帳號:guest(3.15.14.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卓政霖
作者(外文):Cho, Cheng-Lin
論文名稱(中文):噴墨印刷三維高頻元件之技術開發
論文名稱(外文):Development of three dimensional high-frequency devices using inkjet printing technology
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
口試委員(中文):高瑄苓
張麗君
鄭淳護
徐曉萱
口試委員(外文):Kao, Hsuan-Ling
Chang, Li-Chun
Cheng, Chun-Hu
Hsu, Hsiao-Hsuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011811
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:82
中文關鍵詞:印刷可撓式液晶高分子聚合物噴墨軟性電子
外文關鍵詞:printedflexibleliquid crystal polymerLCPInkjet
相關次數:
  • 推薦推薦:0
  • 點閱點閱:203
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
噴墨印刷技術不同於傳統蝕刻製程,具備工業製造之低成本、低汙染及製程快速等優點外,更具備直接將數位化圖案寫入於基板上,同時對於基板的選擇性廣,特別是軟板上的電路整合,以達到整合與封裝的目的。本論文著重於討論以噴墨印刷(Inkjet Printed)技術結合液晶高分子聚合物(Liquid Crystal Polymer,LCP)基板分別實現單層液晶高分子聚合物(Single-Layer LCP)、複層液晶高分子聚合物堆疊(Multi-Layer LCP Stack)及複層噴墨印刷(Multi-Layer Inkjet Printing)等不同架構之高頻元件。
單層液晶高分子聚合物方面透過奈米銀顆粒墨水為金屬層實現操作於26-32 GHz之單層液晶高分子聚合物雙面印刷之串聯式饋入偶極天線(Series-Fed Two-Dipole Antenna),該天線在頻率28 GHz時具有最大增益為7 dBi。
複層液晶高分子聚合物堆疊部分則是以單層為基礎並結合堆疊複層液晶高分子聚合物封裝技術實現不同架構之帶通濾波器(Bandpass Filter)等高頻元件,分別操作於24.8、10.6及11.4 GHz。微型化帶通濾波器最小插入損失(S21)為2.36 dB,反射損失(S11)為36.8 dB。三階帶通濾波器最小插入損失(S21)為1.5 dB,反射損失(S11)大於17.4 dB。寬截止頻帶之指叉帶通濾波器最小插入失(S21)為2.24 dB,反射損失(S11)於頻寬範圍大於12 dB。
複層噴墨印刷除了使用上述之奈米銀顆粒墨水為金屬層外,更增加SU-8聚合物墨水為絕緣材料以實現跨層傳輸線、金屬-絕緣層-金屬(Metal-Insulator-Metal,MIM)電容等元件及不同架構之帶通濾波器等高頻元件,分別操作於13.7、12.7及12 GHz。殘段負載共振帶通濾波器最小插入損耗為3.16 dB。環形共振器帶通濾波器最小插入損耗為2.2 dB。三維髮夾式帶通濾波器最小插入損耗為2.35 dB。本論文將呈現分別應用於不同架構之製程最佳化參數及應用元件之詳細介紹及特性說明。
Inkjet printing technology, unlike the etching process, has been adopted for digital images to direct write layered patterns into substrate. The advantages of inkjet printing are environmentally friendly and fast. Moreover, inkjet printing technology provides wider selections of substrates, particularly integrated circuit on flexible substrates. This study developed inkjet printing to realize radio frequency device on liquid crystal polymers (LCP) substrates, multi-layer LCP stack and multi-layer inkjet printing technologies.
The proposed antenna can be used at a frequency band of 26–32 GHz. The maximum gain of the antenna at 28 GHz was 7 dBi. The bending behaviors of the antennas with and without director elements were analyzed.
The bandpass filters using inkjet printing technology on multilayer LCP were realized with operation frequency of 24.8, 10.6 and 11.4 GHz, respectively. A miniature stub loaded bandpass filter with a minimal S21 value of −1.4 dB at 25 GHz. A trisection bandpass filter was realized with a minimal S21 value of −1.5 dB in passband. The three dimensional interdigital bandpass filter achieved a minimum S21 value of -2.2 dB. Combining inkjet printing and multilayer LCP lamination bonding processes provides inexpensive and compact electronic components for electronic package applications.
A fully inkjet-printed bandpass filter on a liquid crystal polymer was realized by using metal-insulator-metal (MIM) structures and via hole interconnections. We fabricated a miniaturized stub loaded resonator bandpass filter. This filter exhibits a minimal S21 value of -3.16 dB at 13.7 GHz. An inkjet-printed ring resonator bandpass filter was realized with a minimal S21 value of −2.2 dB and a maximal S11 value of −34.2 dB in the passband. The hairpin bandpass filter with two half wavelength lines meandered on two different layers and connected by via holes was presented. The minimal S21 is measured at 12 GHz was -2.35 dB, and the maximal S11 was -17.4 dB in the passband. This study presented the process of inkjet printing technology optimization parameters and performance of the study in detail.
摘要 i
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 序論 1
1-1. 研究動機 1
1-2. 論文架構 2
第二章 文獻回顧 3
2-1. 軟性電子研究之現況 3
2-2. 軟性電子元件之製作方式 4
2-3. 基板特性與表面改質 5
2-4. 噴墨印刷技術於高頻應用 8
2-5. 多層噴墨印刷技術 8
第三章 噴墨印刷於單層液晶高分子聚合物基板架構 11
3-1. 實驗流程 11
3-2. 串聯式饋入偶極天線設計與模擬 12
3-3. 噴墨印刷串聯式饋入偶極天線於單層液晶高分子聚合物基板 16
3-3-1. 噴墨印刷指向性天線 16
3-3-2. 有/無指向性對天線之影響 18
3-3-3. 天線之彎曲效應影響 20
3-3-4. 指向性天線的輻射場型討論 22
3-4. 結論 23
第四章 噴墨印刷於複層液晶高分子聚合物基板架構 24
4-1. 實驗流程 24
4-2. 結果與討論 26
4-2-1. 奈米壓痕測試 26
4-2-2. 機械性質之動態撓曲測試 28
4-2-3. 不同壓力對銀薄膜的影響 30
4-2-4. 複層壓合力之S參數特性 33
4-2-5. 噴墨印刷微型化帶通濾波器於複層液晶高分子聚合物基板 35
4-2-6. 噴墨印刷三階帶通濾波器於複層液晶高分子聚合物基板 39
4-2-7. 噴墨印刷寬截止頻帶之指叉帶通濾波器於複層液晶高分子聚合物基板 44
4-3. 結論 47
第五章 複層噴墨印刷架構 48
5-1. 實驗流程 48
5-2. 結果與討論 49
5-2-1. SU-8聚合物薄膜的軟烤溫度與時間之表面形貌比較 49
5-2-2. SU-8聚合物薄膜的厚度比較 51
5-2-3. SU-8聚合物薄膜在不同溫度下的化學結構變化 53
5-2-4. SU-8聚合物薄膜對UV曝光的影響 55
5-2-5. 不同材料的水接觸角比較 57
5-2-6. SU-8聚合物薄膜之電性參數萃取 58
5-2-7. 複層噴墨印刷傳輸線元件之S參數分析 59
5-2-8. 噴墨印刷MIM高頻電容 61
5-2-9. 全噴墨印刷殘段負載共振帶通濾波器於液晶高分子聚合物基板 64
5-2-10. 全噴墨印刷環形共振器帶通濾波器於液晶高分子聚合物基板 66
5-2-11. 全噴墨印刷三維髮夾式帶通濾波器於液晶高分子聚合物基板 70
5-3. 結論 72
第六章 結論 74
第七章 參考文獻 75
論文發表 80
[1] A. Nathan, and B. R. Chalamala, Proc. IEEE, vol. 93, no. 7, 2005, pp 1235.
[2] A. Nathan, A. Ahnood, M. Cole, Sangyun Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, James Moultrie, D. Chu, Andrew J. Flewitt, A. Ferrari, M. Kelly, J. Robertson, and G. A. J. Amaratunga, W. I. Milne, “Flexible Electronics: The Next Ubiquitous Platform,” Proc. IEEE, vol. 100, 2012, pp. 1486-1517.
[3] Sahu, B. B., Long, W., and Han, J. G., “Highly conductive flexible ultrathin ito nanoclusters prepared by 3-D confined magnetron sputtering at a low temperature,” Scr. Mater, vol. 149, 2018, pp. 98–102.
[4] Wixforth, A., Maedler, C., Graaf, H., Chada, S., Yan, M., and La Rosa, A., “Nanostructure formation driven by local protonation of polymer thin films,” Nanotechnology IV, vol. 7364, 2009, pp. 1-8.
[5] Ken-ichi Nomura, Ryosaku Kaji, Shiro Iwata, Shinobu Otao, Naoto Imawaka, Katsumi Yoshino, Ryosuke Mitsui, Junya Sato, Seiya Takahashi, Shin-ichiro Nakajima, and Hirobumi Ushijima, “A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing,” Scientific Reports, vol. 19947, 2016.
[6] Bolin Chen, Matthew Kruse, Biao Xu, Ravi Tutika, Wei Zheng, Michael D. Bartlett, Yue Wu, and Jonathan C. Claussen, “Flexible thermoelectric generators with inkjetprinted bismuth telluride nanowires and liquid metal contacts,” Nanoscale, no. 12, 2019.
[7] Stergios Logothetidis, “Flexible organic electronic devices: Materials, process and applications,” Materials Science and Engineering: B, vol. 152, no. 1–3, 2008, pp. 6-104.
[8] You Yu, Casey Yan, and Zijian Zheng, “Polymer-Assisted Metal Deposition (PAMD): A FullSolution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors,” Adv. Mater., vol. 26, no. 31, 2014, pp. 5508-5516.
[9] T. Yang, Y. Z. Yu, L. S. Zhu, X. Wu, X. H. Wang, and J. Zhang, “Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application,” Sensors and Actuators B: Chemical, vol. 208, 2015, pp. 327-333.
[10] A. Rida, L. Yang, R. Vyas, and M.M. Tentzeris, “Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications,” Antennas Propag. Mag., vol. 51, 2009, pp. 13-23..
[11] M. M. Tentzeris, “Inkjet-Printed Paper-Based RFID and Nanotechnology-based Ultrasensitive Sensors: The “Green” Ultimate Solution for an ever improving Life Quality and Safety?,” in IEEE Radio and Wireless Symposium, 2010, pp. 120-123.
[12] F. Lisco, A. Shaw, A. Wright, J.M. Walls, and F. Iza, “Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices,” Solar Energy, vol. 146, 2017, pp. 287-297.
[13] An-Li Hou, Szu-Yi Wang, Wen-Pin Lin, Wei-Hsuan Kuo, Tsung-Jen Wang, and Meng-Jiy Wang, “Surface Antifouling Modification on Polyethylene Filtration Membranes by Plasma Polymerization,” Materials, vol. 13, 2020.
[14] Jin-Wook Shin, Joon-Pyo Jeun, and Phil-Hyun Kang, “Surface modification and characterization of N+ ion implantation on polyimide film,” Macromolecular Research, vol. 18, 2010, pp. 227-232.
[15] Baozhong Lin, and Shuxue Zhou, “Light-responsive nanoparticles with wettability changing from hydrophobicity to hydrophilicity and their application towards highly hydrophilic fluorocarbon coatings,” Applied Surface Science, vol. 359, 2015, pp. 380-387.
[16] Richard R. Thomas, Stephen L. Buchwalter, L. Paivikki Buchwalter, and Taina H. Chao, “Organic chemistry on a polyimide surface,” Macromolecules, vol. 25, 1992, pp. 4559–4568.
[17] S.C. Chang, J. Bharathan, and Y. Yang, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing,” Appl. Phys. Lett., vol. 73, 1998, pp. 2561-2563.
[18] J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: .Polymer light-emitting logo,” Appl. Phys. Lett., vol. 72, 1998, pp. 2660-2662.
[19] Amruth C, Beata Luszczynska, Marek Zdzislaw Szymanski, Jacek Ulanski, Ken Albrecht, and Kimihisa Yamamoto, “Inkjet printing of thermally activated delayed fluorescence (TADF) dendrimer for OLEDs applications,” Organic Electronics, vol. 74, 2019, pp. 218-227.
[20] M. M. Tentzeris, L. Yang, A. Rida, A. Traille, R. Vyas, and T. Wu, “Inkjet-Printed RFID Tags on Paper-based Substrates for UHF "Cognitive Intelligence" Applications,” in The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2007.
[21] Z. Konstas, A. Rida, R. Vyas, K. Katsibas, N. Uzunoglu, and M. M. Tentzeris, “A Novel “Green” Inkjet-Printed Z-Shaped Monopole Antenna for RFID Applications,” in Antennas and Propagation Society International Symposium, 2009, pp. 2340-2343.
[22] O. Azucena, J. Kubby, D. Scarbrough, and C. Goldsmith, “Inkjet Printing of Passive Microwave Circuitry,” in International Microwave Symposium Digest, 2008, pp. 1075-1059.
[23] L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, “RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, 2007, pp. 2894-2900.
[24] T. Kawasea, T. Shimodaa, C. Newsomeb, H. Sirringhausc, and R.H. Friend, “Inkjet printing of polymer thin film transistors,” Thin Solid Films, vol. 438-439, 2003, pp. 279-287.
[25] T. Kawase, H. Sirringhaus, R.H. Friend, and T. Shimoda, “Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits,” Adv. Mater., 2001, pp. 1601-1605.
[26] H-L Kao, C-L Cho, and L-C Chang, “Inkjet-Printed Interdigital Coupled Line Filter on Liquid Crystal Polymer Substrate,” IEEE Electron Device Lett., vol. 34, no. 12, 2013, pp. 1584 - 1586.
[27] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a 0 Feed Structure,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 10, 2002, pp. 2362-2367.
[28] X. Y. Zhang, and Q. Xue, “Harmonic-suppressed bandpass filter based on discriminating coupling,” IEEE Microw. Wireless Compon. Lett., vol. 19. no. 11, 2009, pp. 695-697.
[29] ULTRALAM 3850, Rogers Corporation, Rogers, CT, 2012.
[30] L. Marnat, and A. Shamim, “Liquid Crystal Polymer (LCP) Based Antenna for Flexible System on Package (SoP) Applications,” in 15th International Symposium on Antenna Technology and Applied Electromagnetics, 2012.
[31] R. Saha, and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, vol. 50, 2002, pp. 23-38.
[32] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Materials Science and Engineering A, vol. 427, 2006, pp. 232-240.
[33] X. Y. Zhang, X. Dai, H.-L. Kao, B.-H. Wei, Z. Y. Cai, and Q. Xue, “Compact LTCC bandpass filter with wide stopband using discriminating coupling,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 4, 2014, pp. 656–663.
[34] M. K. Gunde, N. Hauptman, M. Maˇcek, and M. Kunaver, “The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor,” Appl Phys A, vol. 95, 2009, pp. 673-680.
[35] M. F. Lei and H. Wang, “An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, 2005, pp. 861–867.
[36] Z. I. Khan, M. K. M. Salleh, and G. Prigent, “Achievable bandwidth of a quarter wavelength side-coupled ring resonator,” in Proc. IEEE Symp. Ind. Electron. Appl., 2009, pp. 358–361.
[37] S. Ono, K. Wada, “Design and Fabrication of 3-Pole BPF Configured by Hairpin Resonators and Different Types of Coupling and Feed Types at 20 GHz,” in Asia-Pacific Microwave Conference, 2018.
[38] S. Y. Lee, C. M. Tsai, “New Cross-Coupled Filter Design Using Improved Hairpin Resonators,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 12, 2000, pp. 2482–2490.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *