帳號:guest(18.220.188.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅皓文
作者(外文):Luo, Hao-Wen
論文名稱(中文):同步加速器光源中插件磁鐵的進階特性之研究
論文名稱(外文):Study on the advanced characteristics of insertion devices operated in synchrotron light source
指導教授(中文):李志浩
黃清鄉
指導教授(外文):Lee, Chih-Hao
Hwang, Ching-Shiang
口試委員(中文):張存續
周炳榮
羅志偉
鍾廷翊
口試委員(外文):Chang, Tsun-Hsu
Chou, Ping-Jung
Luo, Chih-Wei
Chung, Ting-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:102001602
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:121
中文關鍵詞:同步加速器光源聚頻磁鐵亮度橫向同調維格納分布函數
外文關鍵詞:Synchrotron light sourceUndulatorBrillianceTransverse coherenceWigner distribution function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:377
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文中研究了在現在與未來升級後的台灣光子源中三個與聚頻磁鐵技術有關的主題,第一是相位可調式聚頻磁鐵(adjustable phase undulator),有別於傳統聚頻磁鐵藉由調整磁列間隙達到改變共振光子能量的方式,相位可調式聚頻磁鐵則是改變磁列的縱向相對位置調整光子能量,然而此種操作模式在橢圓極化模式中會產生無可避免的磁場橫向梯度場(~100 T/m),此梯度場不但有機會降低同步輻射光源的品質還有可能改變儲存環中電子團的的工作條件,解析模型被提出以估計橫向梯度場對光源與電子團品質的影響,數值方法用來驗證解析模型對光源品質的估計。
第二個主題是在雙極小值垂直貝塔函數(betatron function)磁格中的串聯式聚頻磁鐵,為了達到更好的聚頻磁鐵輻射與電子團的橫向相空間匹配,三個四極磁鐵被安裝在儲存環的直段中間壓低垂直貝塔函數,然而,將一台聚頻磁鐵分成兩台和插入其中的四極磁鐵都造成聚頻磁鐵輻射中額外的相位延遲與軌跡的改變,導致傳統估計聚頻磁鐵輻射品質的方法不適用於此種特殊光源,基於維格納分布函數(Wigner distribution function)的數值方法被用來計算此種光源的光源亮度,相關的主題如光源的橫向同調性與兩台聚頻磁鐵的校準也一併討論。
最後一個主題是1:3利薩如曲線(Lissajous curve)式聚頻磁鐵,在傳統聚頻磁鐵中加入額外的不同週期長度磁列改變電子軌跡,達到降低近軸區域的輻射功率分布以減輕下游光束線中光學元件的熱附載的效果,初步的概念設計說明這樣的磁場分布與大小以現有的光學元件實際上是可以達到的,推廣版的聚頻磁鐵輻射解析表達式被用來評估聚頻磁鐵輻射的品質與降低熱附載的效果並以聚頻磁鐵輻射數值計算軟體驗證。
Three special topics related to undulator technology had been studied for Taiwan photon source (TPS) and future TPS-upgraded. The first one is the adjustable phase undulator (APU) which varies the resonance photon energy by changing the relative longitudinal position instead of the gap change between the magnet arrays. In an elliptically polarized undulator with APU mode, there exist unavoidable transverse field gradient (TFG) at the order of 100 T/m which may degrade the performance of a synchrotron light source and seriously affect the working conditions of the electron beam. Analytical model and the corresponding numerical results are given to evaluate the effects of the TFG on both the synchrotron radiation performance and electron beam behavior.
The second one is the tandem undulator in the double minimum beta-y lattice of TPS. The double minimum beta-y lattice is a special lattice in which a triple quadrupole magnets are installed to suppress the vertical beta-function for better phase space matching of the undulator radiation. However, the quadrupole magnets result in additional phase delay of the two radiation pulses that generated by each segment of the undulator and the trajectory variation of the electron beam. Conventional method cannot estimate the performance of such tandem undulators in the double minimum beta-y lattice. Numerical method that based on the Wigner distribution function is used to evaluate the performance of the tandem undulator radiation. Related issues such as the transverse coherence and the alignment of two undulators are also discussed.
Last one, the 1:3 Lissajous curve undulator in which additional magnet arrays with different period length are used to reduce the power on the paraxial region of the optical components in the beamline. A conceptual designation is shown to prove that it is possible to achieve enough magnetic field strength to reduce the synchrotron power. An analytical model as well as the numerical results are studied to estimate the performance of the undulator radiation and the power reduction.
摘要……………………………………………………………………………………………i
Abstract………………………………………………………………………………………ii
誌謝…………………………………………………………………………………………iii
Contents………………………………………………………………………………………iv
List of figures………………………………………………………………………………vii
List of tables…………………………………………………………………………………xii
Chapter 1 Introduction ………………………………………………………………………1
Chapter 2 Basic properties of the undulator radiation ……………………………………10
2.1 Spatial power distribution…………………………………………………………10
2.2 Spectral distribution………………………………………………………………11
2.3 Polarization………………………………………………………………………12
2.4 Transverse Coherence……………………………………………………………14
2.5 Brilliance……………………………………………………………………………17
2.6 Brilliance and transverse coherence……………………………………………21
2.7 Phase space matching…………………………………………………………23
2.8 Numerical calculation of the undulator radiation………………………………23
2.9 Effects on the equilibrium of the electron beam…………………………………25
Chapter 3 Adjustable phase undulator ……………………………………………………26
3.1 Magnetic-field characteristics of an elliptical polarized undulator……………26
3.2 Effects of transverse field gradient on a storage ring……………………………33
3.3 Effects of the transverse field gradient on Synchrotron Radiation………………41
3.3.1 Simple estimation for the brilliance and photon flux for TPS and TPS-upgraded………………………………………………………………………………41
3.3.2 Discussion of the brilliance for a filament electron beam ………………………45
3.3.3 Discussion of the brilliance for a finite emittance beam………………………49
3.4 Conclusion…………………………………………………………………………55
Chapter 4 Tandem undulators in the double-minimum beta-y lattice in Taiwan Photon Source………………………………………………………………………………………56
4.1 Theoretical background of undulator radiation…………………………………56
4.1.1 Radiation field of a tandem undulator…………………………………………58
4.1.2 Phase shifter………………………………………………………………………59
4.1.3 Quadrupole magnet and energy spread effects…………………………………61
4.1.4 Electron bunch effect on the on-axis Wigner distribution function……………64
4.2 Numerical analysis results using Wigner distribution function…………………64
4.2.1 Undulator configuration in the collinear case…………………………………68
4.2.2 Overall degree of coherence of the photon flux constraint in the aperture……73
4.3 Electron deviation between the tandem undulator and focusing effect…………74
4.4 Conclusions…………………………………………………………………………78
Chapter 5 1:3 Lissajous curve undulator…………………………………………………80
5.1 Theoretical estimation of the polarization rate and flux density in linear polarized mode……………………………………………………………………………………80
5.2 Conceptual designation of a 1:3 Lissajous curve undulator……………………85
5.3 Conclusions…………………………………………………………………………89
Chapter 6 Summary and outlook…………………………………………………………91
Reference……………………………………………………………………………………93
Appendix 1 Phase relation and dynamic field integral of the left/right operation of elliptical mode ……………………………………………………………………………100
Appendix 2 Phase relation and dynamic field integral of the inclined linear mode ……102
Appendix 3 Estimate of coefficient A in equation (3.25) ……………………………… 105
Appendix 4 Review of the brilliance related issues……………………………………… 107
Appendix 4.1 Coherent photon flux in an aperture and its degree of coherence……… 107
Appendix 4.2 Kim’s definition of coherent photon flux and its relation with brilliance110
Appendix 4.2.1 Difference of the coherent photon flux F_coh and F_coh in equation (2.11) and (2.21) ………………………………………………………………………101
Appendix 4.2.2 Coherent photon flux is calculated by using symmetrically placed pinholes ………………………………………………………………………………112
Appendix 4.3 Focusing of synchrotron radiation beam ……………………………113
Appendix 4.4 Summary………………………………………………………………115
Appendix 5 Adjustable phase undulator mode of EPU48 in current TPS ……116
Appendix 6 Evaluation of the double minimum beta-y lattice in possible NSLS-II upgrades……………………………………………………………………………………117
Appendix 7 Publication List …………………………………………………………120
[1] C. C. Kuo, J. Y. Chen, M. S. Chiu, P. J. Chou, Y. C. Liu, H. J. Tsai et al., “Commissioning of the Taiwan Photon Source”, in Proceedings of the 6th International Particle Accelerator Conference (IPAC 2015), Richmond, VA, U.S.A., pp. 1314-1318, 2015.
[2] J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. Nathan et al., “Intrinsically stretchable and healable semiconducting polymer for organic transistors”, Nature, vol. 539, pp. 411-415, 2016.
[3] Y. D. Liou, Y. Y. Chiu, R. T. Hart, C. Y. Kuo, Y. L. Huang, Y. C. Wu et al., “Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films”, Nat. Mater., vol. 18, pp. 580-587, 2019.
[4] S. H. Lo, L. Feng, K. Tan, Z. Huang, S. Yuan, K.-Y. Wang et al., “Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework”, Nat. Chem. vol. 12, pp. 90-97, 2020.
[5] K. Halbach, “Permanent magnet undulators”, J. Phys. Colloques, vol. 44, no. C1, pp. 211-216, 1983.
[6] J. C. Huang, C. K. Yang, C. H. Chang, C. S. Yang, T. Y., Chung, J. C. Jan, C. S. Hwang, “Development of a cryogenic permanent magnet undulator for the TPS”, in Proceedings of the 8th International Particle Accelerator Conference (IPAC 2017), Copenhagen, Denmark, TUPAB106, pp. 1562-1565, 2017.
[7] S. Henderson, “Status of the APS upgrade project”, in Proceedings of the 6th International Particle Accelerator Conference (IPAC 2015), Richmond, VA, U.S.A., 1791 TUPJE067, 2015.
[8] C. Steier, J. Byrd, H. Nishimura, D. Robin and S. De Santis, “Physics design progress towards a diffraction limited upgrade of the ALS”, in Proceedings of the 7th International Particle Accelerator Conference (IPAC 2016), Busan, Korea, 2956 WWPOW049, 2016.
[9] P. F. Tavares, J. Bengtsson, and Á. Andersson, “Future development plans for the MAX IV light source: Pushing further towards higher brightness and coherence”, J. Electron Spectrosc. Relat. Phenom. vol. 224, pp. 8-16, 2018.
[10] H. W. Luo, T. Y. Chung, C. H. Lee and C. S. Hwang, “Numerical analysis of brilliance and coherent photon flux of segmented undulator radiation based on statistical optics”, J. Synchrotron Rad., vol. 26, pp. 59-73, 2019.
[11] M. Eriksson, E. Al-Dmour, Å. Andersson, M. Johansson, S. C. Leemann, L. Malmgren, P. F. Tavares, and S. Thorin, “Commissioning of the MAX IV Light Source” in Proceedings of the 7th International Particle Accelerator Conference (IPAC2016), Busan, Korea, pp. 11-15, MOYAA01, 2016.
[12] F. Willeke, “Commissioning of NSLS-II”, in Proceedings of the 6th International Particle Accelerator Conference (IPAC 2015), Richmond, USA, pp. 11-16, MOYGB3, 2015.
[13] Hara, T., Yabashi, M., Tanaka, T., Bizen, T., Goto, S., Maréchal, X., Seike, T., Tamasaku, K., Ishikawa, T. & Kitamura, H., “The brightest x-ray source: A very long undulator at SPring-8”, Review Sci. Ins., vol. 73, pp. 1125-1128, 2002.
[14] S. Yamamoto, Y. Senba, T. Tanaka et al., “New soft X-ray beamline BL07LSU at SPring-8”, J. Synchrotron Rad., vol. 21, pp. 352-365, 2014.
[15] J. Chavanne, P. Elleaume, and P. Van Vaerenbergh, “Phasing Multi-Segment Undulators”, J. Synchrotron Rad., vol. 3, pp. 93-96, 1996.
[16] G. Reichardt, J. Bahrdt, J. S. Schmidt, W. Gudat, A. Ehresmann, R. Müller-Albrecht, H. Molter, H. Schmoranzer, M. Martins, N. Schwentner and S. Sasaki, “A 10m-normal incidence monochromator at the quasi-periodic undulator U125-2 at BESSY II”, Nucl. Instrum. Methods Phys. Res. A, vol. 467-468, pp. 462-465, 2001
[17] H. Onuki and P. Elleaume, “Undulators, Wigglers and their Applications”, Taylor & Francis, London, United Kingdom, pp. 192-193, 2003.
[18] M. S. Chiu, C. H. Yang, H. C. Chao, H. P. Chang, H. J. Tsai and C. C. Kuo, “Double Mini-Betay Optics for TPS Storage Ring”, in Proceedings of IPAC2010, Kyoto, Japan, pp. 4581-4583, THPE030, 2010.
[19] T. Yi Chung, C. S. Yang, Y. L. Chu, F. Y. Lin, J. C. Jan and C. S. Hwang, “Investigating excitation-dependent and fringe-field effects of electromagnet and permanent-magnet phase shifters for a crossed undulator”, Nucl. Instrum. Methods Phys. Res. A, vol. 850, pp. 72-77, 2017.
[20] A. Q. R. Baron, T. Tanaka, K. Soutome, M. Takao, T. Nakamura, K. Kobayashi, T. Fujita, S. Takahashi, H. Aoyagi, Y. Shimosaki, T. Seike, H. Uchiyama, D. Ishikawa, T. -H. Chuang, H, Kimura, H. Tanaka, H. Kitamura and T. Ishikawa, “Toward operation of series IDs at BL43LXU of SPring-8”, AIP Conference Proceedings, vol. 1741, 020033, 2016.
[21] G. Geloni, V. Kocharyan, E. Saldin, "Brightness of synchrotron radiation from undulators and bending magnets", J. Synchrotron Rad., vol. 22, pp. 288-316, 2015.
[22] I. V. Bazarov, “Synchrotron radiation representation in phase space”, Phys. Rev. ST Accel. Beams, vol. 15, 050703, 2012.
[23] G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov, “Transverse coherence properties of X-ray beams in third-generation synchrotron radiation sources”, Nucl. Instrum. Methods Phys. Res. A, vol. 588, pp. 463-493, 2008.
[24] T. Tanaka, “Numerical methods for characterization of synchrotron radiation based on the Wigner function method”, Phys. Rev. ST Accel. Beams, vol. 17, 060702, 2014.
[25] K. J. Kim, "Brightness, coherence and propagation characteristics of synchrotron radiation", Nucl. Instrum. Methods Phys. Res. A, vol. 246, pp. 71–76, 1986.
[26] R. Carr, “Adjustable phase insertion devices as x-ray sources”, Nucl. Instrum. Methods Phys. Res. A, vol. 306, pp. 391-396, 1991.
[27] S. Lidia and R. Carr, “An elliptically-polarizing undulator with phase adjustable energy and polarization”, Nucl. Instrum. Methods Phys. Res. A, vol. 347, pp. 77-82, 1994.
[28] M. S. Chiu, J. C. Huang, P. J. Chou and S. Y. Lee, “Multi-Bend Achromat Lattice Design for the Future of TPS Upgrade”, J. Phys. Conf. Ser. vol. 1350, 012033, 2019.
[29] H. W. Luo, T. Y. Chung, C. H. Lee and C. S. Hwang, “Evaluation of an elliptically polarized undulator for the future Taiwan Photon Source”, J. Instrum., vol. 16, P12017, 2021.
[30] S. Sasaki, K. Miyata and T. Takada, “A new undulator for generating variably polarized radiation”, Jpn. J. Appl. Phys., vol. 32, pp. L 1794-L 1796, 1992.
[31] J. Bahrdt, W. Frentrup, A. Gaupp, B. Kuske, A. Meseck and M. Scheer, “Undulators for the BESSY Soft-X-Ray FEL”, in Proceedings of the 26th International FEL Conference, Trieste, Italy, 610, 2004.
[32] A. B. Temnykh, “Delta undulator for Cornell energy recovery linac”, Phys. Rev. ST Accel. Beams, vol. 11, 120702, 2008.
[33] T. Schmidt and M. Calvi, “APPLE X undulator for the swiss fel soft X-ray beamline Athos”, Synchrotron Radiat. News, vol. 31, 3, pp. 35, 2018.
[34] T. Schmidt, A. Anghel, P. Böhler, M. Brügger, M. Calvi, S. Danner, P. Huber, A. Keller and M. Locher, “Magnetic design of an APPLE-III undulator for SWISSFEL”, in Proceedings of the 36th International Free Electron Laser Conference (FEL 2014), Basel, Switzerland, 116 MOP043, 2014.
[35] L. N. P. Vilela, R. Basílio, J. F. Citadini, J. R. Furaer Jr and F. Rodrigues, “Advances in the SIRIUS Delta-type undulator project”, in Proceedings of the 9th International Particle Accelerator Conference (IPAC 2018), Vancouver, BC, Canada, 1491, TUPMK003, 2018.
[36] H. Tarawneh, P. N’gotta, L. K. Roslund, A. Thiel and K. Åhnberg, “Compact APPLE X for future SXL FEL and 3GeV ring at MAX IV laboratory”, in Proceedings of the 10th International Particle Accelerator Conference (IPAC 2019), Melbourne, Australia, 1833 TUPRB072, 2019.
[37] T. Schmidt, M. Calvi, T. Schmitt, V. N. Strocov and D. Zimoch, “Operation experience of the UE44 fixed gap APPLE II at SLS”, J. Phys. Conf. Ser., vol. 425, 032020, 2013.
[38] O. Chubar and P. Elleaume, “Accurate and Efficient Computation of Synchrotron Radiation in the Near Field Region”, in Proceedings of the 6th European Particle Accelerator Conference (EPAC ‘98), Stockholm, Sweden, pp. 1177-1179, 1998.
[39] T. Tanaka and H. Kitamura, “SPECTRA: a synchrotron radiation calculation code”, J. Synchrotron Radiat., vol. 8, pp. 1221-1228, 2001.
[40] G. Wang, T. Shaftan, V. Smaluk, N. A. Mezentsev, S. Sharma, O. Chubar, Y. Hidaka and C. Spataro, “Complex bend: Strong-focusing magnet for low-emittance synchrotrons”, Phys. Rev. Accel. Beams, vol. 21, 100703, 2018.
[41] T. Tanaka and H. Kitamura, “Figure-8 undulator as an insertion device with linear polarization and low on-axis power density”, Nucl. Instrum. Methods Phys. Res. A, vol. 364, pp. 368-373, 1995.
[42] S. Qiao, D. Ma, D. Feng, S. Marks, R. Schlueter, S. Prestemon, and Z. Hussain, “Knot undulator to generate linearly polarized photons with low on-axis power density”, Rev. Sci. Instrum., vol. 80, 085108, 2009.
[43] T. Tanaka and H. Kitamura, “Asymmetric figure-8 undulator as multipolarization light source”, Nucl. Instrum. Methods Phys. Res. A, vol. 449, pp. 629-637, 2000.
[44] S. Sasaki and A. Miyamoto, “Design study of knot-APPLE undulator for PES-beamline at SSRF”, in Proceedings of PAC2013, Pasadena, CA, U.S.A., pp. 1043-1045, WEPSM01, 2013.
[45] T. Tanaka and H. Kitamura, “A new undulator scheme providing various polarization states with low on-axis power density”, Nucl. Instrum. Methods Phys. Res. A, vol. 659, pp. 537-542, 2011.
[46] F. Zhang, Z. Sun, Y. Qiao and S. Qiao, “Practical design and performance of a new merged APPLE-Knot undulator”, J. Synchrotron Radiat., vol. 27, pp. 1494-1498, 2020.
[47] T. Y. Chung, M. S. Chiu, H. W. Luo, C. K. Yang, J. C. Huang, J. C. Jan and C. S. Hwang, “Optimized undulator to generate low energy photons from medium to high energy accelerators”, in 8th International Particle Accelerator Conference IOP Publishing, IOP Conf. Series: Journal of Physics: Conf. Series, vol. 874, 012019, 2017.
[48] K. J. Kim, “Characteristics of synchrotron radiation”, AIP Conf. Proc., vol. 184, pp. 565-632, 1989.
[49] H. Wiedemann, “Particle Accelerator Physics”, 3rd ed, Springer Berlin Heidelberg, New York, 2007.
[50] J. A. Clarke, “The Science and Technology of Undulators and Wigglers”, Oxford University Press, 2004.
[51] C. S. Hwang and S. Y., “Various polarization features of a variably polarized undulator with different phasing modes”, Nucl. Instrum. Methods Phys. Res. A, vol. 420, pp. 29-38, 1999.
[52] J. W. Goodman, “Statistical Optics”, New York: John Wiley and Sons., United States of America, 2015.
[53] L. Mandel and E. Wolf, "Optical Coherence and Quantum optics", Cambridge University Press, Cambridge, 1995.
[54] A. Luis, “Polarization and coherence for vectorial electromagnetic waves and the ray picture of light propagation” J. Eur. Opt. Soc.-Rapid, vol. 2, 07030, 2007.
[55] A. E. Siegman, “How to (Maybe) Measure Laser Beam Quality”, in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, edited by M. Dowley, vol. 17 of OSA, Trends in Optics and Photonics. Paper MQ1, 1998.
[56] A. Walther, “Radiometry and Coherence”, J. Opt. Soc. Am. vol. 58, pp. 1256-1259, 1968.
[57] E. Wigner, “On the Quantum Correction for Thermodynamic Equilibrium”, Phys. Rev., vol. 40, pp. 749-759, 1932.
[58] R. Coisson, R. P. Walker, “Phase Space Distribution of Brilliance of Undulator Sources”, Proc. SPIE 0582, Insertion Devices for Synchrotron Sources, pp. 24-29, 1986.
[59] O. Chubar, P. Elleaume and J. Chavanne, “A three-dimensional magnetostatics computer code for insertion devices”, in 6th International Conference on Synchrotron Radiation Instrumentation (SRI 97) 1997, Himeji, Hyogo, Japan; J. Synchrotron Radiat., vol. 5, pp.481-484, 1998.
[60] ‪G. Stupakov, “Electromagnetic Radiation in Accelerator Physics”, Reviews of Accelerator Science and Technology, World Scientific Publishing Company‬, vol. 3, no. 1, pp. 39-56, 2010.‬‬‬‬‬‬‬‬‬‬‬‬‬‬
[61] R. R. Lindberg and K. J. Kim, “Compact representations of partially coherent undulator radiation suitable for wave propagation”, Phys. Rev. ST Accel. Beams, vol. 18, 090702, 2015.
[62] S. Y. Lee, “Accelerator Physics”, 3rd ed., World Scientific Publishing, Singapore, 2012.
[63] J. Safranek, C. Limborg, A. Terebilo, K. I. Blomqvist, P. Elleaume and Y. Nosochkov, “Nonlinear dynamic in a SPEAR wiggler”, Phys. Rev. ST Accel. Beams, vol. 5, 010701, 2002.
[64] K. W. Robinson, “Radiation Effects in Circular Electron Accelerators”, Phys. Rev., vol. 111, no. 2, pp. 373-380, 1958.
[65] L. Liu, F. H. de Sá, X. R. Resende, “A New Optics for SIRIUS”, in: 7th International Particle Accelerator Conf. (IPAC2016), Busan, Korea, THPMR013, 2016. See also the storage ring parameters on the official website of Brazilian Synchrotron Light Laboratory, LNLS. https://www.lnls.cnpem.br/accelerators/storage-ring-parameters/
[66] C. Sun, H. Nishimura, D. Robin, F. Sannibale, C. Steier, M. Venturini,W. Wan, “Optimization of the ALS-U Storage Ring Lattice”, in: 7th International Particle Accelerator Conf. (IPAC2016), Busan, Korea, WEPOW050, 2016.
[67] D. J. Huang, S. C. Chung, Y. C. Jean, H. S. Fung, H. J. Lin, Y. S. Huang, H. Y. Lee, M. T. Tang, C. H. Hsu, K. Lee, K. Y. Pan and H. R. Su, “Technical Design Report of the Phase-I TPS Beamlines”, National Synchrotron Radiation Research Center, pp. 191-236, 2015.
[A1] R. P. Walker, “Undulator radiation brightness and coherence near the diffraction limit”, Phys. Rev. Accel. Beams, vol. 22, 050704, 2019.
[A2] C. H. Lee and R. C. Hewitt, “The number of effective poles of a wiggler on a X-ray beamline: a user's viewpoint”, Nucl. Instrum. Methods Phys. Res. A, vol. 467-468, pp. 177-180, 2001.
[A3] J. C. Huang, H. Kitamura, C. K. Yang, M. S. Chiu, C. H. Chang and C. S. Hwang, “Applicability of a double-undulator configuration”, Nucl. Instrum. Methods Phys. Res. A, vol. 808, pp. 93-100, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *