帳號:guest(18.220.91.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俊葦
作者(外文):Lee, Chun-Wei
論文名稱(中文):氧化還原活性金奈米粒子(raGNPs)在奈米篩分微流體系統(NS-MFS)中以電化學超敏感檢測菌血症並使用磺化聚苯胺作為兩性離子和導電界面進行電極上的抗生物污染
論文名稱(外文):Ultra-Sensitive Electrochemical Detection of Bacteremia Enabled by Redox-Active Gold Nanoparticles (raGNPs) in a Nano-Sieving Microfluidic System (NS-MFS) with Sulfonated Polyaniline as Zwitterionic and Conductive Interfaces for Anti-biofouling on Electrodes
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):張晃猷
王本誠
盧彥文
楊重熙
范育睿
口試委員(外文):Chang, Hwan-You
Wang, Pen-Cheng
Lu, Yen-Wen
Yang, Chung-Hsi
Fan, Yu-Jui
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011809
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:電化學細菌聚苯胺抗生物汙染
外文關鍵詞:ElectrochemicalBacteriaPolyanilineAnti-biofouling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
最標準的細菌檢測方式為利用培養基進行細菌增殖,再利用一系列生化反應,例如微生物發酵、特定受質的利用、還原與降解等特性來鑑定微生物種類,或是利用聚合酵素連鎖反應 (Polymerase Chain Reaction,PCR),質譜鑑定(Mass Spectrometry,MS)等大型機台進行判讀,這些方法精準度高,但至少需耗費一天以上作增殖反應,若遇上培養困難、生長緩慢或是無適當培養基的菌種再更為耗時。
本研究提出了一個奈米篩分微流體系統(Nano-Sieving Microfluidic System, NS-MFS)這是一個基於信號放大的檢測技術,該技術通過在氧化還原活性金奈米顆粒(redox active gold nanoparticles, raGNP)上結合電化學活性分子(electrochemical active molecule, EAM)和特異性抗體。經修飾的raGNP通過特異性抗體與細菌表面結合,再通過電化學聚合形成電化學活性的聚合物膜,當施加電壓時,EAM膜的氧化還原活性電流可以通過常規電化學檢測系統檢測,工作時間約30分鐘並達到~10 CFU/mL的生理檢測需求。
為了能夠在生醫檢測應用上,減少非特異性吸附等造成的背景雜訊干擾,在本研究中,我們提出將(self-doped sulfonated polyaniline, SPANI)作為塗層材料整合於Au電極上,該塗層材料在介電泳捕捉大腸桿菌與清洗的中顯示出優異的抗生物污染和導電特性,不僅具有非常低的殘留質量(1.438%),且在三循環實驗中捕捉細胞數量之標準差為22.47(PEG修飾表面的標準差高達208.9)顯示其具有高的電穩定性。未來應可實用在生物或醫學的快速檢測上。
The most standard method of bacterial detection is to use the culture medium for bacterial proliferation, and then use a series of biochemical reactions, such as microbial fermentation, specific substrate utilization, reduction and degradation, to identify microbial species, or to use large-scale machines such as polymerase chain reaction (PCR) or mass spectrometry (MS) for interpretation. These methods are highly accurate, but required at least one day for proliferative reactions. It is more time consuming to encounter strains that are difficult to grow, slow to grow, or have no suitable medium.
This study proposes a strategy based on signal amplification by conjugating an electrochemical active molecule (EAM) and a specific antibody on redox active gold nanoparticles (raGNPs). The modified raGNPs are conjugated to the surface of bacteria via a specific antibody to form an electrochemically active poly-film by electropolymerization. When applying a voltage, a redox-active current of the EAM film can be detected by a conventional electrochemical detection system. The working time is ~30 minutes and reached a physiological testing requirement of ~10 CFU/mL.
In order to reduce the background noise caused by non-specific adsorption in bio-detection applications, in this study, we propose to integrate self-doped sulfonated polyaniline (SPANI) as a coating material on the Au electrode. The coating material showed excellent bio-contamination and conductive properties during DEP capturing-and-releasing processes, not only with very low residual mass (1.438%), but also the standard deviation of the number of cells captured in the three-cycle experiment was 22.47. (The standard deviation of the PEG-modified surface is as high as 208.9) indicating its excellent electrical stability. The future should be practical for rapid detection of biology or medicine.
摘要 I
ABSTRACT II
誌謝 III
章節目錄 IV
第一章 緒論 1
1.1 研究背景前言 1
1.2研究動機 5
第二章 文獻探討 6
2.1細菌檢測 8
2.1.1 革蘭氏染色 9
2.1.2選擇性培養基 10
2.1.3生化反應 11
2.1.4核酸聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 11
2.1.5質譜鑑定(mass spectrometry,MS) 14
2.1.6流式細胞儀(Flow Cytometry) 14
2.1.7adenosine triphosphate (ATP)微生物發光 15
2.2 感測器 16
2.2.1電化學感測器 17
2.3電化學分析方法 20
2.3.1 循環伏安法(cyclic voltammetry, CV)[68]–[70], [72] 20
計時電流法通常用於測量電活性物質的擴散係數或工作電極的表面積。計時電流法的分析應用依賴於以固定的時間間隔重複脈衝工作電極的電位。計時電流法也可以應用 22
2.4 電化學生物感測器 23
2.5 表面修飾 27
2.5.1 自組裝單分子薄膜用於表面修飾 27
2.5.2 電極修飾抗體之技術 28
2.6.3 電化學合成 29
2.7 抗生物汙染機制 30
第三章 實驗設計與規劃 32
3.1 實驗設計與架構 32
3.1.1晶片製作 36
3.1.2實驗操作流程 40
DEP晶片 42
3.2 實驗藥品與儀器 43
3.2.1 實驗化學藥品 43
3.2.2 實驗儀器 45
第四章 結果與討論 52
4.1氧化還原活性金奈米粒子(RAGNPS)在奈米篩分微流體系統(NS-MFS)中以電化學超敏感檢測菌血症 52
4.1.1細菌富集和純化 52
4.1.3 raGNPs上電化學活性分子的特性 56
4.1.4 HSBD生物感測器的選擇性和靈敏度分析 58
4.1.5 HSBD生物感測器的檢測極限 59
4.1.6總結 61
4.2磺化聚苯胺作為兩性離子和導電界面提供生物感測器電極上的抗生物污染能力 62
4.2.1電極表面修飾材料的特性分析 66
4.2.2抗生物污染的評估 70
4.2.3 總結. 74
第五章 結論與未來工作 75
參考文獻 75

[1] A. L.Furst andM. B.Francis, “Impedance-Based Detection of Bacteria,” Chem. Rev., vol. 119, no. 1, pp. 700–726, 2019.
[2] N. H.Lyle, O. M.Pena, J. H.Boyd, andR. E. W.Hancock, “Barriers to the effective treatment of sepsis: Antimicrobial agents, sepsis definitions, and host-directed therapies,” Ann. N. Y. Acad. Sci., vol. 1323, no. 1, pp. 101–114, 2014.
[3] M.Singer et al., “The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).,” Jama, vol. 315, no. 8, pp. 801–10, 2016.
[4] C. S.Deutschman andK. J.Tracey, “Sepsis: Current dogma and new perspectives,” Immunity, vol. 40, no. 4, pp. 463–475, 2014.
[5] J.Jui, “Chapter 146. Septic Shock,” in Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 7e, 2011.
[6] B. S.Park andJ.-O.Lee, “Recognition of lipopolysaccharide pattern by TLR4 complexes,” Exp. Mol. Med., vol. 45, no. 12, p. e66, 2013.
[7] J. C.Blanco, C. H.Rodríguez, R.Malagón, andN.Torres, “Reconocimiento de carácteristicas de la degradación de pasturas en el Rancho San Luis - Morelia - Caquetá - Colombia,” Rev. Fac. Ciencias Agropecu., vol. 18, no. 3, pp. 3–12, 2010.
[8] I.Jawad, I.Lukšić, andS. B.Rafnsson, “Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality.,” J. Glob. Health, vol. 2, no. 1, p. 010404, 2012.
[9] G. S.Martin, “Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes,” Expert Rev. Anti. Infect. Ther., vol. 10, no. 6, pp. 701–706, Jun.2012.
[10] aKumar et al., “Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock,” Crit Care Med., vol. 34, no. 0090–3493 (Print), pp. 1589–1596, 2006.
[11] P.Ohlsson et al., “Integrated Acoustic Separation, Enrichment, and Microchip Polymerase Chain Reaction Detection of Bacteria from Blood for Rapid Sepsis Diagnostics,” Anal. Chem., vol. 88, no. 19, pp. 9403–9411, 2016.
[12] E. a.Biondi et al., “Blood Culture Time to Positivity in Febrile Infants With Bacteremia.,” JAMA Pediatr., pp. 1–6, 2014.
[13] R. P.Dellinger et al., “Surviving Sepsis Campaign,” Crit. Care Med., vol. 41, no. 2, pp. 580–637, 2013.
[14] F.Bloos et al., “Evaluation of a Polymerase Chain Reaction Assay for Pathogen Detection in Septic Patients under Routine Condition: An Observational Study,” PLoS One, vol. 7, no. 9, pp. 1–8, 2012.
[15] P.Josefson et al., “Evaluation of a commercial multiplex PCR test (SeptiFast) in the etiological diagnosis of community-onset bloodstream infections,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 30, no. 9, pp. 1127–1134, 2011.
[16] C.Phaneuf, B.Mangadu, M.Piccini, A.Singh, andC.-Y.Koh, “Rapid, Portable, Multiplexed Detection of Bacterial Pathogens Directly from Clinical Sample Matrices,” Biosensors, vol. 6, no. 4, p. 49, Sep.2016.
[17] H. W.Hou, A. A. S.Bhagat, W. C.Lee, S.Huang, J.Han, andC. T.Lim, “Microfluidic Devices for Blood Fractionation,” Micromachines, vol. 2, no. 3, pp. 319–343, Jul.2011.
[18] O.Lazcka, F. J.DelCampo, andF. X.Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron., vol. 22, no. 7, pp. 1205–1217, 2007.
[19] M. L.Sin, K. E.Mach, P. K.Wong, andJ. C.Liao, “Advances and challenges in biosensor-based diagnosis of infectious diseases,” Expert Rev. Mol. Diagn., vol. 14, no. 2, pp. 225–244, 2014.
[20] A.A., S.J., I.M., andH.S., “Bench-to-bedside review: Rapid molecular diagnostics for bloodstream infection - a new frontier?,” Crit. Care, vol. 16, no. 3, 2012.
[21] J.Wang, G.Chen, H.Jiang, Z.Li, andX.Wang, “Advances in nano-scaled biosensors for biomedical applications,” Analyst, vol. 138, no. 16, p. 4427, 2013.
[22] X.Zhao et al., “A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles,” Proc. Natl. Acad. Sci., vol. 101, no. 42, pp. 15027–15032, 2004.
[23] J. W.Lim, D.Ha, J.Lee, S. K.Lee, andT.Kim, “Review of Micro/Nanotechnologies for Microbial Biosensors,” Front. Bioeng. Biotechnol., vol. 3, no. May, pp. 1–13, 2015.
[24] N.Sanvicens, C.Pastells, N.Pascual, andM. P.Marco, “Nanoparticle-based biosensors for detection of pathogenic bacteria,” TrAC - Trends Anal. Chem., vol. 28, no. 11, pp. 1243–1252, 2009.
[25] A. T.Sage, J. D.Besant, B.Lam, E. H.Sargent, andS. O.Kelley, “Ultrasensitive Electrochemical Biomolecular Detection Using Nanostructured Microelectrodes,” Acc. Chem. Res., vol. 47, no. 8, pp. 2417–2425, Aug.2014.
[26] W.Wang, L.Liu, S.Song, L.Xu, andJ.Zhu, “Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp . by P60-mediated monoclonal antibody,” Food Agric. Immunol., vol. 28, no. 2, pp. 274–287, 2017.
[27] W.Wang, L.Liu, L.Xu, H.Kuang, J.Zhu, andC.Xu, “Gold-Nanoparticle-Based Multiplexed Immunochromatographic Strip for Simultaneous Detection of Staphylococcal Enterotoxin A , B , C , D , and E,” Part. Part. Syst. Charact., vol. 33, pp. 388–395, 2016.
[28] W.Wang et al., “Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody,” Sci. China Mater., vol. 59, no. 8, pp. 665–674, 2016.
[29] W.Wang, M.Feng, D.Kong, L.Liu, andS.Song, “Development of an immunochromatographic strip for the rapid detection of Pseudomonas syringae pv . maculicola in broccoli and radish seeds,” Food Agric. Immunol., vol. 26, no. 5, pp. 738–745, 2015.
[30] R.Maalouf et al., “Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance,” Anal. Chem., vol. 79, no. 13, pp. 4879–4886, Jul.2007.
[31] K.Saha, S. S.Agasti, C.Kim, X.Li, andV. M.Rotello, “Gold Nanoparticles in Chemical and Biological Sensing,” Chem. Rev., vol. 112, no. 5, pp. 2739–2779, May2012.
[32] H.Lee, T. J.Yoon, andR.Weissleder, “Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system,” Angew. Chemie - Int. Ed., vol. 48, no. 31, pp. 5657–5660, 2009.
[33] M.Xu, R.Wang, andY.Li, “An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes,” Analyst, vol. 141, no. 18, pp. 5441–5449, 2016.
[34] S. K.Vashist, “Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications,” Diagnostics, vol. 2, no. 4, pp. 23–33, 2012.
[35] A.Vasudev, “Electrochemical Immunosensing of Cortisol in an Automated Microfluidic System Towards Point-of- Care Applications,” 2013.
[36] J.Zhuang, D.Tang, W.Lai, M.Xu, andD.Tang, “Target-Induced Nano-Enzyme Reactor Mediated Hole-Trapping for High-Throughput Immunoassay Based on a Split-Type Photoelectrochemical Detection Strategy,” Anal. Chem., vol. 87, no. 18, pp. 9473–9480, Sep.2015.
[37] S.Goggins, B. J.Marsh, A. T.Lubben, andC. G.Frost, “Signal transduction and amplification through enzyme-triggered ligand release and accelerated catalysis,” Chem. Sci., vol. 6, no. 8, pp. 4978–4985, 2015.
[38] J.Das, M. A.Aziz, andH.Yang, “A Nanocatalyst-Based Assay for Proteins: DNA-Free Ultrasensitive Electrochemical Detection Using Catalytic Reduction of p -Nitrophenol by Gold-Nanoparticle Labels,” J. Am. Chem. Soc., vol. 128, no. 50, pp. 16022–16023, Dec.2006.
[39] H.Andersson andA.Van denBerg, “Microfluidic devices for cellomics: A review,” Sensors Actuators, B Chem., vol. 92, no. 3, pp. 315–325, 2003.
[40] D. R.Reyes, D.Iossifidis, P.-A.Auroux, andA.Manz, “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology,” Anal. Chem., vol. 74, no. 12, pp. 2623–2636, 2002.
[41] E.Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D. Appl. Phys., vol. 41, no. 9, 2008.
[42] W. B.Whitman, D. C.Coleman, andW. J.Wiebe, “Prokaryotes: the unseen majority,” Proc Natl Acad Sci U S A, vol. 95, no. 12, pp. 6578–6583, 1998.
[43] B.Valdez, Ed., Scientific, Health and Social Aspects of the Food Industry. InTech, 2012.
[44] F. J.Angulo, R. M.Hoekstra, R.V.Tauxe, P. M.Griffin, andE.Scallan, “Foodborne Illness Acquired in the United States—Unspecified Agents,” Emerg. Infect. Dis., vol. 17, no. 1, pp. 16–22, 2010.
[45] J. C.Buzby, T.Roberts, C. J.Lin, andJ. M.Macdonald, “Bacterial Foodborne Disease: Medical Costs and Productivity Losses,” U.S. Dep. Agric. Washingt., Mar.1996.
[46] A. L.Flores-Mireles, J. N.Walker, M.Caparon, andS. J.Hultgren, “Urinary tract infections: Epidemiology, mechanisms of infection and treatment options,” Nat. Rev. Microbiol., vol. 13, no. 5, pp. 269–284, 2015.
[47] W. E.Stamm andS. R.Norrby, “Urinary Tract Infections: Disease Panorama and Challenges,” J. Infect. Dis., vol. 183, no. s1, pp. S1–S4, 2002.
[48] B.Foxman, “Urinary Tract Infection Syndromes,” Infect. Dis. Clin. North Am., vol. 28, no. 1, pp. 1–13, Mar.2014.
[49] B.Foxman, “The epidemiology of urinary tract infection,” Nat. Rev. Urol., vol. 7, no. 12, pp. 653–660, Dec.2010.
[50] G.Health andS.Strategy, “WHO Sexually transmitted infection 2016-2021,” WHO, no. June, 2016.
[51] N.Low andN. J.Broutet, “Sexually transmitted infections—Research priorities for new challenges,” PLOS Med., vol. 14, no. 12, p. e1002481, 2017.
[52] T.Wi et al., “Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action,” PLoS Med., vol. 14, no. 7, pp. 1–16, 2017.
[53] E. J.Weston, T.Wi, andJ.Papp, “Surveillance for antimicrobial drug–resistant Neisseria gonorrhoeae through the enhanced gonococcal antimicrobial surveillance program,” Emerg. Infect. Dis., vol. 23, no. December, pp. S47–S52, 2017.
[54] J.-L.Vincent, “International Study of the Prevalence and Outcomes of Infection in Intensive Care Units,” JAMA, vol. 302, no. 21, p. 2323, Dec.2009.
[55] K. R.Shankar et al., “Classification and risk-factor analysis of infections in a surgical neonatal unit,” J. Pediatr. Surg., vol. 36, no. 2, pp. 276–281, Feb.2001.
[56] R. A.Weinstein, R.Gaynes, andJ. R.Edwards, “Overview of Nosocomial Infections Caused by Gram-Negative Bacilli,” Clin. Infect. Dis., vol. 41, no. 6, pp. 848–854, 2005.
[57] I.Chopra et al., “Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement,” Lancet Infect. Dis., vol. 8, no. 2, pp. 133–139, Feb.2008.
[58] B. M.Peters et al., “Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p,” Microbiol. (United Kingdom), vol. 158, no. 12, pp. 2975–2986, 2012.
[59] M. M.Harriott andM. C.Noverr, “Candida albicans and Staphylococcus aureus form polymicrobial biofilms: Effects on antimicrobial resistance,” Antimicrob. Agents Chemother., vol. 53, no. 9, pp. 3914–3922, 2009.
[60] 食品微生物之檢驗方法-病原性大腸桿菌之檢驗 Methods of Test for Food Microorganisms- Test of Pathogenic Escherichia coli. 2014, pp. 1–13.
[61] G.Garrity andJ. R.Brenner, Don J., Krieg, Noel R., Staley, Eds., Bergey’s Manual® of Systematic Bacteriology. 2005.
[62] L.Wang, D.Rothemund, H.Curd, andP. R.Reeves, “Species-Wide Variation in the Escherichia coli Flagellin (H-Antigen) Gene,” J. Bacteriol., vol. 185, no. 9, pp. 2936–2943, May2003.
[63] J. M. S.Bartlett andD.Stirling, “A Short History of the Polymerase Chain Reaction,” in PCR Protocols, New Jersey: Humana Press, 2003, pp. 3–6.
[64] J. A.Carriço, A. J.Sabat, A. W.Friedrich, andM.Ramirez, “Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution , on behalf of the ESCMID Study Group for Epidemiological Markers (ESGEM),” Eurosurveillance, vol. 18, no. 4, pp. 1–9, 2013.
[65] A. E.Ashcroft, “Protein and peptide identification: the rôle of mass spectrometry in proteomics.,” Nat. Prod. Rep., vol. 20, no. 2, pp. 202–215, 2003.
[66] W.Mo andB. L.Karger, “Analytical aspects of mass spectrometry and proteomics,” Curr. Opin. Chem. Biol., vol. 6, no. 5, pp. 666–675, 2002.
[67] 陳玉如, “質譜技術與蛋白質體學 Mass Spectrometry and Proteomics,” 2003.
[68] Brian R. Eggins, Chemical Sensors and Biosensors. Analytical Techniques in the Sciences, 2002.
[69] D.Thevenot et al., “Electrochemical biosensors : recommended definitions and classification To cite this version : HAL Id : hal-01084678 Technical report Electrochemical biosensors : recommended definitions and classification,” Biosens. Bioelectron., vol. 16, pp. 121–131, 2001.
[70] JOSEPH WANG, Analytical electrochemistry. 2001.
[71] M.Labib, E. H.Sargent, andS. O.Kelley, “Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules,” Chem. Rev., vol. 116, no. 16, pp. 9001–9090, 2016.
[72] J.Janata, Principles of Chemical Sensors. 2009.
[73] Z.Muhammad-Tahir andE. C.Alocilja, “A conductometric biosensor for biosecurity,” Biosens. Bioelectron., vol. 18, no. 5–6, pp. 813–819, May2003.
[74] N.Idil, M.Hedström, A.Denizli, andB.Mattiasson, “Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli,” Biosens. Bioelectron., vol. 87, pp. 807–815, Jan.2017.
[75] A. F.Diaz, J. I.Castillo, J. A.Logan, andW.-Y.Lee, “Electrochemistry of conducting polypyrrole films,” J. Electroanal. Chem. Interfacial Electrochem., vol. 129, no. 1–2, pp. 115–132, Nov.1981.
[76] D. M.Mohilner, R. N.Adams, andW. J.Argersinger, “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode,” J. Am. Chem. Soc., vol. 84, no. 19, pp. 3618–3622, 1962.
[77] C. M.Mendel andD. B.Mendel, “‘Non-specific’ binding. The problem, and a solution.,” Biochem. J., vol. 228, no. 1, pp. 269–72, 1985.
[78] G.Chen, “Electrochemical technologies in wastewater treatment,” Sep. Purif. Technol., vol. 38, no. 1, pp. 11–41, 2004.
[79] D. P.Manica, Y.Mitsumori, andA. G.Ewing, “Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip,” Anal. Chem., vol. 75, no. 17, pp. 4572–4577, 2003.
[80] T. Z.Jubery, S. K.Srivastava, andP.Dutta, “Dielectrophoretic separation of bioparticles in microdevices: A review,” Electrophoresis, vol. 35, no. 5, pp. 691–713, 2014.
[81] M. R.Bown andC. D.Meinhart, “AC electroosmotic flow in a DNA concentrator,” Microfluid. Nanofluidics, vol. 2, no. 6, pp. 513–523, 2006.
[82] J. K.Wu, Y. S.Wu, C. S.Yang, andF. G.Tseng, “Charge-selective gate of arrayed MWCNTs for ultra high-efficient biomolecule enrichment by nano-electrostatic sieving (NES),” Biosens. Bioelectron., vol. 43, no. 1, pp. 453–460, 2013.
[83] E.Ostuni, R. G.Chapman, R. E.Holmlin, S.Takayama, andG. M.Whitesides, “A survey of structure-property relationships of surfaces that resist the adsorption of protein,” Langmuir, vol. 17, no. 18, pp. 5605–5620, 2001.
[84] S.Chen, L.Li, C.Zhao, andJ.Zheng, “Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials,” Polymer (Guildf)., vol. 51, no. 23, pp. 5283–5293, 2010.
[85] J. L.Dalsin andP. B.Messersmith, “Bioinspired antifouling polymers,” Mater. Today, vol. 8, no. 9, pp. 38–46, 2005.
[86] H.Zhang andM.Chiao, “Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng., vol. 35, no. 2, pp. 143–155, 2015.
[87] P. C.Wang, G.Vilaire, W. F.DeGrado, andJ. S.Bennett, “Interactions of ADP-stimulated human platelets with PEGylated polystyrene substrates prepared by surface amidation,” Colloids Surfaces B Biointerfaces, vol. 58, no. 2, pp. 225–230, 2007.
[88] A. N. K.Lau et al., “Antifouling coatings for optoelectronic tweezers,” Lab Chip, vol. 9, no. 20, pp. 2952–2957, 2009.
[89] R.Fraioli, J. M.Manero Planella, F. J.Gil Mur, andC.Mas-Moruno, Blocking methods to prevent non-specific adhesion of mesenchymal stem cells to titanium and evaluate the efficiency of surface functionalization: albumin vs poly(ethylene glycol) coating, vol. 22. 2014.
[90] S.Ayyaru andY. H.Ahn, “Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes,” J. Memb. Sci., vol. 525, no. October 2016, pp. 210–219, 2017.
[91] Y.Liu et al., “Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane,” Sep. Purif. Technol., vol. 98, pp. 298–307, 2012.
[92] C. S.Campelo, P.Chevallier, D.Mantovani, R. S.Vieira, andJ. M.Vaz, “Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood,” Mater. Sci. Eng. C, vol. 72, pp. 682–691, 2017.
[93] X.Zhao andC.He, “Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface,” ACS Appl. Mater. Interfaces, vol. 7, no. 32, pp. 17947–17953, 2015.
[94] I.Banerjee, R. C.Pangule, andR. S.Kane, “Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms,” Adv. Mater., vol. 23, no. 6, pp. 690–718, 2011.
[95] S.Jiang andZ.Cao, “Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications,” Adv. Mater., vol. 22, no. 9, pp. 920–932, 2010.
[96] Z.Zhang andH.Vaisocherova, “Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces : Structural and Environmental Effects,” pp. 2686–2692, 2008.
[97] Z.Zhang, S.Chen, Y.Chang, andS.Jiang, “Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings,” J. Phys. Chem. B, vol. 110, no. 22, pp. 10799–10804, 2006.
[98] G.Cheng, G.Li, H.Xue, S.Chen, J. D.Bryers, andS.Jiang, “Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation,” Biomaterials, vol. 30, no. 28, pp. 5234–5240, 2009.
[99] G.Li, G.Cheng, H.Xue, S.Chen, F.Zhang, andS.Jiang, “Ultra low fouling zwitterionic polymers with a biomimetic adhesive group,” Biomaterials, vol. 29, no. 35, pp. 4592–4597, 2008.
[100] B. T.McVerry, J. A. T.Temple, X.Huang, K. L.Marsh, E. M. V.Hoek, andR. B.Kaner, “Fabrication of low-fouling ultrafiltration membranes using a hydrophilic, self-doping polyaniline additive,” Chem. Mater., vol. 25, no. 18, pp. 3597–3602, 2013.
[101] J. C.Chiang andA. G.MacDiarmid, “‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime,” Synth. Met., vol. 13, no. 1–3, pp. 193–205, 1986.
[102] P.Gzil, N.Vervoort, G.V.Baron, andG.Desmet, “Advantages of Perfectly Ordered 2-D Porous Pillar Arrays over Packed Bed Columns for LC Separations: A Theoretical Analysis,” Anal. Chem., vol. 75, no. 22, pp. 6244–6250, 2003.
[103] R. Y.Zhang, I.Amlani, J.Baker, J.Tresek, R. K.Tsui, andP.Fejes, “Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst,” Nano Lett., vol. 3, no. 6, pp. 731–735, 2003.
[104] E. C.Venancio, P. C.Wang, andA. G.MacDiarmid, “The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline,” Synth. Met., vol. 156, no. 5–6, pp. 357–369, 2006.
[105] R. P.Mi et al., “Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers,” J. Control. Release, vol. 105, no. 3, pp. 367–380, 2005.
[106] Y.Li et al., “A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine,” Talanta, vol. 162, pp. 80–89, Jan.2017.
[107] S. B.Revin andS. A.John, “Electropolymerization of 3-amino-5-mercapto-1,2,4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid,” Electrochim. Acta, vol. 56, no. 24, pp. 8934–8940, Oct.2011.
[108] J.Lukkari, K.Kleemola, M.Meretoja, andT.Ollonqvist, “Electrochemical Post-Self-Assembly Transformation of 4-Aminothiophenol Monolayers on Gold Electrodes,” Langmuir, vol. 14, no. 7, pp. 1705–1715, 1998.
[109] György Inzelt, Conducting Polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
[110] M. A.Faridi, H.Ramachandraiah, I.Banerjee, S.Ardabili, S.Zelenin, andA.Russom, “Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics,” J. Nanobiotechnology, vol. 15, no. 1, pp. 1–9, 2017.
[111] P.Ohlsson, K.Petersson, P.Augustsson, andT.Laurell, “Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018.
[112] A. J.Mach andD.diCarlo, “Continuous scalable blood filtration device using inertial microfluidics,” Biotechnol. Bioeng., vol. 107, no. 2, pp. 302–311, 2010.
[113] L.D’Amico, N. J.Ajami, J. A.Adachi, P. R. C.Gascoyne, andJ. F.Petrosino, “Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis,” Lab Chip, vol. 17, no. 7, pp. 1340–1348, 2017.
[114] X. L.Wei, Y. Z.Wang, S. M.Long, C.Bobeczko, andA. J.Epstein, “Synthesis and physical properties of highly sulfonated polyaniline,” J. Am. Chem. Soc., vol. 118, no. 11, pp. 2545–2555, 1996.
[115] R. N.Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem., vol. 28, no. 8, pp. 988–994, 1936.
[116] S.Park, Y.Zhang, T.-H.Wang, andS.Yang, “Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.,” Lab Chip, vol. 11, pp. 2893–2900, 2011.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *