帳號:guest(3.145.66.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉璁翰
作者(外文):Liu, Tsung-Han
論文名稱(中文):軟絲大腦視葉對體色的神經調控機制
論文名稱(外文):Neural organization of the optic lobe for controlling body patterns in oval squids Sepioteuthis lessoniana
指導教授(中文):焦傳金
指導教授(外文):Chiao, Chuan-Chin
口試委員(中文):楊恩誠
邱慈暉
張兗君
葉世榮
口試委員(外文):Yang, En-Cheng
Chiou, Tsyr-Huei
Chang, Yen-Chung
Yeh, Shin- Rung
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080808
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:色素細胞動態體色變化電刺激運動單元軟絲
外文關鍵詞:chromatophoresdynamic skin colorationelectrical stimulationmotor unitsoval squids
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
在自然界中,頭足類擁有快速改變體色的能力,牠們利用改變體色來進行快速的偽裝或是作為同物種間的溝通方式。在牠們的神經系統中,大腦視葉被認為是控制色素細胞進而產生多樣體色變化的重要角色。然而,我們對於視葉的功能性組織與如何運用神經控制所產生的各種體色變化仍舊所知甚少。在本研究中,我們利用電刺激軟絲(萊氏擬烏賊)大腦視葉的方式探究其體色變化的神經控制。從我們的實驗結果得知,視葉控制同側色素細胞變化的現象只發生在控制體胴上的色素細胞,而非頭部或是腕部。除此之外,視葉控制體表色素細胞面積的大小與給予的電刺激強度以及電刺激視葉的深度有正相關。這結果顯示,視葉主要為同側的體色控制並且在其功能性的組織上,有著垂直聚集的特性。我們更進一步分析14種因電刺激所產生的體色基本單元以及它們各自在視葉中的電刺激點位,發現每一種體色基本單元都能透過刺激視葉中不同的區域而誘發。而在一個刺激點位裡,也可以同時誘發不止一種體色基本單元被呈現。這個發現顯示,軟絲的每個體色基本單元,在其視葉中都具有多個運動單元在控制。而這些運動單元,則是以一種鑲嵌的型式在其視葉中分佈。在頭足類大腦視葉裡,這種重複且多樣組合的運動單元正好反映了頭足類生物能產生各種體色基本單元的組合,進而產生各式各樣的體色變化。
Cephalopods have highly dynamic skin coloration changes that allow rapid camouflage and intraspecies communication. The optic lobe is thought to play a key role in controlling the expression of the chromatophores that give rise to their diverse body patterns. However, the functional organization of the optic lobe and neural control of the various body patterns by the optic lobe are largely unknown. We applied electrical stimulation within the optic lobe to investigate the neural basis of body patterning in the oval squid, Sepioteuthis lessoniana. Most areas in the optic lobe mediated predominately ipsilateral expression of chromatophores present on the mantle, but not on the head and arms; furthermore, the expanded areas after electrical stimulation were positively correlated with an increase in stimulating voltage and stimulation depth. These results suggest a unilaterally dominant and vertically converged organization of the optic lobe. Furthermore, analyzing 14 of the elicited body pattern components and their corresponding stimulation sites revealed that the same components can be elicited by stimulating different parts of the optic lobe and that various subsets of these components can be coactivated by stimulating the same area. These findings suggest that many body pattern components may have multiple motor units in the optic lobe and that these are organized in a mosaic manner. The multiplicity associated with the nature of the neural controls of these components in the cephalopod brain thus reflects the versatility of the individual components during the generation of diverse body patterns.
Abstract Ⅰ
中文摘要 Ⅱ
Chapter 1: Introduction 1
1.1 Dynamic body patterning in cephalopods 1
1.1.1 Function of body patterns in cephalopods 1
1.1.2 Body pattern components 1
1.2 Chromatophore system 2
1.3 Optic lobe and body patterning 2
1.3.1 Morphology of the optic lobe 2
1.3.2 Function of the optic lobe 3
1.4 Specific aims 4
Chapter 2: Materials and Methods 5
2.1 Animals 5
2.2 Anesthetization 5
2.3 Electrical stimulation 6
2.4 Data analysis 7
2.4.1 Histological analysis 7
2.4.2 Image analysis 7
2.4.3 Statistical analysis 9
Chapter 3: Results 10
3.1 The pilot study 10
3.1.1 Electrical stimulating the optic lobe of cuttlefish evokes expression of body pattern components 10
3.1.2 Increase in the stimulation voltage enhances chromatophore expression 10
3.1.3 Monitoring the stimulation electrode site via ultrasound or MRI scan 11
3.2 Each body pattern component can be activated at multiple regions in the optic lobe 12
3.3 The temporal responses of each body pattern component are various in expression score, onset time, and offset time during electrical stimulation. 12
3.4 Control of chromatophore expression in the optic lobe is ipsilaterally dominant and non-somatotopically organized 13
3.5 Chromatophore expression is determined by activation strength and depth in the optic lobe 14
3.6 Body pattern components on the mantle are controlled more ipsilaterally, but more bilaterally on the head or arms 15
3.7 The motor units of individual body pattern components are multiplexed and interconnected within the optic lobe 16
3.8 The mosaic modules of body pattern components are widespread and repetitive in the optic lobe 18
3.9 Motor units of body pattern components from left and right optic lobes can be integrated together 18
Chapter 4: Discussion 20
4.1 Control of body coloration is ipsilaterally dominant and non-somatotopically organized in the optic lobe 20
4.2 The motor units of body pattern components are organized in a mosaic pattern in the optic lobe 22
4.3 Motor units in the optic lobe are repetitive and wild spread, and the motor commands for body patterning can be integrated together 24
4.4 Conclusion 25
References 27
Tables 31
Figures 34
Appendix 60
Material and methods 60
Animals 60
Surgery for electrical stimulation 60
Ultrasound scan 60
MRI scan 60
Figures 62
Boycott BB (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc Biol Sci 153:503-534.
Breidbach O, Kutsch W (1995) The nervous system of invertebrates: an evolutionary and comparative approach: Birkhäuser press.
Byrne RA, Griebel U, Wood JB, Mather JA (2003) Squid say it with skin: A graphic model for skin displays in Caribbean reef squid (Sepioteuthis sepioidea). Berliner Paläobiol. Abh. 3:29-35.
Cajal SR (1917) Contribución al conocimiento de la retina y centros ópticos de los cefalópodos. Trab. Lab. Invest. biol. Univ. Madr. 15:1-82.
Chichery R, Chanelet J (1976) Motor and behavioral responses obtained by stimulation with chronic electrodes of optic lobe of Sepia officinalis. Brain Res 105:525-532.
Chichery R, Chanelet J (1978) Motor responses obtained by stimulation of peduncle lobe of Sepia officinalis in chronic experiments. Brain Res 150:188-193.
Cloney RA, Florey E (1968) Ultrastructure of cephalopod chromatophore organs. Z Zellforsch Mik Ana 89:250-280.
Dubas F, Boyle PR (1985) Chromatophore motor units in Eledone cirrhosa (Cephalopoda, Octopoda). J Exp Biol 117:415-431.
Dubas F, Leonard RB, Hanlon RT (1986a) Chromatophore motoneurons in the brain of the squid, Lolliguncula brevis - an HRP study. Brain Res 374:21-29.
Dubas F, Hanlon RT, Ferguson GP, Pinsker HM (1986b) Localization and stimulation of chromatophore motoneurons in the brain of the squid, Lolliguncula brevis. J Exp Biol 121:1-25.
Froesch D, Messenger JB (1978) On leucophores and the chromatic unit of Octopus vulgaris. J Zool 186:163-173.
Gleadall IG (2013) The effects of prospective anaesthetic substances on cephalopods: summary of original data and a brief review of studies over the last two decades. J Exp Mar Biol Ecol 447:23-30.
Hanlon RT, Messenger JB (1996) Cephalopod behaviour: New York: Cambridge University Press.
Hanlon RT, Messenger JB (1988) Adaptive Coloration in Young Cuttlefish (Sepia Officinalis L.): The Morphology and Development of Body Patterns and Their Relation to Behaviour. Philos Trans R Soc Lond B Biol Sci 320:437-487.
Hanlon RT, Smale MJ, Sauer WHH (1994) An Ethogram of Body Patterning Behavior in the Squid Loligo vulgaris reynaudii on Spawning Grounds in South Africa. Biol Bull 204:305-317.
Jantzen TM, Havenhand JN (2003a) Reproductive behavior in the squid Sepioteuthis australis from South Australia: interactions on the spawning grounds. Biol Bull 204:305-317.
Jantzen TM, Havenhand JN (2003b) Reproductive behavior in the squid Sepioteuthis australis from South Australia: ethogram of reproductive body patterns. Biol Bull 204:290-304.
Langridge KV, Broom M, Osorio D (2007) Selective signalling by cuttlefish to predators. Curr Biol 17:1044-1045.
Lin CY, Tsai YC, Chiao CC (2017) Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front Ecol Evol 5:30.
Liu YC, Liu TH, Su CH, Chiao CC (2017) Neural organization of the optic lobe change steadily from late embryonic stage to adulthood in cuttlefish Sepia pharaonis. Front Physiol 8:358.
Mathger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Res 46:1746-1753.
Messenger JB (2001) Cephalopod chromatophores: neurobiology and natural history. Biol Rev 76:473-528.
Mooney TA, Lee WJ, Hanlon RT (2010) Long-duration anesthetization of squid (Doryteuthis pealeii). Mar Freshw Behav Phy 43:297-303.
Moynihan M, Rodaniche AF (1982) The behavior and natural history of the Caribbean Reef Squid Sepioteuthis sepioidea with a consideration of social, signal, and defensive patterns for difficult and dangerous environments. Fortschr Verhaltensforsch 25:9-150.
Nixon M, Young JZ (2003) The brains and lives of cephalopods: New York: Oxford University Press.
Novicki A, Budelmann BU, Hanlon RT (1990) Brain pathways of the chromatophore system in the squid Lolliguncula brevis. Brain Res 519:315-323.
Packard A (1982) Morphogenesis of chromatophore patterns in cephalopods - are morphological and physiological units the same. Malacologia 23:193-201.
Packard A, Sanders G (1969) What octopus shows to world. Endeavour 28:92-99.
Packard A, Sanders GD (1971) Body patterns of Octopus Vulgaris and maturation of response to disturbance. Anim Behav 19:780-790.
Packard A, Hochberg FG (1977) Skin patterning in octopus and other genera. Symp. Zool. Soc. Lond 38:191–231.
Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622-628.
Williamson R, Chrachri A (2004) Cephalopod neural networks. Neurosignals 13:87-98.
Young JZ (1962) Optic lobes of Octopus vulgaris. Philos Trans R Soc Lond B Biol Sci 245:19-58.
Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris: Oxford: Clarendon Press.
Young JZ (1974) The central nervous system of loligo I. the optic lobe. Philos Trans R Soc Lond B Biol Sci 267:263-302.
Zullo L, Sumbre G, Agnisola C, Flash T, Hochner B (2009) Nonsomatotopic organization of the higher motor centers in octopus. Curr Biol 19:1632-1636.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *