|
[1] A. Nathan, and B. R. Chalamala, Proc. IEEE, vol. 93, no. 7, 2005, pp 1235. [2] A. Nathan, A. Ahnood, M. Cole, Sangyun Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, James Moultrie, D. Chu, Andrew J. Flewitt, A. Ferrari, M. Kelly, J. Robertson, and G. A. J. Amaratunga, W. I. Milne, “Flexible Electronics: The Next Ubiquitous Platform,” Proc. IEEE, vol. 100, 2012, pp. 1486-1517. [3] Sahu, B. B., Long, W., and Han, J. G., “Highly conductive flexible ultrathin ito nanoclusters prepared by 3-D confined magnetron sputtering at a low temperature,” Scr. Mater, vol. 149, 2018, pp. 98–102. [4] Wixforth, A., Maedler, C., Graaf, H., Chada, S., Yan, M., and La Rosa, A., “Nanostructure formation driven by local protonation of polymer thin films,” Nanotechnology IV, vol. 7364, 2009, pp. 1-8. [5] Ken-ichi Nomura, Ryosaku Kaji, Shiro Iwata, Shinobu Otao, Naoto Imawaka, Katsumi Yoshino, Ryosuke Mitsui, Junya Sato, Seiya Takahashi, Shin-ichiro Nakajima, and Hirobumi Ushijima, “A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing,” Scientific Reports, vol. 19947, 2016. [6] Bolin Chen, Matthew Kruse, Biao Xu, Ravi Tutika, Wei Zheng, Michael D. Bartlett, Yue Wu, and Jonathan C. Claussen, “Flexible thermoelectric generators with inkjetprinted bismuth telluride nanowires and liquid metal contacts,” Nanoscale, no. 12, 2019. [7] Stergios Logothetidis, “Flexible organic electronic devices: Materials, process and applications,” Materials Science and Engineering: B, vol. 152, no. 1–3, 2008, pp. 6-104. [8] You Yu, Casey Yan, and Zijian Zheng, “Polymer-Assisted Metal Deposition (PAMD): A FullSolution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors,” Adv. Mater., vol. 26, no. 31, 2014, pp. 5508-5516. [9] T. Yang, Y. Z. Yu, L. S. Zhu, X. Wu, X. H. Wang, and J. Zhang, “Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application,” Sensors and Actuators B: Chemical, vol. 208, 2015, pp. 327-333. [10] A. Rida, L. Yang, R. Vyas, and M.M. Tentzeris, “Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications,” Antennas Propag. Mag., vol. 51, 2009, pp. 13-23.. [11] M. M. Tentzeris, “Inkjet-Printed Paper-Based RFID and Nanotechnology-based Ultrasensitive Sensors: The “Green” Ultimate Solution for an ever improving Life Quality and Safety?,” in IEEE Radio and Wireless Symposium, 2010, pp. 120-123. [12] F. Lisco, A. Shaw, A. Wright, J.M. Walls, and F. Iza, “Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices,” Solar Energy, vol. 146, 2017, pp. 287-297. [13] An-Li Hou, Szu-Yi Wang, Wen-Pin Lin, Wei-Hsuan Kuo, Tsung-Jen Wang, and Meng-Jiy Wang, “Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization,” Materials, vol. 13, 2020. [14] Jin-Wook Shin, Joon-Pyo Jeun, and Phil-Hyun Kang, “Surface modification and characterization of N+ ion implantation on polyimide film,” Macromolecular Research, vol. 18, 2010, pp. 227-232. [15] Baozhong Lin, and Shuxue Zhou, “Light-responsive nanoparticles with wettability changing from hydrophobicity to hydrophilicity and their application towards highly hydrophilic fluorocarbon coatings,” Applied Surface Science, vol. 359, 2015, pp. 380-387. [16] Richard R. Thomas, Stephen L. Buchwalter, L. Paivikki Buchwalter, and Taina H. Chao, “Organic chemistry on a polyimide surface,” Macromolecules, vol. 25, 1992, pp. 4559–4568. [17] S.C. Chang, J. Bharathan, and Y. Yang, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing,” Appl. Phys. Lett., vol. 73, 1998, pp. 2561-2563. [18] J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: .Polymer light-emitting logo,” Appl. Phys. Lett., vol. 72, 1998, pp. 2660-2662. [19] Amruth C, Beata Luszczynska, Marek Zdzislaw Szymanski, Jacek Ulanski, Ken Albrecht, and Kimihisa Yamamoto, “Inkjet printing of thermally activated delayed fluorescence (TADF) dendrimer for OLEDs applications,” Organic Electronics, vol. 74, 2019, pp. 218-227. [20] M. M. Tentzeris, L. Yang, A. Rida, A. Traille, R. Vyas, and T. Wu, “Inkjet-Printed RFID Tags on Paper-based Substrates for UHF "Cognitive Intelligence" Applications,” in The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. [21] Z. Konstas, A. Rida, R. Vyas, K. Katsibas, N. Uzunoglu, and M. M. Tentzeris, “A Novel “Green” Inkjet-Printed Z-Shaped Monopole Antenna for RFID Applications,” in Antennas and Propagation Society International Symposium, 2009, pp. 2340-2343. [22] O. Azucena, J. Kubby, D. Scarbrough, and C. Goldsmith, “Inkjet Printing of Passive Microwave Circuitry,” in International Microwave Symposium Digest, 2008, pp. 1075-1059. [23] L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, “RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, 2007, pp. 2894-2900. [24] T. Kawasea, T. Shimodaa, C. Newsomeb, H. Sirringhausc, and R.H. Friend, “Inkjet printing of polymer thin film transistors,” Thin Solid Films, vol. 438-439, 2003, pp. 279-287. [25] T. Kawase, H. Sirringhaus, R.H. Friend, and T. Shimoda, “Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits,” Adv. Mater., 2001, pp. 1601-1605. [26] H-L Kao, C-L Cho, and L-C Chang, “Inkjet-Printed Interdigital Coupled Line Filter on Liquid Crystal Polymer Substrate,” IEEE Electron Device Lett., vol. 34, no. 12, 2013, pp. 1584 - 1586. [27] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a 0 Feed Structure,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 10, 2002, pp. 2362-2367. [28] X. Y. Zhang, and Q. Xue, “Harmonic-suppressed bandpass filter based on discriminating coupling,” IEEE Microw. Wireless Compon. Lett., vol. 19. no. 11, 2009, pp. 695-697. [29] ULTRALAM 3850, Rogers Corporation, Rogers, CT, 2012. [30] L. Marnat, and A. Shamim, “Liquid Crystal Polymer (LCP) Based Antenna for Flexible System on Package (SoP) Applications,” in 15th International Symposium on Antenna Technology and Applied Electromagnetics, 2012. [31] R. Saha, and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, vol. 50, 2002, pp. 23-38. [32] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Materials Science and Engineering A, vol. 427, 2006, pp. 232-240. [33] X. Y. Zhang, X. Dai, H.-L. Kao, B.-H. Wei, Z. Y. Cai, and Q. Xue, “Compact LTCC bandpass filter with wide stopband using discriminating coupling,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 4, 2014, pp. 656–663. [34] M. K. Gunde, N. Hauptman, M. Maˇcek, and M. Kunaver, “The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor,” Appl Phys A, vol. 95, 2009, pp. 673-680. [35] M. F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, 2005, pp. 861–867. [36] Z. I. Khan, M. K. M. Salleh, and G. Prigent, “Achievable bandwidth of a quarter wavelength side-coupled ring resonator,” in Proc. IEEE Symp. Ind. Electron. Appl., 2009, pp. 358–361. [37] S. Ono, K. Wada, “Design and Fabrication of 3-Pole BPF Configured by Hairpin Resonators and Different Types of Coupling and Feed Types at 20 GHz,” in Asia-Pacific Microwave Conference, 2018. [38] S. Y. Lee, C. M. Tsai, “New Cross-Coupled Filter Design Using Improved Hairpin Resonators,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 12, 2000, pp. 2482–2490.
|