帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林旻萱
作者(外文):Lin, Min-Hsuan
論文名稱(中文):模式生物斑馬魚的心電圖檢測平台應用於藥物篩檢及電生理研究
論文名稱(外文):Zebrafish in vivo electrocardiogram platform for drug assay and electrophysiology research
指導教授(中文):莊永仁
指導教授(外文):Chuang, Yung-Jen
口試委員(中文):吳金烈
張壯榮
劉旺達
魯才德
口試委員(外文):Wu, Jen-Leih
CHANG, CHUANG-RUNG
Liu, Wangta
Lu, Tsai-Te
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:101080826
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:53
中文關鍵詞:斑馬魚心電圖心律不整藥物篩檢
外文關鍵詞:zebrafishelectrocardiographyarrhythmiadrug assay
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
斑馬魚是一個生醫研究的重要模式生物。近年來越來越多與心血管疾病相關的研究,使用成年斑馬魚來模擬疾病生理,與藥物機制探討。其中,心電圖分析在斑馬魚中的應用,已成為心臟生理學、毒物學及藥物篩選研究的重要工具。由於現今市面上,可偵測記錄活體成年斑馬魚心電圖的系統,成本偏高且操作限制多,僅少數實驗室才有能力執行相關的研究。在本研究中,我們整合開發一個經濟的活體斑馬魚心電圖偵測平台,並針對平台操作進行了優化。此平台包括攜帶型心電圖套件與一組客製的三相針式電極,接著以此平台進行給予斑馬魚藥物,並測量藥物對其心電圖的影響。我們首先測試了複合型麻醉劑 MS-222 及 Isoflurane 對斑馬魚心律的作用,確定最佳測試實驗條件,以降低麻醉對斑馬魚心臟生理訊號的影響。我們接著選擇數種已知會影響人類心律的藥物進行測試,包括使加速心跳的 isoproterenol,和降低心律或影響 QT interval 的抗心律不整藥物: verapamil、quinidine 及 amiodarone,以及具神經毒性的 veratridine。實驗結果發現,這些心臟藥物在成年斑馬魚中誘導出的電生理反應,與人類的反應具有高度的相似性,也驗證此平台的實用性。我們認為這套活體成年斑馬魚心電圖平台,因為具有操做的便利性,所以不僅能進行斑馬魚的心臟生理與相關藥物的研究,也能用以推動電生理學的相關教學,可望促進未來心血管基礎研究的轉化應用。
Zebrafish is a popular and favorable model organism for cardiovascular research, with an increasing number of studies implementing functional assays in the adult stage. For example, the application of electrocardiography (ECG) in adult zebrafish has emerged as an important tool for cardiac pathophysiology, toxicity, and chemical screen studies. However, few laboratories are able to perform such functional assay due to the high cost and limited availability of a convenient in vivo ECG recording system. In this study, an inexpensive ECG recording platform and operation protocol that has been optimized for adult zebrafish ECG research was developed. The core hardware includes integration of a ready-to-use portable ECG kit with a set of custom-made needle electrode probes. A combined anesthetic formula of MS-222 and isoflurane was first tested to determine the optimal assay conditions to minimize the interference to zebrafish cardiac physiology under sedation. For demonstration, we treated wild-type zebrafish with several pharmacological agents known to affect cardiac rhythms in humans, including isoproterenol, verapamil, quinidine, amiodarone and veratridine. Conserved electrophysiological responses to these drugs were induced in adult zebrafish and recorded in real time. The results show that zebrafish have highly similar physiological responses with human after most drug treatments. This economic ECG platform has the potential to facilitate teaching and training in cardiac electrophysiology with adult zebrafish and to promote future translational applications in cardiovascular medicine.
中文摘要 I
Abstract II
Abbreviations III
Cardiac related abbreviation and translation IV
Table of contents V
Preface VII
1. Introduction 1
1.1 Analysis of Electrocardiography (ECG) 2
1.2 Animal models for research 3
1.3 Zebrafish ECG recording 4
1.4 Zebrafish in ECG studies 4
1.5 Drugs induced cardiac arrhythmias 6
1.6 Specific aim of this study 7
2. Materials and methods 8
2.1 Zebrafish 9
2.2 Anesthetics preparation 9
2.3 Electrode probes 9
2.4 ECG kit 10
2.5 ECG signal processing 10
2.6 Drug treatment 11
2.7 Statistical analysis 12
3. Results 13
3.1 Constructing the adult zebrafish ECG system 14
3.2 ECG recording of adult zebrafish 15
3.3 Electrocardiography of adult zebrafish 16
3.4 Electrocardiography of zebrafish under prolonged sedation 16
3.5 Effect of isoproterenol treatment on drug-induced bradycardia 18
3.6 Induction of bradycardia under verapamil treatment 19
3.7 Effects of amiodarone on heart rate, QRS interval, QT interval, PR interval and QTc interval 19
3.8 Prolongation of QTc after quinidine treatment 20
3.9 Veratridine induce AV-block in adult zebrafish 21
4. Discussion 22
4.1 The detail of the ECG platform 23
4.2 The anesthetic formula we used in this study 24
4.3 This platform could detect the ECG of mouse and various type of small fish 25
4.4 Drugs that cause QT prolongation and/or TdP 25
4.5 QT interval measurement: Fridericia formula was used in this study 26
4.6 The limitation and improvement of this system 27
4.7 Perspective of this study 28
5. References 29
6. Figures 37
Figure 2. The results of Signal-to-noise ratio evaluation for EzInstrument’s ECG Kit. 39
Figure 3. Illustration showing the system setup and the three-needle electrode placement during real-time adult zebrafish ECG recording 40
Figure 4. An ECG recording of adult zebrafish with the three-needle electrodes 41
Figure 5. Effects of anesthetics: MS-222 alone and MS-222/isoflurane combination and prolonged sedation with combined formula on heart rate 42
Figure 6. Variation of heart rate during real-time recording of adult zebrafish and the response to isoproterenol 43
Figure 7. Real-time ECG recording of adult zebrafish and the response to verapamil treatment 45
Figure 8. Adult zebrafish ECG features and drug response to amiodarone 46
Figure 9. Quinidine reduced heart rate and prolonged QTc interval in adult zebrafish heart 47
Figure 10. Arrhythmia was induced after veratridine treatment in adult zebrafish 48
Figure 11. Mouse ECG recording was performed 49
Figure 12. Various type of small fish ECG recording was performed 50
Figure 13. Quinidine induced high-degree AV blocks 51
7. Appendix table 52
Figure A1. Different zebrafish physiological detection devices and their ECG results by ECG kit 53
1. Liu, L.Y., M.H. Lin, Z.Y. Lai, J.P. Jiang, Y.C. Huang, L.E. Jao, and Y.J. Chuang, Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway. J Biomed Sci, 2016. 23(1): p. 59.
2. Liu, F.Y., T.C. Hsu, P. Choong, M.H. Lin, Y.J. Chuang, B.S. Chen, and C. Lin, Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC Syst Biol, 2018. 12(Suppl 2): p. 29.
3. Huang, H.W., Y.H. Lin, M.H. Lin, Y.R. Huang, C.H. Chou, H.C. Hong, M.R. Wang, Y.T. Tseng, P.C. Liao, M.C. Chung, Y.J. Ma, S.C. Wu, Y.J. Chuang, H.D. Wang, Y.M. Wang, H.D. Huang, T.T. Lu, and W.F. Liaw, Extension of C. elegans lifespan using the .NO-delivery dinitrosyl iron complexes. J Biol Inorg Chem, 2018. 23(5): p. 775-784.
4. Pan, A.I., M.H. Lin, H.W. Chung, H. Chen, S.R. Yeh, Y.J. Chuang, Y.C. Chang, and T.R. Yew, Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Analyst, 2016. 141(1): p. 279-84.
5. Wu, H.C., J.B. Lyau, M.H. Lin, Y.J. Chuang, and H. Chen, Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells. Journal of Micromechanics and Microengineering, 2017. 27(7).
6. Lin, M.H., H.C. Chou, Y.F. Chen, W. Liu, C.C. Lee, L.Y. Liu, and Y.J. Chuang, Development of a rapid and economic in vivo electrocardiogram platform for cardiovascular drug assay and electrophysiology research in adult zebrafish. Sci Rep, 2018. 8(1): p. 15986.
7. Lilly, L.S., Pathophysiology of heart disease : a collaborative project of medical students and faculty. 2003: Third edition. Philadelphia : Lippincott Williams & Wilkins, [2003] ©2003.
8. Woolfe, A., M. Goodson, D.K. Goode, P. Snell, G.K. McEwen, T. Vavouri, S.F. Smith, P. North, H. Callaway, K. Kelly, K. Walter, I. Abnizova, W. Gilks, Y.J. Edwards, J.E. Cooke, and G. Elgar, Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol, 2005. 3(1): p. e7.
9. Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, J. Brown, C. Murnane, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Garner, D. Kelly, C. Bird, S. Palmer, I. Gehring, A. Berger, C.M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. Kirn, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, C. Lanz, G. Raddatz, K. Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, F. Yang, S.C. Schuster, N.P. Carter, J. Harrow, Z. Ning, J. Herrero, S.M. Searle, A. Enright, R. Geisler, R.H. Plasterk, C. Lee, M. Westerfield, P.J. de Jong, L.I. Zon, J.H. Postlethwait, C. Nusslein-Volhard, T.J. Hubbard, H. Roest Crollius, J. Rogers and D.L. Stemple, The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
10. Hoo, J.Y., Y. Kumari, M.F. Shaikh, S.M. Hue, and B.H. Goh, Zebrafish: A Versatile Animal Model for Fertility Research. Biomed Res Int, 2016. 2016: p. 9732780.
11. Broughton, R.E., J.E. Milam, and B.A. Roe, The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res, 2001. 11(11): p. 1958-67.
12. Golling, G., A. Amsterdam, Z. Sun, M. Antonelli, E. Maldonado, W. Chen, S. Burgess, M. Haldi, K. Artzt, S. Farrington, S.Y. Lin, R.M. Nissen, and N. Hopkins, Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet, 2002. 31(2): p. 135-40.
13. Hortopan, G.A., M.T. Dinday, and S.C. Baraban, Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci, 2010. 30(41): p. 13718-28.
14. Peterson, R.T., S.Y. Shaw, T.A. Peterson, D.J. Milan, T.P. Zhong, S.L. Schreiber, C.A. MacRae, and M.C. Fishman, Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol, 2004. 22(5): p. 595-9.
15. Hallare, A.V., T. Kosmehl, T. Schulze, H. Hollert, H.R. Kohler, and R. Triebskorn, Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. Sci Total Environ, 2005. 347(1-3): p. 254-71.
16. Zhang, X., T. Beebe, N. Jen, C.A. Lee, Y. Tai, and T.K. Hsiai, Flexible and waterproof micro-sensors to uncover zebrafish circadian rhythms: The next generation of cardiac monitoring for drug screening. Biosens Bioelectron, 2015. 71: p. 150-7.
17. Vornanen, M. and M. Hassinen, Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin), 2016. 10(2): p. 101-10.
18. Nemtsas, P., E. Wettwer, T. Christ, G. Weidinger, and U. Ravens, Adult zebrafish heart as a model for human heart? An electrophysiological study. Journal of Molecular and Cellular Cardiology, 2010. 48(1): p. 161-171.
19. Milan, D.J., I.L. Jones, P.T. Ellinor, and C.A. MacRae, In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol, 2006. 291(1): p. H269-73.
20. Leong, I.U., J.R. Skinner, A.N. Shelling, and D.R. Love, Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression. Acta Physiol (Oxf), 2010. 199(3): p. 257-76.
21. U.S., F.D.A. Zebrafish Make a Splash in FDA Research. FDA Consumer Health Information 2013 12/18/2017 [cited 2013 04/08/2013]; 2:[2].
22. Milan, D.J., T.A. Peterson, J.N. Ruskin, R.T. Peterson, and C.A. MacRae, Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation, 2003. 107(10): p. 1355-1358.
23. Forouhar, A.S., J.R. Hove, C. Calvert, J. Flores, H. Jadvar, and M. Gharib, Electrocardiographic characterization of embryonic zebrafish. Conf Proc IEEE Eng Med Biol Soc, 2004. 5: p. 3615-7.
24. Sedmera, D., M. Reckova, A. deAlmeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R.A. McCarthy, R.G. Gourdie, and R.P. Thompson, Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol, 2003. 284(4): p. H1152-60.
25. Sun, P., Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu, L. Ai, C.H. Hu, Q. Zhou, K. Shung, C.L. Lien, and T.K. Hsiai, Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann Biomed Eng, 2009. 37(5): p. 890-901.
26. Huang, W.C., Y.S. Hsieh, I.H. Chen, C.H. Wang, H.W. Chang, C.C. Yang, T.H. Ku, S.R. Yeh, and Y.J. Chuang, Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish, 2010. 7(3): p. 297-304.
27. Rombough, P.J., Ontogenetic changes in the toxicity and efficacy of the anaesthetic MS222 (tricaine methanesulfonate) in zebrafish (Danio rerio) larvae. Comp Biochem Physiol A Mol Integr Physiol, 2007. 148(2): p. 463-9.
28. Arnaout, R., T. Ferrer, J. Huisken, K. Spitzer, D.Y. Stainier, M. Tristani-Firouzi, and N.C. Chi, Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11316-21.
29. Chaudhari, G.H., K.S. Chennubhotla, K. Chatti, and P. Kulkarni, Optimization of the adult zebrafish ECG method for assessment of drug-induced QTc prolongation. J Pharmacol Toxicol Methods, 2013. 67(2): p. 115-20.
30. Dhillon, S.S., E. Doro, I. Magyary, S. Egginton, A. Sik, and F. Muller, Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One, 2013. 8(4): p. e60552.
31. Tsai, C.T., C.K. Wu, F.T. Chiang, C.D. Tseng, J.K. Lee, C.C. Yu, Y.C. Wang, L.P. Lai, J.L. Lin, and J.J. Hwang, In-vitro recording of adult zebrafish heart electrocardiogram - a platform for pharmacological testing. Clin Chim Acta, 2011. 412(21-22): p. 1963-7.
32. Sanguinetti, M.C. and J.S. Mitcheson, Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci, 2005. 26(3): p. 119-24.
33. Hedegaard, H., M. Warner, and A.M. Minino, Drug Overdose Deaths in the United States, 1999-2016. NCHS Data Brief, 2017(294): p. 1-8.
34. Yap, Y.G. and A.J. Camm, Drug induced QT prolongation and torsades de pointes. Heart, 2003. 89(11): p. 1363-72.
35. De Ponti, F., E. Poluzzi, A. Cavalli, M. Recanatini, and N. Montanaro, Safety of non-antiarrhythmic drugs that prolong the QT interval or induce Torsade de Pointes an overview. Drug Safety, 2002. 25(4): p. 263-286.
36. Chan, A., G.K. Isbister, C.M. Kirkpatrick, and S.B. Dufful, Drug-induced QT prolongation and torsades de pointes: evaluation of a QT nomogram. QJM, 2007. 100(10): p. 609-15.
37. You, M.S., Y.J. Jiang, C.H. Yuh, C.M. Wang, C.H. Tang, Y.J. Chuang, B.H. Lin, J.L. Wu, and S.P. Hwang, A Sketch of the Taiwan Zebrafish Core Facility. Zebrafish, 2016. 13 Suppl 1: p. S24-9.
38. Mersereau, E.J., S.L. Poitra, A. Espinoza, D.A. Crossley, 2nd, and T. Darland, The effects of cocaine on heart rate and electrocardiogram in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol, 2015. 172-173: p. 1-6.
39. C, C., A. AP, L. A, C. F, S. H, and F. A, BioSPPy - Biosignal Processing in Python, in BioSPPy - Biosignal Processing in Python. 2015: https://github.com/PIA-Group/BioSPPy/.
40. Hamilton, P., Open source ECG analysis. Computers in Cardiology 2002, Vol 29, 2002. 29: p. 101-104.
41. Lourenco, A., H. Silva, P. Leite, R. Lourenco, and A. Fred, REAL TIME ELECTROCARDIOGRAM SEGMENTATION FOR FINGER BASED ECG BIOMETRICS. BIOSIGNALS, 2012: p. 49-54.
42. Lenning, M., J. Fortunato, T. Le, I. Clark, A. Sherpa, S. Yi, P. Hofsteen, G. Thamilarasu, J. Yang, X. Xu, H.D. Han, T.K. Hsiai, and H. Cao, Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection. Sensors (Basel), 2017. 18(1).
43. Christov, I.I., Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine, 2004. 3:28.
44. Pugach, E.K., P. Li, R. White, and L. Zon, Retro-orbital injection in adult zebrafish. J Vis Exp, 2009(34).
45. Liu, C.C., L. Li, Y.W. Lam, C.W. Siu, and S.H. Cheng, Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Sci Rep, 2016. 6: p. 25073.
46. Leor-Librach, R.J., B.Z. Bobrovsky, S. Eliash, and E. Kaplinsky, Computer-controlled heart rate increase by isoproterenol infusion: mathematical modeling of the system. Am J Physiol, 1999. 277(4 Pt 2): p. H1478-83.
47. Ross, J., Jr., J.W. Linhart, and E. Brauwald, Effects of changing heart rate in man by electrical stimulation of the right atrium. studies at rest, during exercise, and with isoproterenol. Circulation, 1965. 32(4): p. 549-58.
48. Lai, W.T., C.S. Lee, J.C. Wu, S.H. Sheu, and S.N. Wu, Effects of verapamil, propranolol, and procainamide on adenosine-induced negative dromotropism in human beings. Am Heart J, 1996. 132(4): p. 768-75.
49. Parker, T., P.A. Libourel, M.J. Hetheridge, R.I. Cumming, T.P. Sutcliffe, A.C. Goonesinghe, J.S. Ball, S.F. Owen, Y. Chomis, and M.J. Winter, A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. J Pharmacol Toxicol Methods, 2014. 69(1): p. 30-8.
50. Kochiadakis, G.E., E.M. Kanoupakis, N.E. Igoumenidis, H.E. Mavrakis, P.K. Kafarakis, and P.E. Vardas, Efficacy and safety of oral amiodarone in controlling heart rate in patients with persistent atrial fibrillation who have undergone digitalisation. Hellenic J Cardiol, 2005. 46(5): p. 336-40.
51. Siddoway, L.A., Amiodarone: guidelines for use and monitoring. Am Fam Physician, 2003. 68(11): p. 2189-96.
52. de Lera Ruiz, M. and R.L. Kraus, Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem, 2015. 58(18): p. 7093-118.
53. Grace, A.A. and A.J. Camm, Quinidine. New England Journal of Medicine, 1998. 338(1): p. 35-45.
54. Brill, D.M. and J.A. Wasserstrom, Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers. Circ Res, 1986. 58(1): p. 109-19.
55. Jordan, J., M.F. Galindo, S. Calvo, C. Gonzalez-Garcia, and V. Cena, Veratridine induces apoptotic death in bovine chromaffin cells through superoxide production. Br J Pharmacol, 2000. 130(7): p. 1496-504.
56. Amy, C. and N. Kirshner, 22Na+ uptake and catecholamine secretion by primary cultures of adrenal medulla cells. J Neurochem, 1982. 39(1): p. 132-42.
57. Koth, J., M.L. Maguire, D. McClymont, L. Diffley, V.L. Thornton, J. Beech, R.K. Patient, P.R. Riley, and J.E. Schneider, High-Resolution Magnetic Resonance Imaging of the Regenerating Adult Zebrafish Heart. Sci Rep, 2017. 7(1): p. 2917.
58. Ramlochansingh, C., F. Branoner, B.P. Chagnaud, and H. Straka, Efficacy of tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles. PLoS One, 2014. 9(7): p. e101606.
59. Hedrick, M.S. and R.E. Winmill, Excitatory and inhibitory effects of tricaine (MS-222) on fictive breathing in isolated bullfrog brain stem. Am J Physiol Regul Integr Comp Physiol, 2003. 284(2): p. R405-12.
60. Ho, D., X. Zhao, S. Gao, C. Hong, D.E. Vatner, and S.F. Vatner, Heart Rate and Electrocardiography Monitoring in Mice. Curr Protoc Mouse Biol, 2011. 1: p. 123-139.
61. Hohnloser, S.H., T. Klingenheben, and B.N. Singh, Amiodarone-associated proarrhythmic effects. A review with special reference to torsade de pointes tachycardia. Ann Intern Med, 1994. 121(7): p. 529-35.
62. Selzer, A. and H.W. Wray, Quinidine Syncope. Paroxysmal Ventricular Fibrillation Occurring during Treatment of Chronic Atrial Arrhythmias. Circulation, 1964. 30: p. 17-26.
63. Food and H.H.S. Drug Administration, International Conference on Harmonisation; guidance on E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; availability. Notice. Fed Regist, 2005. 70(202): p. 61134-5.
64. Yu, F., Y. Zhao, J. Gu, K.L. Quigley, N.C. Chi, Y.C. Tai, and T.K. Hsiai, Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed Microdevices, 2012. 14(2): p. 357-66.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *