帳號:guest(18.119.167.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴治暄
作者(外文):Lai, Chih-Hsuan
論文名稱(中文):探討帶有N環的蛋白質酪胺酸磷酸酶: 雙特異性磷酸酶22中形成活性位點的結構見解
論文名稱(外文):The Study of N-loop-containing Protein Tyrosine Phosphatase: Structural Insights into the Active Site Formation of DUSP22
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping-Chiang
口試委員(中文):譚澤華
洪慧芝
徐尚德
鄭惠春
口試委員(外文):Tan, Tse-Hua
Hung, Hui-Chih
Hsu, Shang-Te Danny
Cheng, Hui-Chun
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:101080802
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:102
中文關鍵詞:蛋白質酪胺酸磷酸酶雙特異性磷酸酶活性位氫鍵網路N環雙特異性磷酸酶22
外文關鍵詞:Protein tyrosine phosphatasesDUSPsActive siteHydrogen bonding networkN-loopDUSP22
相關次數:
  • 推薦推薦:0
  • 點閱點閱:215
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
蛋白質酪胺酸磷酸酶 (PTPs)是一種調控細胞內磷酸化路徑的重要酵素,其中多數成員被歸類為基於半胱胺酸進行催化的蛋白質酪胺酸磷酸酶家族 (Cys-based PTPs)。這些Cys-based PTPs與激酶 (kinase) 共同調控細胞的生理活性,其中包含了細胞生長、細胞凋亡、以及免疫反應等。這個家族主要有兩個族群,分別為經典型蛋白質酪胺酸磷酸酶 (classical PTPs)和雙特異性磷酸酶 (DUSPs)。在過去的研究中,classical PTPs被深入的研究,並描述了催化位中的保守環和氫鍵網路對催化反應的重要性。Classical PTPs的活性位由三個保守的環和結構水形成,分別為D環、P環、以及Q環,並生成一個水介導的氫鍵網路。然而,DUSPs中具有複雜的族群分類,且大部分成員的活性位結構都與classical PTPs產生了差異並缺乏探討。為了能更精確的研究DUSPs的活性位結構,本篇研究找出了其中數量最多的活性位結構並發現這些PTPs都具有N環作為結構特徵。在DUSP族群中,這些帶有N環的蛋白質酪胺酸磷酸酶 (N-loop-containing PTPs)佔有45%的成員,並以D環、P環、以及N環組成活性位結構。不同於classical PTPs的地方在於這些環上各自具有一個高保留的胺基酸使用側鏈及主鏈醯胺鍵直接相互生成氫鍵網路,我們將其稱為D-, P-, N-三環交互作用 (DPN-triloop interaction)。
在本篇研究中,DUSP22被作為研究模型來探討DPN-triloop interaction在活性位結構生成的重要性與是否影響催化活性。DUSP22中生成DPN-triloop interaction的胺基酸分別為D環上的D57、P環上的S93、和N環上的N128。D57是一個參與催化反應的胺基酸,但S93和N128的功能未知。這些胺基酸分別以丙胺酸及體細胞突變來替換以進行結構生物學和酵素動力學上的研究。在水溶性結構中,以核磁共振 (NMR)的1H-, 15N-二維異核單量子關聯圖譜 (1H-, 15N-HSQC)觀測發現當對D57、S93、和N128任一點進行突變的時候會連帶的擾動對向參與交互作用的環的構型,並且擾動周圍二級結構上的胺基酸。晶體結構中進一步顯示了S93和N128的突變會造成D環結構變化,而位於D環上的D57則會離開催化位。在酵素動力學的研究中證實,大部分的丙胺酸突變和體細胞突變都會造成催化效率產生102倍以上的下降,顯示出氫鍵網路對活性位生成的重要性。這些結果指出了DPN-triloop interaction為一個生成活性位點的重要構型,並意味著擾動了任何一個環的結構都可能會通過DPN-triloop interaction影響磷酸酶的酵素活性。我們將P127突變為白胺酸來驗證這個理論,結果在1H-, 15N-HSQC圖譜中觀測到DUSP22整體產生明顯的結構變化,並且發現P127L能對催化效率造成近103倍的下降。我們的研究顯示了DPN-triloop interaction穩定了活性位的構型,並將其中的胺基酸置於適合結合受質以進行催化的位置。而這個在N-loop-containing PTPs中的保守氫鍵網路可以在進一步的研究中做為為癌症研究的生物標記,並且也能作為調控磷酸酶活性的目標來研究異位調控 (allosteric regulation)的可能機制。
Protein tyrosine phosphatases (PTPs) play crucial role to hydrolyze the phosphorylated substrates and regulate cell function. More than half of PTPs are belonged to Cysteine-based PTPs (Cys-based PTPs) which use cysteine to catalyze the substrates. Cys-based PTPs cooperate with kinases to regulate phosphorylation signaling pathway in cellular responses, such as cell differentiation, cell proliferation, and immune response. There are two major subfamilies in Cys-based PTPs: Classical PTPs and dual specificity phosphatases (DUSPs). Classical PTPs have been clearly investigated in previous studies, which describe the relationship between conserved loops and hydrogen bonding network in the active site. The active site structures of classical PTPs is consisted of the D-loop, P-loop, Q-loop, and structural water, and it forms a water-mediated hydrogen bonding network. However, DUSPs form the different active site structures from classical PTPs and the forming mechanism is still unclear. To investigate the active site of DUSPs, the conserved structure is searched in this study and we find that the active site structure contains the N-loop is conserved in 45% of DUSPs. The active site structures in N-loop-containing PTPs consist of the D-loop, P-loop, and N-loop. The side chain and backbone amide of conserved residues in each loop directly form a hydrogen bonding network to connect the three loops, and this configuration is described as the D-, P-, N-triloop interaction (DPN-triloop interaction) in this study.
DUSP22 is used as a model system to study whether the DPN-triloop interaction plays crucial role in active site formation. The DPN-triloop interaction in DUSP22 is formed by D57, S93, and N128. D57 participates in catalytic reaction, while the S93 and N128 have unknown effect. These residues are replaced with alanine and somatic mutation to investigate whether the DPN-triloop interaction can affect protein structure and kinetic activity. In solution structure, the 1H-, 15N-HSQC spectra of D57, S93, and N128 mutations indicates that mutation on one residue can perturb the conformation of three loops and the residues in connected secondary structures. The crystal structures show that S93 and N128 mutations induce the conformational change of D-loop, and the catalytic aspartate, D57, leave the catalytic site. In kinetic studies, the mutants indicate that disruption of the DPN-triloop interaction decrease the catalytic efficiency by 102 times. These results reveal that the DPN-triloop interaction is crucial for the active site formation, and perturbing the conformation of one loop can decrease the phosphatase activity through disrupting the DPN-triloop interaction. To verify this theory, the conserved proline in N-loop is mutated to leucine. The conformational change of P127L is observed in 1H-, 15N-HSQC spectrum and declines the catalytic efficiency by nearly 103 times. Our study reveals that the DPN-triloop interaction can stabilize the active site structure and align the active site residues in catalytic favorable site. The DPN-triloop interaction can become the potential biomarkers in further study of cancer development and provide the mechanism for regulating the phosphatase activity through allosteric site.
中文摘要 1
Abstract 3
Acknowledgements 6
Abbreviations 11
Chapter I Introduction 12
1.1 Cys-based PTPs 12
1.2 Catalytic reaction 13
1.3 The issues in drug development 14
1.3 The differences between classical PTPs and DUSPs 15
1.4 N-loop-containing PTPs 16
1.5 Hydrogen bonding network in the active site 17
1.6 DUSP22 17
Tables and Figures 20
Table 1.1. The classification scheme of classical PTPs and DUSPs in Cys-based PTPs 20
Figure 1.1. The two catalytic steps in classical PTPs. 21
Figure 1.2. The allosteric regulation of the D-loop conformation in PTP1B. 22
Figure 1.3. The active site structures in DUSPs. 23
Figure 1.4. The members of N-loop-containing PTPs. 25
Figure 1.5. The active site characteristic of Q-loop-containing PTPs and N-loop-containing PTPs. 26
Figure 1.6. The crystal structures of DUSP3 and DUSP22. 27
Chapter II Materials and Methods 28
2.1 Cloning and mutation of DUSP22 gene 28
2.2 Protein expression and purification 28
2.3 NMR experiments 30
2.4 Protein crystallization, data collection, and structure determination 31
2.5 Circular dichroism (CD) 32
2.6 pNPP kinetic assay 33
2.7 Isothermal titration calorimetry (ITC) 34
Tables and Figures 35
Table 2.1. Primers and protein expression in mutants 35
Table 2.2. Spectral acquisition parameters 36
Table 2.3. The crystallization conditions for the WT and mutants 37
Table 2.4. Data collection and structural refinement statistics of WT structures 38
Table 2.5. Data collection and structural refinement statistics of C88S, C88S/S93N, and C88S/S93A structures 40
Table 2.6. Data collection and structural refinement statistics of N128A and N128D structures 42
Figure 2.1. Map of pET21b-DUSP221-155 WT construction. 44
Figure 2.2. DUSP22 purification process. 45
Figure 2.3. The purified proteins of DUSP221-155 WT and mutants. 46
Figure 2.4. The X-ray crystallography studies of DUSP221-155 WT. 47
Figure 2.5. The X-ray crystallography experiments of C88S, S93A, C88S/S93A, and C88S/S93N. 48
Figure 2.6. The X-ray crystallography experiments of N128 mutants. 49
Chapter III Results 50
3.1 Establishing the experimental system for structural studies of DUSP22 50
3.1.1 Preparation of truncated DUSP22 50
3.1.2 Assignment of backbone resonances 51
3.1.3 X-ray crystallography 52
3.2 Structural studies of the DPN-triloop interaction 53
3.2.1 Preparation of D57, S93, and N128 mutants 53
3.2.2 Perturbing the conformation of three loops in solution conformation 55
3.2.3 The conformational change of D-loop in crystal structures 57
3.3 Functional studies of the DPN-triloop interaction 59
3.3.1 pNPP kinetic assay 59
3.3.2 ITC 60
3.4 Disrupting the conformation of N-loop 61
Tables and Figures 63
Table 3.1. The somatic mutations of S93 site and N128 site in N-loop-containing PTPs 63
Table 3.2. Kinetic parameters of DUSP221-155 WT and mutants 64
Table 3.3. Thermodynamic analysis of VO4 titration in DUSP221-155 WT and mutants 65
Table 3.4. The somatic mutations of P127 site in N-loop-containing PTPs 66
Figure 3.1. The phosphatase activity of DUSP221-155 WT. 67
Figure 3.2. Buffer selection in NMR experiments. 68
Figure 3.3. The assignment of backbone amide resonances. 69
Figure 3.4. The analysis of chemical shift assignments by TALOS+. 70
Figure 3.5. The interaction of phosphorylated Lck peptide and DUSP221-155 WT. 71
Figure 3.6. The two catalytic steps in DUSP22. 72
Figure 3.7. The perturbation of solution conformation by D57N mutation. 73
Figure 3.8. The perturbation of solution conformation by D57A, S93N, N128A, and N128D mutations. 75
Figure 3.9. The secondary structures and thermo-stability of WT and mutants. 76
Figure 3.10. The crystal structure of C88S. 77
Figure 3.11. The crystal structure of C88S/S93A. 78
Figure 3.12. The crystal structure of C88S/S93N. 79
Figure 3.13. The crystal structure of N128A. 80
Figure 3.14. The crystal structure of N128D. 81
Figure 3.15. The phosphatase activity of D57, S93, and N128 mutants. 82
Figure 3.16. The ligand binding studies of WT and mutants. 83
Chapter IV. Discussions 86
4.1 A correlation between the DPN-triloop interaction and phosphatase activity 86
4.2 The application of DPN-triloop interaction: biomarker and allosteric regulation 87
Table and Figures 90
Table 4.1. The somatic mutations in the D-loop, P-loop, and N-loop of DUP22 90
Figure 4.1. The domain-swapping changes the active site structure in DUSP26. 91
Figure 4.2. The allosteric site in DUSP10 perturbs the active site structure through the N-loop. 92
Chapter V. Conclusion 93
Research Publication 94
Reference 95
Appendix 101
Appendix 1. Strip plots of assigned residues in Cα spectra 101
Appendix 2. Strip plots of assigned residues in Cβ spectra 101
Appendix 3. Assignment of backbone amide resonances in D57N. 102

1. Hobiger, K.; Friedrich, T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015, 6, 20, doi:10.3389/fphar.2015.00020.
2. Alonso, A.; Pulido, R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2016, 283, 1404-1429, doi:10.1111/febs.13600.
3. Patterson, K.I.; Brummer, T.; O'Brien, P.M.; Daly, R.J. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 2009, 418, 475-489, doi:10.1042/bj20082234.
4. Meeusen, B.; Janssens, V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2018, 96, 98-134, doi:10.1016/j.biocel.2017.10.002.
5. He, R.J.; Yu, Z.H.; Zhang, R.Y.; Zhang, Z.Y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014, 35, 1227-1246, doi:10.1038/aps.2014.80.
6. Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006, 7, 833-846, doi:10.1038/nrm2039.
7. Wang, Z.; Shen, D.; Parsons, D.W.; Bardelli, A.; Sager, J.; Szabo, S.; Ptak, J.; Silliman, N.; Peters, B.A.; van der Heijden, M.S., et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004, 304, 1164-1166, doi:10.1126/science.1096096.
8. Pramanik, K.; Chun, C.Z.; Garnaas, M.K.; Samant, G.V.; Li, K.; Horswill, M.A.; North, P.E.; Ramchandran, R. Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 2009, 113, 1184-1191, doi:10.1182/blood-2008-06-162180.
9. Tartaglia, M.; Niemeyer, C.M.; Fragale, A.; Song, X.; Buechner, J.; Jung, A.; Hahlen, K.; Hasle, H.; Licht, J.D.; Gelb, B.D. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003, 34, 148-150, doi:10.1038/ng1156.
10. Tabernero, L.; Aricescu, A.R.; Jones, E.Y.; Szedlacsek, S.E. Protein tyrosine phosphatases: structure-function relationships. FEBS J 2008, 275, 867-882, doi:10.1111/j.1742-4658.2008.06251.x.
11. Brandao, T.A.; Hengge, A.C.; Johnson, S.J. Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 2010, 285, 15874-15883, doi:10.1074/jbc.M109.066951.
12. Pannifer, A.D.; Flint, A.J.; Tonks, N.K.; Barford, D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J Biol Chem 1998, 273, 10454-10462, doi:10.1074/jbc.273.17.10454.
13. Zhao, Y.; Wu, L.; Noh, S.J.; Guan, K.L.; Zhang, Z.Y. Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamine residues. J Biol Chem 1998, 273, 5484-5492, doi:10.1074/jbc.273.10.5484.
14. Denu, J.M.; Dixon, J.E. A catalytic mechanism for the dual-specific phosphatases. Proc Natl Acad Sci U S A 1995, 92, 5910-5914, doi:10.1073/pnas.92.13.5910.
15. Zhang, Z.Y. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. Acc Chem Res 2017, 50, 122-129, doi:10.1021/acs.accounts.6b00537.
16. Gannam, Z.T.K.; Min, K.; Shillingford, S.R.; Zhang, L.; Herrington, J.; Abriola, L.; Gareiss, P.C.; Pantouris, G.; Tzouvelekis, A.; Kaminski, N., et al. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci Signal 2020, 13, doi:10.1126/scisignal.aba3043.
17. Wiesmann, C.; Barr, K.J.; Kung, J.; Zhu, J.; Erlanson, D.A.; Shen, W.; Fahr, B.J.; Zhong, M.; Taylor, L.; Randal, M., et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004, 11, 730-737, doi:10.1038/nsmb803.
18. Cui, D.S.; Beaumont, V.; Ginther, P.S.; Lipchock, J.M.; Loria, J.P. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. J Mol Biol 2017, 429, 2360-2372, doi:10.1016/j.jmb.2017.06.009.
19. Doody, K.M.; Bourdeau, A.; Tremblay, M.L. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunol Rev 2009, 228, 325-341, doi:10.1111/j.1600-065X.2008.00743.x.
20. Jin, T.; Yu, H.; Huang, X.F. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B. Sci Rep 2016, 6, 20766, doi:10.1038/srep20766.
21. Chen, M.J.; Dixon, J.E.; Manning, G. Genomics and evolution of protein phosphatases. Sci Signal 2017, 10, doi:10.1126/scisignal.aag1796.
22. Jia, Z.; Barford, D.; Flint, A.J.; Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 1995, 268, 1754-1758, doi:10.1126/science.7540771.
23. Andersen, J.N.; Mortensen, O.H.; Peters, G.H.; Drake, P.G.; Iversen, L.F.; Olsen, O.H.; Jansen, P.G.; Andersen, H.S.; Tonks, N.K.; Moller, N.P. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 2001, 21, 7117-7136, doi:10.1128/MCB.21.21.7117-7136.2001.
24. Yuvaniyama, J.; Denu, J.M.; Dixon, J.E.; Saper, M.A. Crystal structure of the dual specificity protein phosphatase VHR. Science 1996, 272, 1328-1331, doi:10.1126/science.272.5266.1328.
25. Kuznetsov, V.I.; Hengge, A.C.; Johnson, S.J. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Biochemistry 2012, 51, 9869-9879, doi:10.1021/bi300908y.
26. Huang, C.Y.; Tan, T.H. DUSPs, to MAP kinases and beyond. Cell Biosci 2012, 2, 24, doi:10.1186/2045-3701-2-24.
27. Yokota, T.; Nara, Y.; Kashima, A.; Matsubara, K.; Misawa, S.; Kato, R.; Sugio, S. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution. Proteins 2007, 66, 272-278, doi:10.1002/prot.21152.
28. Schwertassek, U.; Buckley, D.A.; Xu, C.F.; Lindsay, A.J.; McCaffrey, M.W.; Neubert, T.A.; Tonks, N.K. Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J 2010, 277, 2463-2473, doi:10.1111/j.1742-4658.2010.07661.x.
29. Li, J.P.; Yang, C.Y.; Chuang, H.C.; Lan, J.L.; Chen, D.Y.; Chen, Y.M.; Wang, X.; Chen, A.J.; Belmont, J.W.; Tan, T.H. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nat Commun 2014, 5, 3618, doi:10.1038/ncomms4618.
30. Li, J.P.; Fu, Y.N.; Chen, Y.R.; Tan, T.H. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem 2010, 285, 5472-5478, doi:10.1074/jbc.M109.060186.
31. Shen, Y.; Luche, R.; Wei, B.; Gordon, M.L.; Diltz, C.D.; Tonks, N.K. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc Natl Acad Sci U S A 2001, 98, 13613-13618, doi:10.1073/pnas.231499098.
32. Chen, A.J.; Zhou, G.; Juan, T.; Colicos, S.M.; Cannon, J.P.; Cabriera-Hansen, M.; Meyer, C.F.; Jurecic, R.; Copeland, N.G.; Gilbert, D.J., et al. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 2002, 277, 36592-36601, doi:10.1074/jbc.M200453200.
33. Feldman, A.L.; Dogan, A.; Smith, D.I.; Law, M.E.; Ansell, S.M.; Johnson, S.H.; Porcher, J.C.; Ozsan, N.; Wieben, E.D.; Eckloff, B.W., et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011, 117, 915-919, doi:10.1182/blood-2010-08-303305.
34. Chuang, H.C.; Chen, Y.M.; Hung, W.T.; Li, J.P.; Chen, D.Y.; Lan, J.L.; Tan, T.H. Downregulation of the phosphatase JKAP/DUSP22 in T cells as a potential new biomarker of systemic lupus erythematosus nephritis. Oncotarget 2016, 7, 57593-57605, doi:10.18632/oncotarget.11419.
35. Zhou, R.; Chang, Y.; Liu, J.; Chen, M.; Wang, H.; Huang, M.; Liu, S.; Wang, X.; Zhao, Q. JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4(+) T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 2017, 8, 781, doi:10.3389/fimmu.2017.00781.
36. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E., et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019, 47, D941-D947, doi:10.1093/nar/gky1015.
37. Zhang, J.; Bajari, R.; Andric, D.; Gerthoffert, F.; Lepsa, A.; Nahal-Bose, H.; Stein, L.D.; Ferretti, V. The International Cancer Genome Consortium Data Portal. Nat Biotechnol 2019, 37, 367-369, doi:10.1038/s41587-019-0055-9.
38. Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: a sequence logo generator. Genome Res 2004, 14, 1188-1190, doi:10.1101/gr.849004.
39. van Ingen, H.; Bonvin, A.M. Information-driven modeling of large macromolecular assemblies using NMR data. J Magn Reson 2014, 241, 103-114, doi:10.1016/j.jmr.2013.10.021.
40. Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276, 307-326.
41. Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66, 213-221, doi:10.1107/S0907444909052925.
42. Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66, 486-501, doi:10.1107/S0907444910007493.
43. Lorenz, U. Protein tyrosine phosphatase assays. Curr Protoc Immunol 2011, Chapter 11, Unit 11 17, doi:10.1002/0471142735.im1107s93.
44. Alonso, A.; Narisawa, S.; Bogetz, J.; Tautz, L.; Hadzic, R.; Huynh, H.; Williams, S.; Gjorloff-Wingren, A.; Bremer, M.C.; Holsinger, L.J., et al. VHY, a novel myristoylated testis-restricted dual specificity protein phosphatase related to VHX. J Biol Chem 2004, 279, 32586-32591, doi:10.1074/jbc.M403442200.
45. Denu, J.M.; Lohse, D.L.; Vijayalakshmi, J.; Saper, M.A.; Dixon, J.E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A 1996, 93, 2493-2498.
46. Lountos, G.T.; Cherry, S.; Tropea, J.E.; Waugh, D.S. Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate. Acta Crystallogr F Struct Biol Commun 2015, 71, 199-205, doi:10.1107/S2053230X15000217.
47. Alonso, A.; Burkhalter, S.; Sasin, J.; Tautz, L.; Bogetz, J.; Huynh, H.; Bremer, M.C.; Holsinger, L.J.; Godzik, A.; Mustelin, T. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 2004, 279, 35768-35774, doi:10.1074/jbc.M403412200.
48. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009, 44, 213-223, doi:10.1007/s10858-009-9333-z.
49. Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M.J.; Ramachandran, C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 1997, 272, 843-851, doi:10.1074/jbc.272.2.843.
50. Xie, L.; Zhang, Y.L.; Zhang, Z.Y. Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry 2002, 41, 4032-4039.
51. Won, E.Y.; Xie, Y.; Takemoto, C.; Chen, L.; Liu, Z.J.; Wang, B.C.; Lee, D.; Woo, E.J.; Park, S.G.; Shirouzu, M., et al. High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. Acta Crystallogr D Biol Crystallogr 2013, 69, 1160-1170, doi:10.1107/S0907444913004770.
52. Won, E.Y.; Lee, S.O.; Lee, D.H.; Lee, D.; Bae, K.H.; Lee, S.C.; Kim, S.J.; Chi, S.W. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. PLoS One 2016, 11, e0162115, doi:10.1371/journal.pone.0162115.
53. Flint, A.J.; Tiganis, T.; Barford, D.; Tonks, N.K. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 1997, 94, 1680-1685, doi:10.1073/pnas.94.5.1680.
54. Lin, H.P.; Ho, H.M.; Chang, C.W.; Yeh, S.D.; Su, Y.W.; Tan, T.H.; Lin, W.J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis. FASEB J 2019, 33, 14653-14667, doi:10.1096/fj.201802558RR.
55. Chuang, H.C.; Tan, T.H. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019, 8, doi:10.3390/cells8111433.
56. Deng, Q.; Li, K.Y.; Chen, H.; Dai, J.H.; Zhai, Y.Y.; Wang, Q.; Li, N.; Wang, Y.P.; Han, Z.G. RNA interference against cancer/testis genes identifies dual specificity phosphatase 21 as a potential therapeutic target in human hepatocellular carcinoma. Hepatology 2014, 59, 518-530, doi:10.1002/hep.26665.
57. Wang, Y.; Kuramitsu, Y.; Kitagawa, T.; Baron, B.; Yoshino, S.; Maehara, S.; Maehara, Y.; Oka, M.; Nakamura, K. Cofilin-phosphatase slingshot-1L (SSH1L) is over-expressed in pancreatic cancer (PC) and contributes to tumor cell migration. Cancer Lett 2015, 360, 171-176, doi:10.1016/j.canlet.2015.02.015.
58. Beaumont, V.A.; Reiss, K.; Qu, Z.; Allen, B.; Batista, V.S.; Loria, J.P. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Biochemistry 2020, 59, 1896-1908, doi:10.1021/acs.biochem.0c00245.
59. Liu, X.; Zhang, C.S.; Lu, C.; Lin, S.C.; Wu, J.W.; Wang, Z.X. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun 2016, 7, 10879, doi:10.1038/ncomms10879.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *