu Lema, Karuppasamy Pandian Soundarapandian, Yi-Ruei Jhan, Shang-Yi Yang, Yu-Ru Lin, Erry Dwi Kurniawan, Yung-Chun Wu, Asen Asenov, Investigation of inversion, accumulation and junctionless mode bulk Germanium FinFETs, Superlattices and Microstructures, 2017, ISSN 0749-6036, http://dx.doi.org/10.1016/j.spmi.2017.07.020. [4-11] S. Sahay and M. J. Kumar, "Diameter Dependence of Leakage Current in 109 Nanowire Junctionless Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 1330-1335, March 2017. doi: 10.1109/TED.2016.2645640 [4-12] Atomistix ToolKit v.2016.3 Quantumwise, [online] Available: http://quantumwise.com/ [4-13] M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport” Phys. Rev. B 65, 165401, March 2002, doi: 10.1103/PhysRevB.65.16540 [4-14] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation” J. Phys. Condens. Matter 14, 11, 2745, March 2002. doi.org/10.1088/0953-8984/14/11/302 [4-15] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation made simple", Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996. doi.org/10.1103/PhysRevLett.77.3865 [4-16] C. Zhan, J. Neal, J. Wu, D. E. Jiang, “Quantum Effects on the Capacitance of Graphene-Based Electrodes” J. Phys. Chem. C 2015, vol. 119, pp. 22297– 22303, 2015. doi: 10.1021/acs.jpcc.5b05930 [4-17] GSS (now part of Synopsys) statistical 3D TCAD Simulator, Ver. 2015.1 [Online] http://www.goldstandardsimulations.com/ [4-18] Y. Wang et al., "Simulation Study of the Impact of Quantum Confinement on the 110 Electrostatically Driven Performance of n-type Nanowire Transistors," in IEEE Transactions on Electron Devices, vol. 62, no. 10, pp. 3229-3236, Oct. 2015. doi: 10.1109/TED.2015.2470235 [4-19] M. Bescond, N. Cavassilas, K. Kalna, K. Nehari, L.Raymond, J.L. Autran, M.Lannoo, A. Asenov, "Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 526-529. doi: 10.1109/IEDM.2005.1609398 [4-20] R. Kim, U. E. Avci and I. A. Young, "Ge Nanowire nMOSFET Design With Optimum Band Structure for High Ballistic Drive Current," in IEEE Electron Device Letters, vol. 36, no. 8, pp. 751-753, Aug. 2015. doi: 10.1109/LED.2015.2445915 [4-21] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini and T. Elewa, "Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance," in IEEE Electron Device Letters, vol. 8, no. 9, pp. 410-412, Sep 1987. doi: 10.1109/EDL.1987.26677 111 Chapter 5 [5-1] Xiaojun Guo, Tomoyuki Ishii, and S. R. P. Silva, “Improving Switching Performance of Thin-Film Transistors in Disordered Silicon,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 588–590, Dec. 2008. [5-2] Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior Cut-Off Characteristics of Lg=40nm Wfin=7nm Poly Ge Junctionless Tri-gate FET for Stacked 3D Circuits Integration,” in VLSI Symp. Tech. Dig., June 2013, pp. 94-95. [5-3] C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, “Body-Tied Germanium Tri-Gate Junctionless PMOSFET With In-Situ Boron Doped Channel,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 12–14, Jan. 2014. [5-4] K.Usuda, Y.Kamata, Y.Kamimuta, T.Mori, M.Koike, and T.Tezuka, “High-Performance Tri-Gate Poly-Ge Junction-Less P- and N-MOSFETs Fabricated by Flash Lamp Annealing Process,” in IEDM Tech. Dig., Dec. 2014, pp. 16.6.1-16.6.4. [5-5] W. Guo, M. Choi, A. Rouhi, V. Moroz, G. Eneman, J. Mitard, L. Witters, G. Van der Plas, N. Collaert, G. Beyer, P. Absil, A. Thean, and E. Beyne, “Impact of 3D integration on 7nm high mobility channel devices operating in the ballistic regime,” in IEDM Tech. Dig., Dec. 2014, pp. 7.1.1-7.1.4. [5-6] S. Jin, A.-T. Pham, W. Choi, Y. Nishizawa, Y.-T. Kim, K.-H. Lee, Y. Park, and E. S. Jung, “Performance Evaluation of InGaAs, Si, and Ge nFinFETs based on Coupled 3D 112 Drift-Diffusion/Multisubband Boltzmann Transport Equations Solver,” in IEDM Tech. Dig., Dec. 2014, pp. 7.5.1-7.5.4. [5-7] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R.Murphy, “Nanowire transistors without Junctions,” Nat. Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010. [5-8] S. Migita, Y. Morita, T. Matsukawa, M. Masahara and H. Ota,, “Experimental Demonstration of Ultrashort-Channel (3 nm) Junctionless FETs Utilizing Atomically Sharp V-Grooves on SOI,” IEEE Trans. Nanotechnol. vol. 13, pp.208, 2014. [5-9] Kian Hui Goh, Yan Guo, Xiao Gong, Geng-Chiau Liang and Yee-Chia Yeo, “Near Ballistic Sub-7 nm Junctionless FET Featuring 1 nm Extremely-Thin Channel and Raised S/D Structure,” in IEDM Tech. Dig., Dec. 2013, pp. 433-436. [5-10] Mu-Shih Yeh, Yung-Chun Wu, Min-Hsin Wu, Yi-Ruei Jhan, Ming-Hsien Chung, and Min-Feng Hung, “High Performance Ultra-Thin Body (2.4nm) Poly-Si Junctionless Thin Film Transistors with a Trench Structure,” in IEDM Tech. Dig., Dec. 2014, pp. 618-621. [5-11] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, vol. 479, pp. 329–337, Nov. 2011. [5-12] Synopsys TCAD, Version J-2014.09. [5-13] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. M. White, A. Kelleher, B. McCarthy and R. Murphy, Nat. Nanotechnol. 5, 225 (2010). [5-14] R. D. Trevisoli, R. T. Doria, M. de Souza and M. A. Pavanello, Semi. Sci. and 113 Tech., 10 (2011). [5-15] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S.Kraemer, P.M. Ajayan, K.Banerjee, Nat. Lett. 526, 91 (2015). [5-16] A. M. Ionescu and H. Riel, Nature 479, 329 (2011). [5-17] Q. Zhang, W. Zhao, and A. Seabaugh, IEEE Electron Dev. Lett., 27, 297 (2006). [5-18] Y. Khatami, and K. Banerjee, IEEE Trans. Electron Devices. 56, 2752–2761(2009). [5-19] D. Sarkar, M. Krall, and K. Banerjee, Appl. Phys. Lett. 97, 263109(2010). [5-20] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee IEEE Electron Dev. Lett. 32, 1504 (2011). [5-21] W. Y. Choi, B. Park, J. D. Lee, and T. K. Liu, IEEE Electron Dev. Lett. 28, 743–745 (2007). [5-22] J. Appenzeller, Y. M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 196805 (2004). [5-23] A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, IEEE Trans. Electron. Devices., 9, 1853 ( 2003). [5-24] L. Ansari, B. Feldman, G. Fagas J. P. Colinge and J. C. Greer, Appl. Phys. Lett. 97, 062105 (2010). [5-25] M. T. Björk, J. Knoch, H. Schmid, H. Riel and W. Riess, W., Appl. Phys. Lett. 92, 193504 (2008). [5-26] F. Giorgos and J. C. Greer, Nano Letters 9 (5), 1856 (2009). [5-27] M. S. Yeh, Y. C. Wu, M. H. Wu, Y. R. Jhan, M. H. Chung and M. F. Hung, 2014 IEEE International Electron Devices Meeting, San Francisco, CA (2014 ). [5-28] H. B. Chen, Y.C. Wu, C.Y. Chang, M.H. Han, N.H. Lu and Y.C. Cheng, VLSI Tech. Dig, T232 (2013). 114 [5-29] K.H. Goh, Y. Guo, X. Gong, G.C. Liang and Y.C. Yeo, IEDM Proc, 16.5.1 (2013). [5-30] TCAD Sentaurus Device, Synopsys S Device Ver. K-2015.06, Synopsys, Inc., Mountain View, CA, USA. [5-31] V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, and Y. C. Wu., IEEE Electron Dev. Lett., 36, 7, 645 (2015). [5-32] Y. R. Jhan, V. Thirunavukkarasu, C.P. Wang, Y. C. Wu, IEEE Electron Dev. Lett., 36, 654 (2015). [5-33] Y. C. Cheng, H. B. Chen; J. J. Su, C.S. Shao, V. Thirunavukkarasu, C. Y. Chang, Y. C. Wu, IEEE Electron Dev. Lett., 36, 159 (2015). [5-34] A. Martinez, N. Seoane, A. R. Brown, J. R. Barker, and A. Asenov, IEEE Transactions on Electron Devices, 57, 7, 1626-1635 (2010). [5-35] X. Guo, T. Ishii and S. R. P. Silva, IEEE Electron Device Letters, 29, 6, 588 (2008). 115 Chapter 6 [6-1] C. Hu, “Device Challenges and Opportunities,” in VLSI Symp. Tech. Dig., pp. 4-5, Jun. 2004. doi: 10.1109/VLSIT.2004.1345359 [6-2]http://spectrum.ieee.org/nanoclast/semiconductors/devices/nanosheets-ibms-path-to-5nanometer-transistors. [6-3] H. B. Chen, Y. C. Wu, C. Y. Chang, M. H. Han, N. H. Lu and Y. C. Cheng, "Performance of GAA poly-Si nanosheet (2nm) channel of junctionless transistors with ideal subthreshold slope," 2013 Symposium on VLSI Technology, Kyoto, 2013, pp. T232-T233. [6-4] S. Barraud et al., "Opportunities and challenges of nanowire-based CMOS technologies," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, 2015, pp. 1-3. doi: 10.1109/S3S.2015.7333520 [6-5] Y. B. Liao and M. H. Chiang, "Multi-threshold design methodology of stacked Si-nanowire FETs," 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Millbrae, CA, 2014, pp. 1-3. doi: 10.1109/S3S.2014.7028206 [6-6] M. H. Han, H. W. Cheng, C. H. Hwang and Y. Li, "Effect of process variation on 15-nm-gate stacked multichannel surrounding-gate field effect transistor," 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), Genoa, 2009, pp. 222-225. [6-7] B. C. Paz et al., "Performance and transport analysis of vertically stacked p-FET SOI nanowires," 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Athens, 2017, pp. 79-82. doi: 116 10.1109/ULIS.2017.7962606 [6-8] T. Al-Ameri and A. Asenov, "Vertically stacked lateral Si80Ge20 nanowires transistors for 5 nm CMOS applications," 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Athens, 2017, pp. 101-104. doi: 10.1109/ULIS.2017.7962612 [6-9] S. Barraud et al., "Vertically stacked-NanoWires MOSFETs in a replacement metal gate process with inner spacer and SiGe source/drain," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 17.6.1-17.6.4. doi: 10.1109/IEDM.2016.7838441 [6-10] H. Mertens et al., "Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 19.7.1-19.7.4. doi: 10.1109/IEDM.2016.7838456 [6-11] M. Karner et al., "Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 30.7.1-30.7.4.doi: 10.1109/IEDM.2016.7838516 [6-12] S. H. Chen et al., "ESD diodes in a bulk Si gate-all-around vertically stacked horizontal nanowire technology," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 35.4.1-35.4.4. doi: 10.1109/IEDM.2016.7838548 [6-13] T. Al-Ameri et al., "Performance of vertically stacked horizontal Si nanowires 117 transistors: A 3D Monte Carlo/2D Poisson Schrodinger simulation study," 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), Toulouse, 2016, pp. 1-2. doi: 10.1109/NMDC.2016.7777117 H. Mertens et al., "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2. doi: 10.1109/VLSIT.2016.7573416 [6-14] J. Hur et al., "Comprehensive Analysis of Gate-Induced Drain Leakage in Vertically Stacked Nanowire FETs: Inversion-Mode Versus Junctionless Mode," in IEEE Electron Device Letters, vol. 37, no. 5, pp. 541-544, May 2016. doi: 10.1109/LED.2016.2540645 118
|