帳號:guest(3.145.183.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):海德
作者(外文):Haider, Golam
論文名稱(中文):半導體奈米材料於新穎光電元件之設計、製作及特性
論文名稱(外文):Design, Fabrication and Characterization of Novel Optoelectronic Devices Based on Semiconductor Nanomaterials
指導教授(中文):陳永芳
陳福榮
指導教授(外文):Chen, Yang-Fang
Chen, Fu-Rong
口試委員(中文):張嘉升
謝馬利歐
朱治偉
王偉華
口試委員(外文):Chang, Chia-Seng
Hofmann, Mario
Chu, Chih-Wei
Wang, Wei-Hua
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011869
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:174
中文關鍵詞:奈米材料奈米材料光電元件光偵測計發光二極體雷射元件白光隨機雷射石墨烯鐵電材料金屬有機框架材料雙曲超穎材料上轉換奈米粒子
外文關鍵詞:NanomaterialsNanomaterialsOptoelectronic DevicesPhotodetectorLight Emitting DiodesLaser DevicesWhite Random LaserGrapheneFerroelectric MaterialsMetal-Organic FrameworksHyperbolic MetamaterialsUpconversion Nanoparticles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:137
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
為了克服能源危機、全球暖化、環境汙染等全球性的困難與挑戰,高性能光電元件的發展將電子與光電產業的領域趨勢提升下一個階段,這些光電元件的發展與突破也相對帶來了對新功能和應用的巨大需求。目前對高性能光電元件的突破已取得了不少進步,但對創造出商業的影響潛力仍需要許多努力,經由對多種材料組成的混合奈米結構做出適當的設計,可以得到擁有獨一無二的特性以及多功能性的元件,而這樣的突破是無法從單一材料組成元件中取得的。本篇論文的目的是致力於設計由多種材料組成的新穎光電元件,這些設計能夠應對上述種種全球性的挑戰,同時也在高性能光電元件的發展中踏出重要的一步。這些結果在本篇論文中被歸類為幾個子標題,並於以下總結。

光偵測器: 衍生於石磨烯和石墨烯量子點之透過電極化誘發的超高響應光偵測器

  在光傳輸系統中,光偵測器佔據重要的地位,在日常生活中也被廣泛應用,已經有很多人投入許多心力,致力於發展靈敏度高、反應速度快、微型化、低成本且對環境友善的光偵測器。在這一章中,我們將展示藉由高吸收率且取自於植物的石墨烯量子點(GQDs)、高導電率石磨烯以及永久極化壓電材料基板的整合,設計出能夠克服許多上述限制的光偵測器。在壓電基板給的電場作用下,石墨烯量子點中光生成的電荷會更傾向轉移到導電的石磨烯層上,這樣的設計元件,其光反應比起目前所知的光偵測器,能夠被增強至超過100倍,此外反應時間會縮短十倍。這個方法能夠輕鬆調控取自於植物的石墨烯量子點的特性,因此我們預期可由此設計,進一步發展出高靈敏度和寬光頻反應的綠色偵測器。

發光二極管(LED):在固有的金屬-有機結構中使用電驅動產生白光

由於其低功耗和更長的使用壽命,發光二極管(LED)已經成為傳統照明的替代品。時至今日,一般的白光LED(WLED)取決於含有稀土元素的磷光體的光子下轉換,這限制了其使用狀況,也提高了製造成本。考量到了環境問題,也為了避免過多能源的浪費,發展出直接WLED是必須,也是非常有挑戰性的事情。為了避免在製造一般WLED出現的困難,在這份報告中,我們設計並展示了由鍶基金屬有機結構{[Sr(ntca)(H2O)2]·H2O}n (1) 、石墨烯和無機半導體,可以產生明亮的白光。我們能成功實現電驅動白光LED,不只是因為合適的MOF結構設計,更是因為對於材料的正確使用,像是應用了石墨烯的獨特性質和MOF及半導體層之間恰當的能帶排列。因為將MOF作為活性材料的電致發光是非常罕見且有趣的,而且直接WLED也不常見,所以我們在這裡的成果對於固態照明領域的發展是非常有意義的。

石墨烯基光電元件:衍生於石墨烯基異質接面之狄拉克點所誘發的超低閥值雷射行為及巨大光電量子震盪

存在於狄拉克點附近有效質量為零的電子,被預期為科學研究及科技應用創造嶄新的典範,然而其相關發現卻相當有限。因此在本文中,我們研發了一個簡易三明治堆疊結構,將石墨烯量子點(GQDs)包覆於兩層石墨烯之中,此結構展現了許多前所未有的特點,包含:狄拉克點所誘發的超低閥值雷射行為、具有超窄頻譜負阻效應(NDR)的巨大峰谷比(PVR)以及電流跟發光強度的量子震盪行為。特別是只有12.4 nA/cm2的閾值是所有已報導電驅動雷射種類中的最低值,且超過100的波谷比值比起其他已報導的石墨烯基元件創下了最高紀錄。我們展示了所有這些新的現象,皆可以利用石墨烯量子點和石墨烯能帶結構的獨特性以及共振量子穿遂來得到良好的解釋。我們的發現不只可以擴展到其他奈米結構系統,還為了高效率發光二極體、雷射以及其他尚未實現之奈米電子應用的發展帶來一條嶄新的道路。

白光隨機雷射:一個具有高效率的白光隨機雷射之元件

多波長可見光雷射晶片擁有許多應用,像是超高亮度的固態照明,全彩顯示器,光通訊以及生物影像。然而,多波長可見光雷射晶片的研究上遇到許多挑戰,不管是材料需求又或是過於複雜的設計。在這篇文章裡,我們結合NaYF4:Yb/Er/Tm@NaYF4:Eu殼結構復合納米粒子以及Au/MoO3 超穎材料研發出設計簡單全溶液製成的高效率單晶白光隨機雷射模組。多波長的雷射光涵蓋紅色、綠色、以及藍色,可以大幅度的被特別設計超穎材料內高動量的波增強以及減少光子傳遞的損耗能量。藉由這樣的機制,上轉換的雷射光強可以大幅度增強50倍,以及雷射閾值會大幅度的下降。另外,不規則介質內自然產生的多重散射可以提供一個簡易的封閉回饋路徑讓高同調性的隨機雷射產生。實驗的結果同時也吻合模擬的預測 這樣簡單的設計不僅僅可以調變雷射顏色,還可以延伸到許多不同的材料上。再加上隨機雷射獨有的多方向雷射光束,我們的元件對於未來許多雷射的實際應用提供一個可靠的解決方案。
Electronic and optoelectronic industries are going through a major paradigm shift for the development of high performance optoelectronic devices to circumvent the global challenges such as, global energy crisis, global warming, environmental toxicity etc. These developments create a huge demand for new functionalities and applications. Progress has been made, but efforts to create a substantial commercial impact still remain. Hybrid nano composites consist of multi component materials with appropriate design can give rise unique properties and multi-functionalities which cannot be seen in a single component material. The objective of this thesis is devoted to design novel optoelectronic devices based on multicomponent materials that can address the global challenges creating an environmental footprint of high performance optoelectronic devices. The results are classified in to several sub-topics, which can be summarized as follows.

Photodetector: Electrical Polarization Induced Ultra-high Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots

Photodetector is a critical component in optical communication system that is omnipresent in our daily life. Great efforts have been devoted to the development of environmental-friendly photodetectors with high sensitivity, fast response, miniaturization and low cost. In this chapter, we show that many of these limitations can be overcome by integrating the high absorption efficiency of graphene quantum dot (GQD) produced from plants, the high conductivity of graphene, and the permanent polarization of piezoelectric substrate. With the assistance of the electric field provided by the piezoelectric substrate, the photogenerated charges in the GQD can be preferably transferred to the conductive graphene layer. It is found that the photoresponsivity of the device can be enhanced by more than 100 times and the response time is 10 times faster than the current photodetectors. With the ease of tunable properties of GQDs and their availability from plants, we expect our approach will contribute to the further development of green photodetectors with high sensitivity and wide spectral response.

Light Emitting Diode (LED): Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework

Light emitting diodes (LEDs) have drawn tremendous potential as a replacement of traditional lighting owing to its low power consumption and longer lifetime. Nowadays, the practical white light LEDs (WLED) are contingent on the photon down conversion of phosphors containing rare-earth elements, which limits its utility, energy and cost efficiency. In order to resolve the energy crisis and to address the environmental concerns, designing a direct WLED is highly desirable and remains a challenging issue. To circumvent the existing difficulties, in this report, we have designed and demonstrated a direct WLED consisting of a strontium-based metal-organic framework, {[Sr(ntca)(H2O)2]·H2O}n (1), graphene and inorganic semiconductors, which can generate a bright white light emission. In addition to the suitable design of a MOF structure, the demonstration of electrically driven white light emission based on a MOF is made possible by the combination of several factors including the unique properties of graphene and the appropriate band alignment between the MOF and semiconductor layer. Because electroluminescence using a MOF as an active material is very rare and intriguing and a direct WLED is also not commonly seen, our work here therefore represents a major discovery which should be very useful and timely for the development of solid state lighting.

All Graphene Based Optoelectronic Device: Dirac-point Induced Ultralow-threshold Laser Action and Giant Optoelectronic Quantum Oscillations Derived from all Graphene Based Heterojunctions

The occurrence of zero effective mass of electrons at the vicinity of the Dirac-point is expected to create new paradigms for scientific research and technological applications, but the related discoveries are rather limited. Here, we demonstrate that a simple architecture composed of graphene quantum dots (GQDs) sandwiched by two graphene layers can exhibit several unprecedented features, including the Dirac-point induced ultralow-threshold laser action, giant peak-to-valley ratio (PVR) with ultra-narrow spectra of negative differential resistance (NDR) and quantum oscillations of current as well as light emission intensity. In particular, the threshold of only 12.4 nA/cm2 is the lowest value ever reported in all kinds of electrically driven lasers, and the PVR value of more than 100 also sets the highest record compared with all reports on graphene based devices. We show that all these new phenomena can be interpreted well based on the unique properties of the band structure of GQD and graphene as well as resonant quantum tunneling. Our findings can be extended to other nano-structural systems and open a route for the development of highly efficient light emitting diodes, lasers and many not-yet-realized nano-electronic applications.

A Highly Efficient Single Segment White Random Laser

Production of multi-color or multiple wavelength lasers over the full visible-color spectrum from a single chip device has widespread applications, such as super-bright solid state lighting, color laser displays, light based version of Wi-Fi (Li-Fi), and bio-imaging etc. However, designing such lasing devices remains a challenging issue owing to the material requirements for producing multi-color emissions and sophisticated design for producing laser action. Here we demonstrate a simply design and highly-efficient single segment white random laser based on solution processed NaYF4:Yb/Er/Tm@NaYF4:Eu core-shell nanoparticles assisted by Au/MoO3 multilayer hyperbolic metamaterials. The multi-color lasing emitted from core-shell nanoparticles covering the red, green, and blue, simultaneously, can be greatly enhanced by the high-k modes with a suitable design of hyperbolic metamaterials, which enables to decrease the energy consumption of photon propagation. As a result, the energy upconversion emission is enhanced by ~ 50 times with a drastic reduction of lasing threshold. The multiple scatterings arising from the inherent nature of the disordered nanoparticle matrix provide a convenient way for the formation of closed feedback loops, which is beneficial for the coherent laser action. The experimental results were supported by the electromagnetic simulations derived from the finite-difference time-domain (FDTD) method. The approach shown here can greatly simplify the design of laser structures with color-tunable emissions, which can be extended to many other material systems. Together with the characteristics of angle free laser action, our device provides a promising solution towards the realization of many laser-based practical applications.
Chapter 1 : Introduction 1
1.1 Introduction to nanomaterials and nanotechnology 1
1.2 Quantum size effect 2
1.3 Introduction to two dimensional flatland: Graphene 5
1.2.1 Background of graphene and other carbon allotropes 5
1.3.2 Electrical properties of graphene 8
1.3.3 Optical properties of graphene 9
1.4 Mesoscopic few layer graphene is a light absorber: Graphene Quantum Dots 10
1.4.1 Optical property of graphene quantum dots: Optical absorption 10
1.4.2 Optical property of graphene quantum dots: Photoluminescence 12
1.5 Piezoelectric Material, Pb(Zr0.2Ti0.8)O3 (PZT) 13
1.6 Luminescent Metal Organic Frameworks 14
1.7 Lanthanide-doped upconversion nanocrystals 16
1.8 Hyperbolic metamaterials 19
1.9 Overview of the Dissertation 22
1.10 References 24
Chapter 2 : Theoretical Knowledge, Experimental Technique and Sample Preparation 39
2.1 Mechanisms of photodetection in graphene based photodetector 39
2.2 Photodetection process 40
2.2 Basic Mechanisms of Photoluminescence 41
2.4 Time resolved photoluminescence 43
2.5 Electroluminescence 45
2.5 Random Laser 47
2.6 Raman Spectroscopy 48
2.7 Graphene Growth 49
2.8 References 51
Chapter 3 : Electrical Polarization Induced Ultra-high Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots 56
3.1. Introduction 56
3.2. Results and discussion 57
3.2.1. Device structures and characteristics of component materials 57
3.2.2. Responsivity of device performance 60
3.2.3. Underlying mechanism for ultra-high responsivity 62
3.2.4. Photocurrent gain of device performance 64
3.2.5. Substrate dependent charge carrier transport in the composite device 64
3.2.6. Dynamic photoresponse and response time 69
3.3. Conclusions 71
3.4 Experimental Section 72
3.5 References 74
Chapter 4 : Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework 79
4.1 Introduction 79
4.2 Results and Discussions 82
4.2.1 Physical properties of Compound 1 82
4.2.2 Design of MOF based WLED 85
4.2.3 Electroluminescence emission and origin of white light 86
4.2.4 Operational mechanism of the device. 92
4.2.5 Thickness dependence of quantum efficiency and device stability 93
4.3 Conclusions 94
4.4 Materials and Methods 94
4.4.1 Synthesis of Compound 1 95
4.4.2 Graphene growth 95
4.4.3 ZnO nanoparticle (NP) synthesis 96
4.4.4 Device fabrication 97
4.4.5 Optoelectronic characterization of the device. 98
4.5 References 98
Chapter 5 : Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations derived from graphene based heterojunctions 108
5.1 Introduction 108
5.2 Results 109
5.2.1 Properties of the graphene quantum dots 109
5.2.2 Fabrication of graphene/GQDs/graphene heterostructure device. 111
5.2.3 Resonant quantum oscillations of current and giant negative differential resistance. 114
5.2.4 Theoretical Foundation 117
5.2.5 Quantum oscillations of electroluminescence intensity 119
5.2.6 Dirac-point induced ultralow-threshold laser action. 120
5.3 Discussion 127
5.4 Methods 128
5.4.1 Graphene growth. 128
5.4.2 GQD growth. 129
5.4.3 Device fabrication. 130
5.4.4 Optoelectronic characterization of the device. 131
5.4.5 Theoretical calculation. 131
5.5 References: 134
Chapter 6 : A Highly-Efficient Single Segment Random Laser 142
6.1 Introduction 142
6.2 Results and discussion 145
6.2.1 Synthesis of NaYF4:Yb/Er/Tm core 145
6.2.2 Synthesis of NaYF4:Yb/Er/Tm@NaYF4:Eu core-shell nanocrystals 146
6.2.3 Multilayers design of hyperbolic metamaterials 147
6.2.4 Device fabrication 148
6.2.5 Origin of upconversion white light 150
6.2.6 Upconversion ‘white laser’ 150
6.2.7 Hyperbolic metamaterial induced robust enhancement of photon-energy upconversion efficiency 152
6.2.8 Hyperbolic metamaterial assisted lasing phenomenon 154
6.3 Fundamental theory 156
6.4 Numerical simulation 157
6.5 Conclusion 160
6.6 Methods 161
6.6.1 Numerical simulation 161
6.6.2 Calculation of Maxwell-Garnett theory 162
6.7 References 163
Chapter 7 : Conclusion and Prospective 170
7.1 Conclusion 170
7.2 Prospective 173

Chapter 1

1. Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P., Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv., 5, 53381-53403 (2015).
2. Choudhary, N., Hwang, S., Choi, W. Carbon Nanomaterials: A Review. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds). Handbook of Nanomaterials Properties. Springer Berlin Heidelberg: Berlin, Heidelberg, , pp 709-769 (2014).
3. Lu, W., Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater., 6, 841-850 (2007).
4. Akinwande, D., Petrone, N., Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun., 5, 5678 (2014).
5. Aktaş B., Mikailzade F., Rameev B., Akdoğan N. Recent advances in nanomagnetism and spintronics. J. Magn. Magn. Mater., 373, 1 (2015).
6. Shinjo, T. Nanomagnetism and Spintronics. Elsevier: Amsterdam, p iv. , (2009).
7. Dan, G., Guoxin, X., Jianbin, L. Mechanical properties of nanoparticles: basics and applications. J. Phys. D: Appl. Phys., 47, 013001 (2014).
8. Flory, F., Escoubas, L., Berginc G. Optical properties of nanostructured materials: a review. Nanophotonics and Micro/Nano Optics International Conference-NANOP 2011, 5, 052502-052520. (2011)
9. Kumbhakar, P., Ray, S. S., Stepanov , A. L. Optical Properties of Nanoparticles and Nanocomposites. J Nanomater, 2014, 2 ( 2014).
10. Koole, R., Groeneveld, E., Vanmaekelbergh, D., Meijerink, A., de Mello Donegá C. Size Effects on Semiconductor Nanoparticles. In: de Mello Donegá C (ed). Nanoparticles: Workhorses of Nanoscience. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 13-51 (2014).
11. Donega, Cd. M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev, 40, 1512-1546 (2011).
12. Smith, A. M., Nie, S. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res., 43, 190-200 (2010).
13. Ekimov, A. I., Efros, A. L., Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid. State. Commun, 56, 921-924 (1985).
14. Tiwari, S. K., Kumar, V., Huczko, A., Oraon, R., Adhikari, A. D., Nayak, G. C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid. State. Mater. Sci., 41, 257-317 (2016).
15. Falcao, E. H. L., Wudl, F. Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol., 82, 524-531 (2007).
16. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., Smalley, R. E. C60: Buckminsterfullerene. Nature, 318, 162-163 (1985).
17. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D.R. Solid C60: a new form of carbon. Nature, 347, 354-358 (1990).
18. Iijima, S. Helical microtubules of graphitic carbon. Nature, 354, 56-58 (1991).
19. Bethune, D. S., Klang, C.H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607 (1993).
20. Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater, 6, 183-191 (2007).
21. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys., 81, 109-162 (2009).
22. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva I. V., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200 (2005).
23. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669 (2004).
24. Novoselov, K. S., McCann, E., Morozov, S. V., Fal/'ko, V. I., Katsnelson, M. I., Zeitler, U., et al. Unconventional quantum Hall effect and Berry/'s phase of 2[pi] in bilayer graphene. Nat. Phys., 2,177-180 (2006).
25. Katsnelson, M. I., Novoselov, K. S., Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Na.t Phys., 2, 620-625 (2006).
26. Jang, H., Park, Y. J., Chen, X., Das, T., Kim, M-S., Ahn, J-H. Graphene-Based Flexible and Stretchable Electronics. Adv. Mater., 28, 4184-4202 (2016).
27. Sun, D-M., Liu, C., Ren, W-C., Cheng, H-M. A Review of Carbon Nanotube- and Graphene-Based Flexible Thin-Film Transistors. Small, 9,1188-1205 (2013).
28. Kim, S. J., Choi, K., Lee, B., Kim, Y., Hong, B. H. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials. Ann. Rev. Mater. Res., 45, 63-84 (2015).
29. Ou, L., Song, B., Liang, H., Liu, J., Feng ,X., Deng, B., et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre. Toxicol, 13, 57 (2016).
30. Ema, M., Gamo, M,. Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Phar., 7-24 (2017).
31. Guo, X., Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal., 22, 105-115 (2014).
32. Schwierz, F. Graphene transistors. Nat. Nanotechnol., 5(7): 487-496 (2010).
33. Lin, Y-M., Valdes-Garcia, A., Han, S-J., Farmer, DB., Meric, I., Sun, Y., et al. Wafer-Scale Graphene Integrated Circuit. Science, 332, 1294-1297 (2011).
34. Xia, F., Mueller, T., Lin, Y-m., Valdes-Garcia, A., Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol., 4,839-843 (2009).
35. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T.J., Stauber, T., et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308-1308 (2008).
36. Falkovsky, L. A. Optical properties of graphene. J. Phys. Conf. Ser, 129, 012004 (2008).
37. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon., 4, 611-622 (2010).
38. Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J-J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5, 4015-4039 (2013).
39. Zhou, S., Xu, H., Gan, W., Yuan, Q. Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv., 6, 110775-110788 (2016).
40. Pan, D., Zhang, J., Li, Z., Wu, M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater., 22, 734-738 (2010).
41. Wang, Z., Yu, J., Zhang, X., Li, N., Liu, B., Li, Y., et al. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Appl. Mater. Interfaces, 8,1434-1439 (2016).
42. Roy, P., Periasamy, A.P., Chuang, C., Liou, Y-R., Chen, Y-F., Joly, J., et al. Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem, 38, 4946-4951 (2014).
43. Jin, Z., Owour, P., Lei, S., Ge, L. Graphene, graphene quantum dots and their applications in optoelectronics. Curr. Opin. Colloid Int. Sci., 20, 439-453(2015).
44. Li, X., Rui, M., Song, J., Shen, Z., Zeng, H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater., 25, 4929-4947 (2015).
45. Jiang, D., Chen, Y., Li, N., Li, W., Wang, Z., Zhu, J., et al. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study. PLOS ONE, 10(12): e0144906 (2016).
46. Wang, J., Cao, S., Ding, Y., Ma, F., Lu, W., Sun, M. Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots. Sci. Rep., 24850 (2016).
47. Jang, M-H., Song, SH., Ha, HD., Seo, TS., Jeon, S., Cho, Y-H. Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: An experimental evidence of localized sp2 carbon subdomain. Carbon, 118, 524-530 (2017).
48. Santiago, S. R. M., Lin, T. N., Yuan, C. T., Shen, J. L., Huang, H. Y., Lin, C. A. J. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Phys. Chem. Chem. Phys., 18, 22599-22605 (2016).
49. Wang, L., Zhu, S-J., Wang, H-Y., Qu, S-N., Zhang, Y-L., Zhang, J-H., et al. Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano, 8, 2541-2547 (2014).
50. Huang, P., Shi, J-j., Zhang, M., Jiang, X-h., Zhong, H-x., Ding, Y-m., et al. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure. J. Phys. Chem. Lett., 7, 2888-2892 (2016).
51. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res., 8, 355-381 (2015).
52. Gan, Z., Xiong, S., Wu, X., Xu, T., Zhu, X., Gan, X., et al. Mechanism of Photoluminescence from Chemically Derived Graphene Oxide: Role of Chemical Reduction. Adv. Opt. Mater., 1, 926-932 (2013).
53. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 50, 4738-4743 (2012).
54. Khaled, S. R., Sameoto, D., Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct, 23,033001(2014).
55. Tadigadapa, S., Mateti, K. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol., 20, 092001(2009).
56. Joshi, R. S., Singh H. Piezoelectric transducer based devices for development of a sustainable machining system - A review. 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials; 2011 24-27 July 2011; 2011. p. 1-4.
57. Dagdeviren, C., Joe, P., Tuzman, O. L., Park, K-I., Lee, K. J., Shi, Y., et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Lett., 9, 269-281(2016).
58. Wang ZL, Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312, 242-246 (2006).
59. Li, H., Tian, C., Deng, Z. D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. , 1, 041301 (2014).
60. Tan, W-C., Shih, W-H., Chen, Y. F. A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Adv. Funct. Mater., 24, 6818-6825 (2014).
61. Zheng, Y., Ni, G.-X., Toh, C.-T., Tan, C.-Y., Yao, K. Özyilmaz B. Graphene Field-Effect Transistors with Ferroelectric Gating. Phys. Rev. Lett., 105, 166602. (2010)
62. Hong, X., Hoffman, J., Posadas, A., Zou, K., Ahn, C. H., Zhu, J. Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3. Appl. Phys. Lett., 97, 033114 (2010).
63. Furukawa, H., Cordova, K. E., O’Keeffe, M., Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 6149 (2013)
64. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43, 6011-6061 (2014).
65. Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev., 253, 3042-3066 (2009).
66. Hu, Z., Deibert, B. J., Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43, 5815-5840 (2014).
67. Allendorf, M. D., Bauer, C. A., Bhakta, R. K., Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev., 38, 1330-1352 (2009).
68. Meek, S. T., Greathouse, J. A., Allendorf, M. D. Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater., 23, 249-267 (2011).
69. Chen, W., Wang, J.-Y., Chen, C., Yue, Q., Yuan, H.-M., Chen, J.-S., et al. Photoluminescent Metal−Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorg. Chem., 42, 944-946 (2003).
70. Haase, M., Schäfer, H. Upconverting Nanoparticles. Angew. Chem. Int. Ed., 50, 5808-5829 (2011).
71. Liu, X., Yan, C.-H., Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev., 44, 1299-1301 (2015).
72. Zhou, J., Liu, Q., Feng, W., Sun, Y., Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev., 115, 395-465 (2015).
73. Zhang, F. Upconversion Nanoparticles for Biosensing. Photon Upconversion Nanomaterials. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 255-284 (2015).
74. Sivakumar, S., van Veggel, F. C. J. M., Raudsepp, M. Bright White Light through Up-Conversion of a Single NIR Source from Sol−Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles. J. Am. Chem. Soc., 127, 12464-12465 (2005).
75. Zhang, C., Yang, L., Zhao, J., Liu, B., Han, M.-Y., Zhang, Z. White-Light Emission from an Integrated Upconversion Nanostructure: Toward Multicolor Displays Modulated by Laser Power. Angew. Chem. Int. Ed., 54, 11531-11535 (2015).
76. Bettinelli, M. Upconversion nanocrystals: Bright colours ahead. Nat. Nanotechnol. 10, 203-204 (2015).
77. Goldschmidt, J. C., Fischer, S. Upconversion for Photovoltaics – a Review of Materials, Devices and Concepts for Performance Enhancement. Adv. Opt. Mater. 3, 510-535 (2015).
78. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater., 10, 968-973 (2011).
79. Zhang, C., Zhou, H.-P., Liao, L.-Y., Feng, W., Sun, W., Li, Z.-X., et al. Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout. Adv. Mater., 22, 633-637 (2010).
80. Zhou, B., Shi, B., Jin, D., Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol., 10, 924-936 (2015).
81. Liu, Y., Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 40, 2494-2507 (2011).
82. Smith, D. R., Schurig, D. Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors. Phys. Rev. Lett., 90, 077405 (2003).
83. Soukoulis, C. M., Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon., 5, 523-530 (2011).
84. Biehs, S. A., Tschikin, M., Ben-Abdallah, P. Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field. Phys. Rev. Lett., 109, 104301 (2012).
85. Poddubny, A., Iorsh, I., Belov, P., Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948-957 (2013).
86. Leonhardt, U. Metamaterials: Towards invisibility in the visible. Nat. Mater., 8, 537-538 (2009).
87. Ishii, S., Kildishev, A. V., Narimanov, E., Shalaev, V. M., Drachev, V. P. Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser & Photon. Rev., 7, 265-271 (2013).
88. Smolyaninov, II, Hung, Y.-J., Davis, C. C. Magnifying Superlens in the Visible Frequency Range. Science, 315, 1699-1701 (2007).
89. Jacob, Z., Smolyaninov, II, Narimanov, E. E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett., 100, 181105 (2012).
90. Peters, E. C., Lee, E. J. H., Burghard, M., Kern, K. Gate dependent photocurrents at a graphene p-n junction. Appl. Phys. Lett., 97, 193102 (2010)
91. Rao, G., Freitag, M., Chiu, H.-Y., Sundaram, R. S., Avouris, P. Raman and Photocurrent Imaging of Electrical Stress-Induced p–n Junctions in Graphene. ACS Nano, 5(7): 5848-5854 (2011).
92. Lemme, M. C., Koppens, F. H. L., Falk, A. L., Rudner, M. S., Park, H., Levitov, L. S., et al. Gate-Activated Photoresponse in a Graphene p–n Junction. Nano Lett., 11, 4134-4137 (2011).
93. Freitag, M., Low, T., Xia, F., Avouris, P. Photoconductivity of biased graphene. Nat. Photon., 7, 53-59 (2013).
94. Winzer, T., Knorr, A., Malic, E. Carrier Multiplication in Graphene. Nano. Lett., 10, 4839-4843 (2010).
95. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys., 76(1): 1-24 (1994).
96. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F. P. G., et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 7, 363-368 (2012).
97. Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780-793 (2014).
98. Zhang, Y., Tan, Y.-W, Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201-204 (2005).
99. Geim, A. K. Graphene: Status and Prospects. Science, 324(5934): 1530-1534 (2009).
100. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 22, 3906-3924 (2010).
101. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed., 48, 7752-7777 (2009).
102. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308 (2008).
103. Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys., 8, 382-386 (2012).
104. Lu, M.-L., Lai, C.-W., Pan, H.-J., Chen, C.-T., Chou, P.-T., Chen, Y.-F. A Facile Integration of Zero- (I–III–VI Quantum Dots) and One- (Single SnO2 Nanowire) Dimensional Nanomaterials: Fabrication of a Nanocomposite Photodetector with Ultrahigh Gain and Wide Spectral Response. Nano Lett., 13, 1920-1927 (2013).
105. Cheng, S.-H., Weng, T.-M., Lu, M.-L., Tan, W.-C., Chen, J.-Y., Chen, Y.-F. All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 2013, 3.
106. Novak, B. M. Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers. Adv. Mater., 5, 422-433 (1993).
107. Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 9, 668-683 (2014).
108. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G. D., Bhardwaj, R., Chand, S. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices. J. Am. Chem. Soc., 133, 9960-9963 (2011).
109. Zhang, Z., Zhang, J., Chen, N., Qu, L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci., 5, 8869-8890 (2012).
110. Gattringer, F., Nader, M., Krommer, M., Irschik, H. Collocative PD control of circular plates with shaped piezoelectric actuators/sensors. J. Vib. Control., 9, 965-982 (2003).
111. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z. L. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett., 6, 2768-2772 (2006).
112. Hsieh, C.-Y., Lu, M.-L., Chen, J.-Y., Chen, Y.-T., Chen, Y.-F., Shih, W. Y., et al. Single ZnO nanowire–PZT optothermal field effect transistors. Nanotechnology, 23, 355201 (2012).
113. Hsieh. C.-Y., Chen, Y.-T., Tan, W.-J., Chen, Y.-F., Shih, W. Y., Shih, W.-H. Graphene-lead zirconate titanate optothermal field effect transistors. Appl. Phys. Lett., 100(11): 113507 (2012).
114. Sun, Z., Liu, Z., Li, J., Tai, G.-A., Lau, S.-P., Yan, F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv Mater, 24, 5878-5883 (2012).
115. Dang, V. Q., Trung, T. Q., Kim, D.-I., Duy, L.T., Hwang, B.-U., Lee, D.-W., et al. Ultrahigh Responsivity in Graphene–ZnO Nanorod Hybrid UV Photodetector. Small 11, 3054–3065 (2015)
116. Kim, C. O., Hwang, S. W., Kim, S., Shin, D. H., Kang, S. S., Kim, J. M., et al. High-performance graphene-quantum-dot photodetectors. Sci. Rep., 4. 5603 (2014)
117. Lee, Y., Kwon, J., Hwang, E., Ra, C. H., Yoo, W. J., Ahn, J. H., et al. High-Performance Perovskite-Graphene Hybrid Photodetector. Adv. Mater., 27, 41-46 (2015).
118. Withers, F., Bointon, T. H., Craciun, M. F., Russo, S. All-Graphene Photodetectors. ACS Nano, 7, 5052-5057 (2013).
119. Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., et al. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano, 6, 5102-5110 (2012).
120. Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett., 12, 844-849 (2012).
121. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett., 97, 187401 (2006).
122. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., et al. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett., 7, 238-242 (2007).
123. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett., 9(1): 30-35 (2009).
124. Yu, Y.-J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., Kim, P. Tuning the Graphene Work Function by Electric Field Effect. Nano Let., 9(10): 3430-3434 (2009).
125. Lu, M.-L., Weng, T.-M., Chen, J.-Y., Chen, Y.-F. Ultrahigh-gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Mater., 4, e26 (2012).
126. Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., et al. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater., 23(6): 776-780 (2011).
127. Chitara, B., Panchakarla, L. S., Krupanidhi, S. B., Rao, C. N. R. Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons. Adv. Mater., 23, 5419-5424 (2011).
128. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314 (2009).

Chapter 2

1. Peters, E. C., Lee, E. J. H, Burghard, M., Kern, K. Gate dependent photocurrents at a graphene p-n junction. Appl. Phys. Lett., 97, 193102 (2010).
2. Rao, G., Freitag, M., Chiu, H.-Y., Sundaram, R. S., Avouris, P. Raman and Photocurrent Imaging of Electrical Stress-Induced p–n Junctions in Graphene. ACS Nano, 5(7): 5848-5854 (2011).
3. Lemme, M. C., Koppens, F. H. L., Falk, A. L., Rudner, M. S., Park, H., Levitov, L. S., et al. Gate-Activated Photoresponse in a Graphene p–n Junction. Nano Lett., 11, 4134-4137 (2011)
4. Freitag, M., Low, T., Xia, F., Avouris, P. Photoconductivity of biased graphene. Nat. Photonics, 7, 53-59 (2013).
5. Winzer, T., Knorr, A., Malic, E. Carrier Multiplication in Graphene. Nano Lett., 10, 4839-4843 (2010).
6. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys., 76, 1-24 (1994).
7. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F. P. G., et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 7(6): 363-368 (2012).

8. Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793 (2014).
9. Nevin, A., Cesaratto, A., Bellei, S., Andrea, C., Toniolo, L., et al. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation. Sensors, 14, 6338 (2014).
10. Romani, A., Clementi, C., Miliani, C., Brunetti, B. G., Sgamellotti, A., Favaro, G. Portable Equipment for Luminescence Lifetime Measurements on Surfaces. Appl. Spectrosc., 62, 1395-1399 (2008).
11. Lakowicz, J. R. Principles of fluorescence spectroscopy. Second edition. New York : Kluwer Academic/Plenum, [1999]
12. Nevin, A., Spoto, G., Anglos, D. Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl. Phys. A, 106, 339-361 (2012).
13. Strock, L. W. Electroluminescence. IEEE Spectr., 1, 68-83 (1964).
14. Degenhardt, H. Principles and applications of electroluminescence. Sci. Nat., 63, 544-549 (1976)
15. Schubert, E. F., Gessmann, T., Kim, J. K. Light Emitting Diodes. Kirk-Othmer Encyclopedia Chem. Technol. John Wiley & Sons, Inc., (2000).
16. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys., 4 359-367 2008).

17. Genack, A. Z., Drake, J. M. Scattering for super-radiation. Nature, 368(6470): 400-401 (1994).
18. Luan, F., Gu, B., Gomes, A. S. L., Yong, K.-T., Wen, S., Prasad, P. N. Lasing in nanocomposite random media. Nano Today, 10, 168-192 (2015).
19. Hui, C. Review on latest developments in random lasers with coherent feedback. J. Phys. A: Math. Gen., 38, 10497 (2005).
20. Redding, B., Choma, M. A., Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photononics., 6, 355-359 (2012).
21. Sun, T.-M., Wang, C.-S., Liao, C.-S., Lin, S-.Y., Perumal, P., Chiang, C.-W., et al. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano, 9(12): 12436-12441 (2015).
22. Liao, Y.-M., Lai, Y.-C., Perumal, P., Liao, W.-C., Chang, C.-Y., Liao, C.-S., et al. Highly Stretchable Label-like Random Laser on Universal Substrates. Adv. Mater. Technol., 1, 1600068 (2016)
23. Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater., 6, 183-191 (2007).
24. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669 (2004).
25. Deokar, G., Avila, J., Razado-Colambo, I., Codron, J. L., Boyaval, C., Galopin, E., et al. Towards high quality CVD graphene growth and transfer. Carbon, 89: 82-92 (2015).
26. Liang, X., Sperling, B. A,, Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., et al. Toward Clean and Crackless Transfer of Graphene. ACS Nano, 5, 9144-9153 (2011).
27. Hsieh, Y.-P., Shih, C.-H., Chiu, Y.-J., Hofmann, M. High-Throughput Graphene Synthesis in Gapless Stacks. Chem. Mater., 28, 40-43 (2016).
28. Strudwick, A. J., Weber, N. E., Schwab, M. G., Kettner, M., Weitz, R.T., Wünsch, J. R., et al. Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres. ACS Nano, 9, 31-42 (2015).

Chapter 3

1 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666 (2004).
2 Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005).
3 Geim, A.K. Graphene: Status and Prospects. Science, 324, 1530 (2009).
4 Geim, A.K., Novoselov, K.S. The rise of graphene. Nat. Mater., 6, 183 (2007).
5 Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater., 22, 3906 (2010).
6 Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed., 48, 7752 (2009).
7 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).
8 Nair, R.R., Blake, P., Grigorenko, A.N, Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 320, 1308 (2008).
9 Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., LeRoy, B.J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382 (2012)
10 Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.L. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nano. 7, 363. (2012)
11 Lu, M.- L., Lai, C.-W., Pan, H.- J., Chen, C. -T., Chou, P.-T., Chen, Y.-F. A Facile Integration of Zero- (I–III–VI Quantum Dots) and One- (Single SnO2 Nanowire) Dimensional Nanomaterials: Fabrication of a Nanocomposite Photodetector with Ultrahigh Gain and Wide Spectral Response. Nano Lett. 13, 1920. (2013).
12 Cheng, S.-H., Weng, T.-M., Lu, M.-L., Tan, W.-C., Chen, J.-Y., Chen, Y.-F. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 3, 2694 (2013).
13 Novak, B.M. Adv. Mater. Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers. 5, 422. (1993)
14 Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 9, 668 (2014).
15 Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., Chand, S. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices. J. Am. Chem. Soc., 133, 9960 (2011).
16 Zhang, Z., Zhang, J., Chen, N., Qu, L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci., 5, 8869 (2012).
17 Roy, P., Periasamy, A.P., Chuang, C., Liou, Y.-R., Chen, Y.-F., Joly, J., Liang C.-T., Chang, H.-T. Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem., 38, 4946 (2014).
18 Wang, Z.L., Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312, 242 (2006).
19 Gattringer, F., Nader, M., Krommer, M., Irschik, H. Collocative PD Control of Circular Plates with Shaped Piezoelectric Actuators/Sensors. J. Vib. Control, 9, 965 (2003).
20 Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett, 6, 2768. (2006).
21 Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photon., 4, 611 (2010).
22 Hsieh, C.-Y., Lu, M.-L., Chen, J.-Y., Chen, Y.-T., Chen, Y.-F., Shih, W.Y., Shih, W.-H. Single ZnO nanowire–PZT optothermal field effect transistors Nanotechnology, 23, 355201 (2012).
23 Hsieh, C.-Y., Chen, Y.-T., Tan, W.-J., Chen, Y.-F., Shih, W.Y., Shih, W.-H. Graphene-lead zirconate titanate optothermal field effect transistors. Appl. Phys. Lett., 100, 113507 (2012).
24 W.-C. Tan, W.-H. Shih, Y.F. Chen, A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Adv. Funct. Mater., 24, 6818 (2014).
25 Z. Sun, Z. Liu, J. Li, G.-a. Tai, S.-P. Lau, F. Yan, Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Adv. Mater., 24, 5878 (2012).
26 V.Q. Dang, T.Q. Trung, D.-I. Kim, L.T. Duy, B.-U. Hwang, D.-W. Lee, B.-Y. Kim, L.D. Toan, N.-E. Lee, Ultrahigh Responsivity in Graphene–ZnO Nanorod Hybrid UV Photodetector. Small, 25, 3054 (2015)
27 Kim, C.O., Hwang, S.W., Kim, S., Shin, D.H., Kang, S.S., Kim, J.M., Jang, C.W., Kim, J.H., Lee, K.W., Choi, S.-H., Hwang, E. High-performance graphene-quantum-dot photodetectors. Sci. Rep., 4, 5603 (2014).
28 Lee, Y., Kwon, J., Hwang, E., Ra, C.H., Yoo, W.J., Ahn, J.H., Park, J.H., Cho, J.H. High-Performance Perovskite–Graphene Hybrid Photodetector. Adv. Mater., 27, 41 (2015).
29 Withers, F., Bointon, T.H., Craciun, M.F., Russo, S. All-Graphene Photodetectors ACS Nano, 7, 5052 (2013).
30 Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K.S., Luk, C.M., Zeng, S., Hao, J., Lau, S.P. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano, 6, 5102 (2012).
31 Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L.B., Zhan, X., Gao, G., Vithayathil, S.A., Kaipparettu, B.A., Marti, A.A., Hayashi, T., Zhu, J.-J., Ajayan, P.M. Graphene Quantum Dots Derived from Carbon Fibers Nano Lett., 12, 844 (2012).
32 Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 87401 (2006).
33 Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., Wirtz, L. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett., 7, 238 (2007).

Chapter 4

1. Shuji, N.; Masayuki, S.; Naruhito, I.; Shin-ichi, N. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys., 34, L797 (1995).
2. Shuji, N.; Masayuki, S.; Takashi, M. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys., 32, L8 (1993).
3. Takashi, M.; Motokazu, Y.; Shuji, N. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes. Jpn. J. Appl. Phys., 38, 3976 (1999).
4. Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J. Carlson RO. Coherent Light Emission From GaAs Junctions. Phys. Rev. Lett., 9, 366-368 (1962).
5. Holonyak, N.; Bevacqua, S. F. Coherent (Visible) Light Emission from Ga(As1−xPx) Junctions. Appl. Phys. Lett., 1, 82-83 (1962).
6. Horiuchi, N. Light-Emitting Diodes: Natural White Light. Nat. Photonics, 4, 738-738 (2010).
7. Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes: Status and Perspective. Rev. Mod. Phys., 85, 1245-1293 (2013).
8. Sheu, J. K.; Chang, S. J.; Kuo, C. H.; Su, Y. K.; Wu, L. W.; Lin, Y. C.; Lai, W. C.; Tsai, J. M.; Chi, G. C.; Wu, R. K. White-Light Emission from Near UV InGaN-GaN LED Chip Precoated with Blue/Green/Red Phosphors. IEEE Photonics Technol. Lett., 15, 18-20 (2003).
9. Mueller-Mach, R.; Mueller, G.; Krames, M. R.; Höppe, H. A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P. Highly Efficient All-Nitride Phosphor-Converted White Light Emitting Diode. Phys. Status Solidi A, 202, 1727-1732 (2005).
10. Wang, Y.; Wang, Y.; Chi, N.; Yu, J.; Shang, H. Demonstration of 575-Mb/s Downlink and 225-Mb/s Uplink Bi-Directional SCM-WDM Visible Light Communication Using RGB LED and Phosphor-Based LED. Opt. Express, 21, 1203-1208 (2013).
11. Luo, H.; Kim, J. K.; Schubert, E. F.; Cho, J.; Sone, C.; Park, Y. Analysis of High-Power Packages for Phosphor-Based White-Light-Emitting Diodes. Appl. Phys. Lett., 86, 243505 (2005).
12. Tran, N. T.; Shi, F. G. Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes. J. Lightwave Technol., 26, 3556-3559 (2008).
13. Weber, M. D.; Niklaus, L.; Pröschel. M.; Coto, P. B.; Sonnewald, U.; Costa, R. D. Bioinspired Hybrid White Light-Emitting Diodes. Adv. Mater., 27, 5493-5498 (2015).
14. Shang, Y. M.; Wang, G. S.; Sliney, D.; Yang, C. H.; Lee, L. L. White Light-Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model. Environ. Health Perspect., 122, 269-276 (2014).
15. Kido, J.; Kimura, M.; Nagai, K. Multilayer White Light-Emitting Organic Electroluminescent Device. Science, 267, 1332-1334 (1995).
16. D'Andrade, B. W.; Forrest, S. R. White Organic Light-Emitting Devices for Solid-State Lighting. Adv. Mater., 16, 1585-1595 (2004).
17. Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. -S.; Yi, Y.; Angadi, B.; Lee, C. -L.; Choi, W. K. Emissive ZnO-Graphene Quantum Dots for White-Light-Emitting Diodes. Nat. Nanotechnol., 7, 465-471 (2012).
18. Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater., 14, 454-458 (2015).
19. Wang, C.; Liu, D.; Lin, W. Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. J. Am. Chem. Soc., 135, 13222-13234 (2013).
20. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 1230444 (2013).
21. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc., 127, 1504-1518 (2005).
22. Li, J. -R.; Kuppler, R. J.; Zhou, H. -C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1477-1504 (2009).
23. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev., 112, 1105-1125 (2012).
24. Chang, Z.; Yang, D. -H. Xu, J.; Hu, T. -L.; Bu, X. -H. Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Adv. Mater., 27, 5432-541 (2015).
25. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater., 23, 249-267 (2011).
26. Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-Based Electronic and Opto-Electronic Devices. Chem. Soc. Rev., 43, 5994-6010 (2014).
27. Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent Progress in Metal-Organic Complexes for Optoelectronic Applications. Chem. Soc. Rev., 43, 3259-3302 (2014).
28. Vaughan, O. Metal-Organic Frameworks: A Conductive Guest. Nat. Nanotechnol. 2014.
29. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; Gabaly, F. E.; Yoon, H. P.; Léonard, F.; Allendorf, M. D. Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 66-69 (2014).
30. Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. MOFs as Proton Conductors - Challenges and Opportunities. Chem. Soc. Rev., 43, 5913-5932 (2014).
31. He, H.; Sun, F.; Borjigin, T.; Zhao, N.; Zhu, G. Tunable Colors and White-Light Emission Based on a Microporous Luminescent Zn(ii)-MOF. Dalton Trans., 43, 3716-3721 (2014).
32. Liu. K.; You, H.; Zheng, Y.; Jia, G.; Huang, Y.; Yang, M.; Song, Y.; Zhang, L.; Zhang, H. Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission. Cryst. Growth Des., 10, 16-19 (2010).
33. Liu, Y.; Pan, M.; Yang, Q.-Y., Fu, L.; Li, K.; Wei, S.-C.; Su, C.-Y. Dual-Emission from a Single-Phase Eu–Ag Metal–Organic Framework: An Alternative Way to Get White-Light Phosphor. Chem. Mater., 24 1954-1960 (2012).
34. Rao, X.; Huang, Q.; Yang, X.; Cui, Y.; Yang, Y.; Wu, C.; Chen, B.; Qian, G. Color Tunable and White Light Emitting Tb3+ and Eu3+ Doped Lanthanide Metal-Organic Framework Materials. J. Mater. Chem., 22, 3210-3214 (2012).
35. Huang, Y. -T.; Lai, Y. -C.; Wang, S. -L. Intrinsic Green Phosphor Containing a {Y5O22} Pentamer Unit and a Carbonate Ligand Generated in Situ from Squaric Acid. Chem. - Eur. J., 18, 8614-8616 (2012).
36. Li, S. -M.; Zheng, X. -J.; Yuan, D. -Q.; Ablet, A.; Jin, L. -P. In Situ Formed White-Light-Emitting Lanthanide–Zinc–Organic Frameworks. Inorg. Chem., 51, 1201-1203 (2012).
37. Sun, C. -Y.; Wang, X. -L.; Zhang, X.; Qin, C.; Li, P.; Su, Z. -M.; Zhu, D. -X.; Shan, G. -G.; Shao, K. -Z.; Wu, H.; Li, J. Efficient and Tunable White-Light Emission of Metal–Organic Frameworks by Iridium-Complex Encapsulation. Nat. Commun., 4, 2717 (2013).
38. Xie, W.; Zhang, S. -R.; Du, D. -Y.; Qin, J. -S.; Bao, S. -J.; Li, J.; Su, Z. M.; He, W. W.; Fu, Q.; Lan, Y. Q. Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln3+ Ions for White-Light Emission and To Detect Nitroaromatic Explosives. Inorg. Chem., 54, 3290-3296 (2015).
39. Yang, Q.-Y.; Wu, K.; Jiang, J.-J.; Hsu, C.-W.; Pan, M.; Lehn, J.-M.; Su, C.-Y. Pure White-Light and Yellow-to-Blue Emission Tuning in Single Crystals of Dy(iii) Metal-Organic Frameworks. Chem. Commun., 50, 7702-7704 (2014).
40 Pan, M.; Yan, C.; Chen, L.; Zhang, L.-Y.; Yin, S.-Y.; Zhu, Y.-X.; Wu, K; Hou, Y. J.; Su, C.-Y. Photoluminescence and White-Light Emission in Two Series of Heteronuclear Pb(ii)-Ln(iii) Complexes. New J. Chem., 39, 3770-3776 (2015).
41. Wang, M. -S.; Guo, S. -P.; Li, Y.; Cai, L. -Z.; Zou, J. -P.; Xu, G.; Zhou, W. -W.; Zheng, F. -K.; Guo, G. -C. A Direct White-Light-Emitting Metal−Organic Framework with Tunable Yellow-to-White Photoluminescence by Variation of Excitation Light. J. Am. Chem. Soc., 131, 13572-13573 (2009).
42. Du, B. -B.; Zhu, Y. -X.; Pan, M.; Yue, M. -Q.; Hou, Y. -J.; Wu, K.; Zhang, L. -Y.; Chen, L.; Yin, S. Y.; Fan, Y. -N.; Su, C. -Y. Direct White-Light and a Dual-Channel Barcode Module from Pr(iii)-MOF Crystals. Chem. Commun., 51, 12533-12536 (2015).
43 Sava, D. F.; Rohwer, L. E. S.; Rodriguez, M. A.; Nenoff, T. M. Intrinsic Broad-Band White-Light Emission by a Tuned, Corrugated Metal–Organic Framework. J. Am. Chem. Soc., 134, 3983-3986 (2012).
44. Falcaro, P.; Furukawa, S. Doping Light Emitters into Metal–Organic Frameworks. Angew. Chem., Int. Ed., 51, 8431-8433 (2012).
45. Sava Gallis, D. F.; Rohwer, L. E. S.; Rodriguez, M. A.; Nenoff, T. M. Efficient Photoluminescence via Metal–Ligand Alteration in a New MOFs Family. Chem. Mater., 26, 2943-2951 (2014).
46. Sansonetti, J. E.; Nave, G. Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (SrI). J. Phys. Chem. Ref. Data, 39, 033103 (2010).
47. Porsev, S. G.; Ludlow, A. D.; Boyd, M. M.; Ye, J. Determination of Sr Properties for a High-Accuracy Optical Clock. Phys. Rev. A, 78, 032508 (2008).
48. Westergaard, P. G.; Lodewyck, J.; Lorini, L.; Lecallier, A.; Burt, E. A.; Zawada, M.; Millo, J.; Lemonde, P. Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10-17 Level. Phys. Rev. Lett., 106, 210801 (2011).
49. Le Targat, R.; Lorini, L.; Le Coq, Y.; Zawada, M.; Guéna, J.; Abgrall, M.; Gurov, M.; Rosenbusch, P.; Rovera, D. G.; Nagórny, B.; Gartman, R.; Westergaard, P. G.; Tobar, M. E.; Lours, M.; Santarelli, G.; Clairon, A.; Bize, S.; Laurent, P.; Lemonde, P.; Lodewyck, J. Experimental Realization of an Optical Second with Strontium Lattice Clocks. Nat. Commun., 4, 2109 (2013).
50. Bloom, B. J.; Nicholson, T. L.; Williams, J. R.; Campbell, S. L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S. L.; Ye, J. An Optical Lattice Clock with Accuracy and Stability at the 10-18 Level. Nature, 506, 71-75 (2014).
51. Boyd, M. M.; Ludlow, A. D.; Blatt, S.; Foreman, S. M.; Ido, T.; Zelevinsky, T.; Ye, J. 87Sr Lattice Clock with Inaccuracy below 10-15. Phys. Rev. Lett., 98, 083002 (2007).
52. Souraya, G. -S.; Haci, O.; Engin, D.; Mohammed Benali, K. Ab initio Investigations of the Strontium Gallium Nitride Ternaries Sr3GaN3 and Sr6GaN5 : Promising Materials for Optoelectronic. Semicond. Sci. Technol., 28, 085005 (2013).
53. Sisson, A. L.; Sakai, N.; Banerji, N.; Fürstenberg, A.; Vauthey, E.; Matile, S. Zipper Assembly of Vectorial Rigid-Rod π-Stack Architectures with Red and Blue Naphthalenediimides: Toward Supramolecular Cascade n/p-Heterojunctions. Angew. Chem. Int. Ed., 47, 3727-3729 (2008).
54. Asthana, D.; Ajayakumar, M. R.; Pant, R. P.; Mukhopadhyay, P. NTCDA-TTF First Axial Fusion: Emergent Panchromatic, NIR Optical, Multi-State Redox and High Optical Contrast Photooxidation. Chem. Commun., 48, 6475-6477 (2012).
55. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater., 6, 183-191 (2007).
56. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320, 1308 (2008).
57. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics, 4, 611-622 (2010).
58. Usman, M.; Haider, G.; Mendiratta, S.; Luo, T. -T.; Chen, Y. -F.; Lu, K. -L., Continuous Broadband Emission from a Metal-Mrganic Framework as a Human-Friendly White Light Source. J. Mater. Chem. C, 4, 4728-4732 (2016).
59. Pantoş, G. D.; Pengo, P.; Sanders, J. K. M. Hydrogen-Bonded Helical Organic Nanotubes. Angew. Chem. Int. Ed., 46, 194-197 (2007).

60. Sun, L.; Campbell, M. G.; Dincă, M. Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed., 55, 3566-3579 (2016).
61. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 336, 1018-1023 (2012).
62. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1330-1352 (2009).
63. Wei, Y.; Yu, Y.; Wu, K. Highly Stable Five-Coordinated Mn(II) Polymer [Mn(Hbidc)]n (Hbidc=1H-Benzimidazole-5,6-dicarboxylate): Crystal Structure, Antiferromegnetic Property, and Strong Long-Lived Luminescence. Cryst. Growth Des., 8, 2087-2089 (2008).
64. Chen, Z. -F.; Xiong, R. -G.; Zhang, J.; Chen, X. -T.; Xue, Z. -L.; You, X. -Z. 2D Molecular Square Grid with Strong Blue Fluorescent Emission:  A Complex of Norfloxacin with Zinc(II). Inorg. Chem., 40, 4075-4077 (2001).
65. Chisholm, M. H.; Brown-Xu, S. E.; Spilker, T. F.; Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten. Acc. Chem. Res., 48, 877-885 (2015).
66. Bergkamp, M. A.; Guetlich, P.; Netzel, T. L.; Sutin, N. Lifetimes of the Ligand-to-Metal Charge-Transfer Excited States of Iron(III) and Osmium(III) Polypyridine Complexes. Effects of Isotopic Substitution and Temperature. J. Phys. Chem., 87, 3877-3883 (1983).
67. Hsieh, Y. -P.; Hofmann, M.; Chang, K. -W.; Jhu, J. G.; Li, Y. -Y.; Chen, K.Y.; Yang, C. -C.; Chang, W. -S.; Chen, L. -C. Complete Corrosion Inhibition through Graphene Defect Passivation. ACS Nano, 8, 443-448 (2014).
68. Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater., 10, 569-581 (2011).
69. Li. X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Richard Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Luigi Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314 (2009).
70. Haider, G.; Roy, P.; Chiang, C. -W.; Tan, W. -C.; Liou, Y. -R.; Chang, H. -T.; Liang, C. -T.; Shih, W. -H.; Chen Y. -F. Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater., 26, 620-628 (2016).
71. Yang, T.; Cai, W.; Qin, D.; Wang, E.; Lan, L.; Gong, X.; Peng, J.; Cao, Y. Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. J. Phys. Chem. C, 114, 6849-6853 (2010).

Chapter 5

1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).
2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Nat. Acad. Sci. U. S. A. 102, 10451-10453 (2005).
3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009).
4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
5. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
6. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407-470 (2011).
7. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611-622 (2010).
8. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810 (2015).
9. Schwierz, F. Graphene transistors. Nat. Nano. 5, 487-496 (2010).
10. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192-200 (2012).
11. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328-330 (2011).
12. Pan, D., Zhang, J., Li, Z., & Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734-738 (2010).
13. Lingam, K., Podila, R., Qian, H., Serkiz, S. & Rao, A. M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater. 23, 5062-5065 (2013).
14. Zhang, Z., Zhang, J., Chen, N. & Qu, L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869-8890 (2012).
15. Haider, G. et al. Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv. Funct. Mater. 26, 620-628 (2016).
16. Peng, J. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844-849 (2012).
17. Weiler, M. et al. Unusual behavior in the first excited state lifetime of catechol. J. Phys. Chem. Lett. 4, 3819-3823 (2013).
18. Tang, L. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102-5110 (2012).
19. Li, Y. et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776-780 (2011).
20. Li, Y. et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15-18 (2012).
21. Zhu, S. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Comm. 47, 6858-6860 (2011).
22. Liu, R., Wu, D., Feng, X. & Müllen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221-15223 (2011).
23. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R. & Chand, S. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960-9963 (2011).
24. Kim, S. et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano 6, 8203-8208 (2012).
25. Tetsuka, H. et al. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333-5338 (2012).
26. Roy, P. et al. Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem. 38, 4946-4951 (2014).
27. Wang, L. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8, 2541-2547 (2014).
28. Gan, Z. et al. Mechanism of Photoluminescence from Chemically Derived Graphene Oxide: Role of Chemical Reduction. Adv. Opt. Mater., 1, 926-932 (2013).
29. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J. & Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res., 8, 355-381 (2015).
30. Gan, Z., Xu, H. & Hao, Y. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 8, 7794-7807 (2016).
31. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2. Phys. Rev. B 79, 205411 (2009).
32. Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).
33. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano. Lett. 11, 2291-2295 (2011).
34. Suk, J. W. et al., Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano. Lett. 13, 1462-1467 (2013).
35. Capasso, F., Mohammed, K. & Cho, A. Y. Electronic Structure of Semiconductor Heterojunctions, G. Margaritondo, Ed. (Springer Netherlands, Dordrecht, 1988), pp. 99-115.
36. Kim, S. et al. Graphene p–n vertical tunneling diodes. ACS Nano. 7, 5168-5174 (2013).
37. Kim, C. O. et al. High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nat. Commun. 5, 3249 (2014).
38. Kim, C. O. et al. High-performance graphene-quantum-dot photodetectors. Sci. Rep. 4, 5603 (2014).
39. Chang, L. L., Esaki, L. & Tsu, R. Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett., 24, 593-595 (1974).
40. Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).
41. Yu, Y. -J. et al. Tuning the graphene work function by electric field effect. Nano. Lett. 9, 3430-3434 (2009).
42. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
43. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950 (2012).
44. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Nat. Acad. Sci. 104, 18392-18397 (2007).
45. Berthod, C. & Giamarchi, T. Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011).
46. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144-148 (2008).
47. Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H. & Chang, R. P. H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett., 82, 2278-2281 (1999).
48. Williams, G. R., Bayram, S. B., Rand, S. C., Hinklin, T., & Laine, R. M. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys. Rev. A, 65, 013807 (2001).
49. Leong, E. S. P. & Yu, S. F. UV Random Lasing Action in p-SiC(4H)/i-ZnO–SiO2 Nanocomposite/n-ZnO:Al Heterojunction Diodes. Adv. Mater., 18, 1685-1688 (2006).
50. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J. & Carlson, R. O. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366-368 (1962).
51. Holonyak, N. & Bevacqua, S. F. Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett. 1, 82-83 (1962).
52. Nakwaski, W. & Sarzał, R. P. Comprehensive and fully self-consistent modeling of modern semiconductor lasers. J. Semicond. 37, 024001 (2016).
53. Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photon. 5, 297-300 (2011).
54. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589-594 (2007).
55. Reitzenstein, S. et al. Low threshold electrically pumped quantum dot-micropillar lasers. Appl. Phys. Lett. 93, 061104 (2008).
56. Johnson, J. C., Choi, H. –J., Knutsen, K. P., Schaller, R. D., Yang, P., Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 1, 106-110 (2002).
57. Zhu, H. et al. Ultralow-threshold laser realized in zinc oxide. Adv. Mater. 21, 1613-1617 (2009).
58. Rieck, H. The effective lifetime of stimulated and spontaneous emission in semiconductor laser diodes. Solid-State Electron. 8, 83-85 (1965).
59. Usachov, D. et al. Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401-5407 (2011).
60. Colin, W. Handbook of Laser Technology and Applications (Taylor & Francis, 2003).
61. Smith, R. A. Stimulated emission of radiation and its practical application to masers and lasers. Nature 194, 426-430 (1962).
62. Byer, R. L. Diode laser—pumped solid-state lasers. Science 239, 742-747 (1988).
63. Dixon, R. H. & Elton, R. C. Resonance charge transfer and population inversion following C5+ and C6+ interactions with carbon atoms in a laser-generated plasma. Phys. Rev. Lett. 38, 1072-1075 (1977).
64. Hide, F. et al. Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833-1836 (1996).
65. Fu, A. & Yang, P. Organic-inorganic perovskites: lower threshold for nanowire lasers. Nat. Mater. 14, 557-558 (2015).
66. Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).
67. Samuel, I. D. W. Laser physics: fantastic plastic. Nature 429, 709-711 (2004).
68. Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151-162 (2015).
69. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314 (2009).
70. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574-578 (2010).

Chapter 6


1. Wierer, J. J., Tsao, J. Y., Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev., 7, 963-993 (2013)
2. Haitz, R., Tsao, J. Y. Solid-state lighting: ‘The case’ 10 years after and future prospects. phys. status solidi (a), 208, 17-29 (2011).
3. Krames, M. R., Shchekin, O. B., Mueller-Mach, R., Mueller, G. O., Zhou, L., Harbers, G., et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. J. Display Technol., 3 160-175 (2007).
4. Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D., Ning, C. Z. A monolithic white laser. Nat. Nanotechnol., 10, 796-803 (2015).
5. Qian, F., Li, Y., Gradecak, S., Park, H.-G., Dong, Y., Ding. Y., et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater., 7, 701-706 (2008).
6. Dang, C., Lee, J., Breen, C., Steckel, J. S., Coe-Sullivan, S., Nurmikko, A. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol., 7, 335-339 (2012).
7. Hu, X. P., Zhao, G., Yan, Z., Wang, X., Gao, Z. D., Liu, H., et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett., 33, 408-410 (2008).
8. Yamashita, K., Takeuchi, N., Oe, K., Yanagi, H. Simultaneous RGB lasing from a single-chip polymer device. Opt. Lett., 35, 2451-2453 (2010).
9. Guha, S., DePuydt, J. M., Haase, M. A., Qiu, J., Cheng, H. Degradation of II‐VI based blue‐green light emitters. Appl. Phys. Lett., 63, 3107-3109 (1993).
10. Hua, G. C., Otsuka, N., Grillo, D. C., Fan, Y., Han, J., Ringle, M. D., et al. Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue‐green laser diode. Appl. Phys. Lett., 65, 1331-1333 (1994).
11. Chuang, S. L., Ukita, M., Kijima, S., Taniguchi, S., Ishibashi, A. Universal curves for optical power degradation of II–VI light‐emitting diodes. Appl. Phys. Lett., 69, 1588-1590 (1996).
12. Albert, D., Nürnberger, J., Hock, V., Ehinger, M., Faschinger, W., Landwehr, G. Influence of p-type doping on the degradation of ZnSe laser diodes. Appl. Phys. Lett., 74, 1957-1959 (1999).
13. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys., 4, 359-367 (2008).
14. Lawandy, N. M., Balachandran, R. M., Gomes, A. S. L., Sauvain, E. Laser action in strongly scattering media. Nature, 368, 436-438 (1994).
15. Cao, H., Zhao, Y. G., Ho, S. T., Seelig, E. W., Wang, Q. H., Chang, R. P. H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett., 82(11): 2278-2281 (1999).
16. Redding, B., Choma, M. A., Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon., 6, 355-359 (2012).
17. Liao, Y.-M., Lai, Y.-C., Perumal, P., Liao, W.-C., Chang, C.-Y., Liao, C.-S., et al. Highly Stretchable Label-like Random Laser on Universal Substrates. Adv. Mater. Technol., 1, 1600068 (2016)
18. Sun, T.-M., Wang, C.-S., Liao, C.-S., Lin, S.-Y., Perumal, P., Chiang, C.-W., et al. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano, 9, 12436-12441 (2015).
19. Redding, B., Choma, M. A., Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon., 6, 496-496 (2012).
20. Redding, B., Cerjan, A., Huang, X., Lee, M. L., Stone, A. D., Choma, M. A., et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl Acad. Sci. 112, 1304-1309 (2015).
21. Chen, S., Zhao, X., Wang, Y., Shi, J., Liu, D. White light emission with red-green-blue lasing action in a disordered system of nanoparticles. Appl. Phys. Lett., 101(12): 123508 (2012).
22. Zhai, T., Xu, Z., Li, S., Zhang, X. Red-green-blue plasmonic random laser. Opt. Express, 25, 2100-2106 (2017).
23. Alyamani, A. Y., Leanenia, M. S., Alanazi, L. M., Aljohani, M. M., Aljariwi, A. A., Rzheutski, M. V., et al. White random lasing in mixture of ZnSe, CdS and CdSSe micropowders. Proc. SPIE ; p. 972625-972626 (2016).
24. Chen, G., Qiu, H., Prasad, P. N., Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev., 114, 5161-5214 (2014).
25. Zhou, B., Shi, B., Jin, D., Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol., 10, 924-936 (2015).
26. DaCosta, M. V., Doughan, S., Han, Y., Krull, U. J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta, 832, 1-33 (2014).
27. Downing, E., Hesselink, L., Ralston, J., Macfarlane, R. A Three-Color, Solid-State, Three-Dimensional Display. Science, 273, 1185-1189 (1996).
28. Meyer, J., Tappe, F. Photoluminescent Materials for Solid-State Lighting: State of the Art and Future Challenges. Adv. Opt. Mater., 3, 424-430 (2015).
29. Huang, X., Han, S., Huang, W., Liu, X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 42, 173-201 (2013).
30. Zhang, C., Yang, L., Zhao, J., Liu, B., Han, M.-Y., Zhang. Z. White-Light Emission from an Integrated Upconversion Nanostructure: Toward Multicolor Displays Modulated by Laser Power. Angew. Chem. Int. Ed., 54, 11531-11535 (2015).
31. Jin, L. M., Chen, X., Siu, C. K., Wang, F., Yu, S. F. Enhancing Multiphoton Upconversion from NaYF4:Yb/Tm@NaYF4 Core–Shell Nanoparticles via the Use of Laser Cavity. ACS Nano, 11, 843-849 (2017).
32. Park, W., Lu, D., Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev., 44, 2940-2962 (2015).
33. Hoang, N.-V., Pereira, A., Nguyen, H. S., Drouard, E., Moine, B., Deschamps, T., et al. Giant Enhancement of Luminescence Down-Shifting by a Doubly Resonant Rare-Earth-Doped Photonic Metastructure. ACS Photonics 2017. DOI: 10.1021/acsphotonics.7b00177
34. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314, 977-980 (2006).
35. Ni, X., Wong, Z. J., Mrejen, M., Wang, Y., Zhang, X. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314 (2015).
36. Lu, D., Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).
37. Fang, N., Lee, H., Sun, C., Zhang, X. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science, 308, 534-537 (2005).
38. Wang, Q., Rogers, E. T. F., Gholipour, B., Wang, C.-M., Yuan, G., Teng, J., et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon., 10, 60-65 (2016).
39. Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A. Y., Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194 (2016).
40. Khorasaninejad, M., Chen, W. T., Zhu, A. Y., Oh, J., Devlin, R. C., Rousso, D., et al. Multispectral Chiral Imaging with a Metalens. Nano Lett., 16, 4595-4600 (2016).
41. Poddubny, A., Iorsh, I., Belov, P., Kivshar, Y.. Hyperbolic metamaterials. Nat. Photon., 7, 948-957 (2013).
42. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I., Menon, V. M. Topological Transitions in Metamaterials. Science, 336, 205-209 (2012).
43. Ji, D., Song, H., Zeng, X., Hu, H., Liu, K., Zhang, N, et al. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep., 4, 4498 (2014).
44. Cortes, C. L., Newman, W., Molesky, S., Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt., 14, 063001 (2012).
45. Fang, A., Koschny, T., Soukoulis, C. M. Optical anisotropic metamaterials: Negative refraction and focusing. Phys. Rev. B, 79, 245127 (2009).
46. Rieck, H. The effective lifetime of stimulated and spontaneous emission in semiconductor laser diodes. Solid-State Electron., 8(1): 83-85 (1965).
47. Dowling, J. P. Spontaneous emission in cavities: How much more classical can you get? Found. Phys., 23, 895-905 (1993).
48. Purcell, E. M. Spontaneous Emission Probabilities at Radio Frequencies. In: Burstein E, Weisbuch C (eds). Confined Electrons and Photons: New Physics and Applications. Springer US: Boston, MA, 1995, pp 839-839.
49. Ford, G. W., Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep., 113, 195-287 (1984).
50. Bohren, C. F., Huffman, D. R. Absorption and Scattering by an Arbitrary Particle. Absorption and Scattering of Light by Small Particles. Wiley-VCH Verlag GmbH, 2007, pp 57-81.
51. Palik, Edward D. Handbook of Optical Constants of Solids. Academic Press: Burlington, 2002, pp 1-2.
52. Lajaunie, L., Boucher, F., Dessapt, R., Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of MoO3. Phys. Rev. B, 88, 115141 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *