帳號:guest(3.137.169.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王義翔
作者(外文):Wang, Yi-Hsiang
論文名稱(中文):單核細胞和乳腺癌細胞之間的串息藉由細胞激素CXCL7分子促進乳腺癌進展
論文名稱(外文):Crosstalk Between Monocytes and Breast Cancer Cells to Promote Breast Cancer Progression via CXCL7 Mediated Signaling Pathways
指導教授(中文):王陸海
王雯靜
指導教授(外文):Wang, Lu-Hai
Wang, Wen-Ching
口試委員(中文):徐欣伶
黃麗蓉
林愷悌
口試委員(外文):Hsu, Hsin-Ling
Huang, Lee-Jung
Lin, Kai-Ti
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080832
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:151
中文關鍵詞:乳腺癌單核細胞癌細胞轉移腫瘤微環境
外文關鍵詞:breastcancerCXCL7macrophage
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
免疫細胞和發炎性因子是腫瘤微環境中促進乳腺癌進展的重要組成部分。為探討腫瘤微環境中的關鍵分子,我們將低侵入性和高侵入性的MDA-MB-231乳腺癌細胞與人類單核細胞THP-1細胞共同培養,並通過細胞蛋白因子陣列鑑定出差異分泌的細胞因子。我們發現,在共培養條件下,乳腺癌細胞分泌的CSF1誘導了單核細胞中CXCL7的表達,從而促進ROCK2蛋白於單核細胞,使其細胞分化成M2型巨噬細胞,並以FAK與MMP13蛋白增強乳腺癌細胞的轉移和侵襲能力。在異種移植小鼠模型中,CXCL7抗體可以顯著降低腫瘤的生長和遠處轉移。總體而言,我們的研究揭示了,由腫瘤促使單核細胞分泌的新型關鍵分子CXCL7,可改變腫瘤微環境,促進M2巨噬細胞分化和癌細胞轉移、侵襲,均有助於促進乳腺癌的進展和轉移。
Immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key players in the tumor microenvironment, we applied low and high invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells, and identified differentially secreted cytokines through cytokine array. We found that under co-culturing condition, CSF1, which was secreted by breast cancer cells, induced expression of CXCL7 from THP-1 monocytes, resulting in the promotion of their differentiation into M2-type macrophages by ROCK2 activation and enhanced migration and invasion ability of breast cancer cells via FAK and MMP13. Blocking CXCL7 by antibodies significantly reduced tumor growth and distant metastasis in the xenograft mouse model. Overall, our study unveils a novel key player, CXCL7, secreted by tumor infiltrating monocytes, to alter the tumor microenvironment in favor of M2 macrophage differentiation and cancer cell migration/invasion, both contributing to the promotion of breast cancer progression and metastasis.
摘要 3
Abstract 4
誌謝辭 5
Part I 12
Introduction 13
Materials and Methods 19
Cell culture 19
Co-culture system and cytokine array 20
Enzyme-Linked Immuno Sorbent Assay 20
Migration and invasion assays 21
Flow Cytometry analysis and macrophage differentiation 21
Macrophage suppression assay 22
Transfection assay 22
Quantitative RT-PCR analysis 23
Western blot analysis 23
In vivo xenograft mouse model studies 24
Immunohistochemistry (IHC) analysis 25
Statistical method 25
Results 26
Identification of CXCL7 cytokine in the co-culturing system of monocytes and invasive breast cancer cells 26
CSF1 produced by breast cancer cells induces CXCL7 secretion by monocytes 31
CXCL7 promotes breast cancer cell migration and invasion, which is correlated with activation of FAK-mediated signaling pathway 35
CXCL7 recruits and modulates monocytes to become M2-like macrophages, which is correlated with increase of ROCK2 40
Inhibition of CXCL7 suppresses tumor growth and reduces the incidence of distant metastases in xenograft breast cancer model 45
Expression of CXCL7 and ROCK2 correlated with breast cancer progression and patients' survival 50
Discussion 56
Reference 61
Part II 67
Abstract 68
Introduction 69
Materials and Methods 73
Cell culture and transfections 73
Cell knockout and mutagenesis 74
Nucleotides and reagents 74
Quantitative real-time PCR 75
H2S measurements (lead sulfide method) 76
Modified biotin switch (S-sulfhydration) assay 77
Nuclear/cytosol fractionation 78
Western blot analysis 78
Transwell cell migration and cell invasion assay 79
Cell proliferation assay 79
GSH/GSSG assay 80
Immunofluorescence 80
Endothelial cell tube formation assay 82
IL-1β detection 82
Mouse orthotopic implantation and tail-vein injection model 83
Immunohistochemistry 84
Retrieving RNA-seq data from The Cancer Genome Atlas 84
Results 86
Expression of CTH was upregulated in bone-metastatic PC cells 86
Increased expression of CTH correlated with progression and poor survival in PC 88
CTH promoted PC cell migration and invasion, but not proliferation 98
Knockdown of CTH suppressed cell invasion through inhibition of NF-κΒ-IL-1β-mediated signaling 107
The H2S-mediated sulfhydration of the NF-κB p65 subunit resulted in increased IL-1β production and enhanced cell invasion 118
Knockdown of CTH suppressed tumor growth and reduced the incidence of paraaortic lymph nodes and bone metastases in the mouse orthotopic implantation model 131
Discussion 140
Contributions 143
Reference 145


List of Figures
Part I

Figure 1 28
Figure 2 32
Figure 3 37
Figure 4 42
Figure 5 47
Figure 6 52
Figure 7 55


Supplemental table 1 64
Supplemental table 2 65
Supplemental table 3 66
Part I
1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34.
3. Tower, H., M. Ruppert, and K. Britt, The Immune Microenvironment of Breast Cancer Progression. Cancers (Basel), 2019. 11(9).
4. Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44.
5. Cassetta, L. and J.W. Pollard, Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov, 2018. 17(12): p. 887-904.
6. Qiu, S.Q., et al., Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev, 2018. 70: p. 178-189.
7. Xu, X., et al., M2 macrophage-derived IL6 mediates resistance of breast cancer cells to hedgehog inhibition. Toxicol Appl Pharmacol, 2019. 364: p. 77-82.
8. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52.
9. Alderton, G.K., Tumour immunology: turning macrophages on, off and on again. Nat Rev Immunol, 2014. 14(3): p. 136-7.
10. Noy, R. and J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014. 41(1): p. 49-61.
11. Franklin, R.A., et al., The cellular and molecular origin of tumor-associated macrophages. Science, 2014. 344(6186): p. 921-5.
12. Martinez, F.O., et al., Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol, 2006. 177(10): p. 7303-11.
13. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8(12): p. 958-69.
14. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 2010. 11(10): p. 889-896.
15. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13.
16. Zandi, S., et al., ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep, 2015. 10(7): p. 1173-86.
17. Griffith, J.W., C.L. Sokol, and A.D. Luster, Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol, 2014. 32: p. 659-702.
18. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572.
19. Ghasemzadeh, M., et al., The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood, 2013. 121(22): p. 4555-66.
20. Grepin, R., et al., The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma. Cancer Research, 2014. 74(3): p. 873-883.
21. Unver, N., et al., CXCL7-induced macrophage infiltration in lung tumor is independent of CXCR2 expression: CXCL7-induced macrophage chemotaxis in LLC tumors. Cytokine, 2015. 75(2): p. 330-7.
22. Tang, Z., et al., Increased invasion through basement membrane by CXCL7-transfected breast cells. American Journal of Surgery, 2008. 196(5): p. 690-696.
23. Yu, M., R. Berk, and M.A. Kosir, CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells. J Oncol, 2010. 2010: p. 939407.
24. Chan, S.H., et al., MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene, 2014. 33(36): p. 4496-507.
25. Cohen-Hillel, E., et al., CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine, 2006. 33(1): p. 1-16.
26. Tzeng, H.E., et al., CCN3 increases cell motility and MMP-13 expression in human chondrosarcoma through integrin-dependent pathway. J Cell Physiol, 2011. 226(12): p. 3181-9.
27. Honing, H., et al., RhoA activation promotes transendothelial migration of monocytes via ROCK. J Leukoc Biol, 2004. 75(3): p. 523-8.
28. Leek, R.D., et al., Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res, 1996. 56(20): p. 4625-9.
29. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 2004. 25(12): p. 677-686.
30. Williams, C.B., E.S. Yeh, and A.C. Soloff, Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer, 2016. 2.
31. Jones, C.V. and S.D. Ricardo, Macrophages and CSF-1: implications for development and beyond. Organogenesis, 2013. 9(4): p. 249-60.
32. Lin, E.Y., et al., The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia, 2002. 7(2): p. 147-62.
33. Strachan, D.C., et al., CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology, 2013. 2(12): p. e26968.
Part II
1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65: 5 – 29
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65: 87 – 108
3. Ye L, Kynaston HG, Jiang WG (2007) Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med 20: 103 – 111
4. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322: 587 – 590
5. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259 – 1268
6. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109: 9161 – 9166
7. Nicholson CK, Calvert JW (2010) Hydrogen sulfide and ischemia-reperfusion injury. Pharmacol Res 62: 289 – 297
8. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocytemediated inflammation. FASEB J 20: 2118 – 2120
9. Paul BD, Snyder SH (2012) H(2)S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13: 499 – 507
10. Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082 – 52086
11. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15: 363 – 372
12. Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52: 187 – 222
13. Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of betamercaptopyruvate to pyruvate. J Biol Chem 206: 561 – 575
14. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146: 623 – 626
15. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703 – 714
16. Wu D, Si W, Wang M, Lv S, Ji A, Li Y (2015) Hydrogen sulfide in cancer: friend or foe? Nitric Oxide 50: 38 – 45
17. Turbat-Herrera EA, Kilpatrick MJ, Chen J, Meram AT, Cotelingam J, Ghali G, Kevil CG, Coppola D, Shackelford RE (2018) Cystathione betasynthase is increased in thyroid malignancies. Anticancer Res 38: 6085 – 6090
18. Bhattacharyya S, Saha S, Giri K, Lanza IR, Nair KS, Jennings NB, Rodriguez- Aguayo C, Lopez-Berestein G, Basal E, Weaver AL et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS ONE 8: e79167
19. Untereiner AA, Pavlidou A, Druzhyna N, Papapetropoulos A, Hellmich MR, Szabo C (2018) Drug resistance induces the upregulation of H2Sproducing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 149: 174 – 185
20. Phillips CM, Zatarain JR, Nicholls ME, Porter C, Widen SG, Thanki K, Johnson P, Jawad MU, Moyer MP, Randall JW et al (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77: 5741 – 5754
21. Wang L, Shi H, Zhang X, Zhang X, Liu Y, Kang W, Shi X, Wang T (2019) I157172, a novel inhibitor of cystathionine gamma-lyase, inhibits growth and migration of breast cancer cells via SIRT1-mediated deacetylation of STAT3. Oncol Rep 41: 427 – 436
22. Jurkowska H, Wrobel M (2018) Cystathionine promotes the proliferation of human astrocytoma U373 cells. Anticancer Res 38: 3501 – 3505
23. Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res https://doi.org/10.1016/j.phrs.2018.11.034
24. Orlowski RZ, Baldwin AS Jr (2002) NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385 – 389
25. Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campas C, Dang L et al (2006) Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 12: 5578 – 5586
26. Domingo-Domenech J, Mellado B, Ferrer B, Truan D, Codony-Servat J, Sauleda S, Alcover J, Campo E, Gascon P, Rovira A et al (2005) Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer 93: 1285 – 1294
27. Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Stringer B (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10: 2466 – 2472
28. Lessard L, Karakiewicz PI, Bellon-Gagnon P, Alam-Fahmy M, Ismail HA, Mes-Masson AM, Saad F (2006) Nuclear localization of nuclear factorkappaB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin Cancer Res 12: 5741 – 5745
29. Ismail HA, Lessard L, Mes-Masson AM, Saad F (2004) Expression of NFkappaB in prostate cancer lymph node metastases. Prostate 58: 308 – 313
30. Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, Smith JA Jr, Matusik RJ (2014) NF-kappaB gene signature predicts prostate cancer progression. Cancer Res 74: 2763 – 2772
31. Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU, Fatatis A (2013) Interleukin-1beta promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res 73: 3297 – 3305
32. Schulze J, Weber K, Baranowsky A, Streichert T, Lange T, Spiro AS, Albers J, Seitz S, Zustin J, Amling M et al (2012) p65-Dependent production of interleukin-1beta by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts. Cancer Lett 317: 106 – 113
33. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12: 86
34. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45: 13 – 24
35. Lin KT, Gong J, Li CF, Jang TH, Chen WL, Chen HJ, Wang LH (2012) Vav3- rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence. Cancer Res 72: 3000 – 3009
36. Guo H, Gai JW, Wang Y, Jin HF, Du JB, Jin J (2012) Characterization of hydrogen sulfide and its synthases, cystathionine beta-synthase and cystathionine gamma-lyase, in human prostatic tissue and cells. Urology 79: 483 e1 – 483 e5
37. Zhu W, Lin A, Banerjee R (2008) Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. Biochemistry 47: 6226 – 6232
38. Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, Pepin N, Lacoste J, Nguyen H, Bensi G et al (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 13: 6231 – 6240
39. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649 – 683
40. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE (2000) Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43: 801 – 811
41. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM (2001) Vascular endothelial growth factor is upregulated by interleukin- 1 beta in human vascular smooth muscle cells via the P38 mitogenactivated protein kinase pathway. Angiogenesis 4: 155 – 162
42. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117: 2351 – 2360
43. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274 – 281
44. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106: 21972 – 21977
45. Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 110: 12474 – 12479
46. Lee ZW, Deng LW (2015) Role of H2S donors in cancer biology. Handb Exp Pharmacol 230: 243 – 265
47. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51: 169 – 187
48. Sun Z, Andersson R (2002) NF-kappaB activation and inhibition: a review. Shock 18: 99 – 106
49. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168: 37 – 57
50. Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annu Rev Biophys 42: 443 – 468
51. Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, Abutbul S, Huszar M, Dinarello CA, Apte RN et al (2013) The role of IL-1beta in the early tumor cell-induced angiogenic response. J Immunol 190: 3500 – 3509
52. Cai T, Nesi G, Tinacci G, Giubilei G, Gavazzi A, Mondaini N, Zini E, Bartoletti R (2011) Clinical importance of lymph node density in predicting outcome of prostate cancer patients. J Surg Res 167: 267 – 272
53. Datta K, Muders M, Zhang H, Tindall DJ (2010) Mechanism of lymph node metastasis in prostate cancer. Future Oncol 6: 823 – 836
54. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Trevino-Villarreal JH, Mejia P, Ozaki CK et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160: 132 – 144
55. Sachdev P, Zeng L, Wang LH (2002) Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes. J Biol Chem 277: 17638 – 17648
56. Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6: 5917
57. Stephenson RA, Dinney CP, Gohji K, Ordonez NG, Killion JJ, Fidler IJ (1992) Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst 84: 951 – 957

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *