|
1. Hobiger, K.; Friedrich, T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015, 6, 20, doi:10.3389/fphar.2015.00020. 2. Alonso, A.; Pulido, R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2016, 283, 1404-1429, doi:10.1111/febs.13600. 3. Patterson, K.I.; Brummer, T.; O'Brien, P.M.; Daly, R.J. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 2009, 418, 475-489, doi:10.1042/bj20082234. 4. Meeusen, B.; Janssens, V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2018, 96, 98-134, doi:10.1016/j.biocel.2017.10.002. 5. He, R.J.; Yu, Z.H.; Zhang, R.Y.; Zhang, Z.Y. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014, 35, 1227-1246, doi:10.1038/aps.2014.80. 6. Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006, 7, 833-846, doi:10.1038/nrm2039. 7. Wang, Z.; Shen, D.; Parsons, D.W.; Bardelli, A.; Sager, J.; Szabo, S.; Ptak, J.; Silliman, N.; Peters, B.A.; van der Heijden, M.S., et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004, 304, 1164-1166, doi:10.1126/science.1096096. 8. Pramanik, K.; Chun, C.Z.; Garnaas, M.K.; Samant, G.V.; Li, K.; Horswill, M.A.; North, P.E.; Ramchandran, R. Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 2009, 113, 1184-1191, doi:10.1182/blood-2008-06-162180. 9. Tartaglia, M.; Niemeyer, C.M.; Fragale, A.; Song, X.; Buechner, J.; Jung, A.; Hahlen, K.; Hasle, H.; Licht, J.D.; Gelb, B.D. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003, 34, 148-150, doi:10.1038/ng1156. 10. Tabernero, L.; Aricescu, A.R.; Jones, E.Y.; Szedlacsek, S.E. Protein tyrosine phosphatases: structure-function relationships. FEBS J 2008, 275, 867-882, doi:10.1111/j.1742-4658.2008.06251.x. 11. Brandao, T.A.; Hengge, A.C.; Johnson, S.J. Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 2010, 285, 15874-15883, doi:10.1074/jbc.M109.066951. 12. Pannifer, A.D.; Flint, A.J.; Tonks, N.K.; Barford, D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J Biol Chem 1998, 273, 10454-10462, doi:10.1074/jbc.273.17.10454. 13. Zhao, Y.; Wu, L.; Noh, S.J.; Guan, K.L.; Zhang, Z.Y. Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamine residues. J Biol Chem 1998, 273, 5484-5492, doi:10.1074/jbc.273.10.5484. 14. Denu, J.M.; Dixon, J.E. A catalytic mechanism for the dual-specific phosphatases. Proc Natl Acad Sci U S A 1995, 92, 5910-5914, doi:10.1073/pnas.92.13.5910. 15. Zhang, Z.Y. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. Acc Chem Res 2017, 50, 122-129, doi:10.1021/acs.accounts.6b00537. 16. Gannam, Z.T.K.; Min, K.; Shillingford, S.R.; Zhang, L.; Herrington, J.; Abriola, L.; Gareiss, P.C.; Pantouris, G.; Tzouvelekis, A.; Kaminski, N., et al. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Sci Signal 2020, 13, doi:10.1126/scisignal.aba3043. 17. Wiesmann, C.; Barr, K.J.; Kung, J.; Zhu, J.; Erlanson, D.A.; Shen, W.; Fahr, B.J.; Zhong, M.; Taylor, L.; Randal, M., et al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 2004, 11, 730-737, doi:10.1038/nsmb803. 18. Cui, D.S.; Beaumont, V.; Ginther, P.S.; Lipchock, J.M.; Loria, J.P. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. J Mol Biol 2017, 429, 2360-2372, doi:10.1016/j.jmb.2017.06.009. 19. Doody, K.M.; Bourdeau, A.; Tremblay, M.L. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunol Rev 2009, 228, 325-341, doi:10.1111/j.1600-065X.2008.00743.x. 20. Jin, T.; Yu, H.; Huang, X.F. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B. Sci Rep 2016, 6, 20766, doi:10.1038/srep20766. 21. Chen, M.J.; Dixon, J.E.; Manning, G. Genomics and evolution of protein phosphatases. Sci Signal 2017, 10, doi:10.1126/scisignal.aag1796. 22. Jia, Z.; Barford, D.; Flint, A.J.; Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 1995, 268, 1754-1758, doi:10.1126/science.7540771. 23. Andersen, J.N.; Mortensen, O.H.; Peters, G.H.; Drake, P.G.; Iversen, L.F.; Olsen, O.H.; Jansen, P.G.; Andersen, H.S.; Tonks, N.K.; Moller, N.P. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 2001, 21, 7117-7136, doi:10.1128/MCB.21.21.7117-7136.2001. 24. Yuvaniyama, J.; Denu, J.M.; Dixon, J.E.; Saper, M.A. Crystal structure of the dual specificity protein phosphatase VHR. Science 1996, 272, 1328-1331, doi:10.1126/science.272.5266.1328. 25. Kuznetsov, V.I.; Hengge, A.C.; Johnson, S.J. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Biochemistry 2012, 51, 9869-9879, doi:10.1021/bi300908y. 26. Huang, C.Y.; Tan, T.H. DUSPs, to MAP kinases and beyond. Cell Biosci 2012, 2, 24, doi:10.1186/2045-3701-2-24. 27. Yokota, T.; Nara, Y.; Kashima, A.; Matsubara, K.; Misawa, S.; Kato, R.; Sugio, S. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution. Proteins 2007, 66, 272-278, doi:10.1002/prot.21152. 28. Schwertassek, U.; Buckley, D.A.; Xu, C.F.; Lindsay, A.J.; McCaffrey, M.W.; Neubert, T.A.; Tonks, N.K. Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J 2010, 277, 2463-2473, doi:10.1111/j.1742-4658.2010.07661.x. 29. Li, J.P.; Yang, C.Y.; Chuang, H.C.; Lan, J.L.; Chen, D.Y.; Chen, Y.M.; Wang, X.; Chen, A.J.; Belmont, J.W.; Tan, T.H. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nat Commun 2014, 5, 3618, doi:10.1038/ncomms4618. 30. Li, J.P.; Fu, Y.N.; Chen, Y.R.; Tan, T.H. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem 2010, 285, 5472-5478, doi:10.1074/jbc.M109.060186. 31. Shen, Y.; Luche, R.; Wei, B.; Gordon, M.L.; Diltz, C.D.; Tonks, N.K. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc Natl Acad Sci U S A 2001, 98, 13613-13618, doi:10.1073/pnas.231499098. 32. Chen, A.J.; Zhou, G.; Juan, T.; Colicos, S.M.; Cannon, J.P.; Cabriera-Hansen, M.; Meyer, C.F.; Jurecic, R.; Copeland, N.G.; Gilbert, D.J., et al. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 2002, 277, 36592-36601, doi:10.1074/jbc.M200453200. 33. Feldman, A.L.; Dogan, A.; Smith, D.I.; Law, M.E.; Ansell, S.M.; Johnson, S.H.; Porcher, J.C.; Ozsan, N.; Wieben, E.D.; Eckloff, B.W., et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011, 117, 915-919, doi:10.1182/blood-2010-08-303305. 34. Chuang, H.C.; Chen, Y.M.; Hung, W.T.; Li, J.P.; Chen, D.Y.; Lan, J.L.; Tan, T.H. Downregulation of the phosphatase JKAP/DUSP22 in T cells as a potential new biomarker of systemic lupus erythematosus nephritis. Oncotarget 2016, 7, 57593-57605, doi:10.18632/oncotarget.11419. 35. Zhou, R.; Chang, Y.; Liu, J.; Chen, M.; Wang, H.; Huang, M.; Liu, S.; Wang, X.; Zhao, Q. JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4(+) T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 2017, 8, 781, doi:10.3389/fimmu.2017.00781. 36. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E., et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res 2019, 47, D941-D947, doi:10.1093/nar/gky1015. 37. Zhang, J.; Bajari, R.; Andric, D.; Gerthoffert, F.; Lepsa, A.; Nahal-Bose, H.; Stein, L.D.; Ferretti, V. The International Cancer Genome Consortium Data Portal. Nat Biotechnol 2019, 37, 367-369, doi:10.1038/s41587-019-0055-9. 38. Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: a sequence logo generator. Genome Res 2004, 14, 1188-1190, doi:10.1101/gr.849004. 39. van Ingen, H.; Bonvin, A.M. Information-driven modeling of large macromolecular assemblies using NMR data. J Magn Reson 2014, 241, 103-114, doi:10.1016/j.jmr.2013.10.021. 40. Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276, 307-326. 41. Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66, 213-221, doi:10.1107/S0907444909052925. 42. Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66, 486-501, doi:10.1107/S0907444910007493. 43. Lorenz, U. Protein tyrosine phosphatase assays. Curr Protoc Immunol 2011, Chapter 11, Unit 11 17, doi:10.1002/0471142735.im1107s93. 44. Alonso, A.; Narisawa, S.; Bogetz, J.; Tautz, L.; Hadzic, R.; Huynh, H.; Williams, S.; Gjorloff-Wingren, A.; Bremer, M.C.; Holsinger, L.J., et al. VHY, a novel myristoylated testis-restricted dual specificity protein phosphatase related to VHX. J Biol Chem 2004, 279, 32586-32591, doi:10.1074/jbc.M403442200. 45. Denu, J.M.; Lohse, D.L.; Vijayalakshmi, J.; Saper, M.A.; Dixon, J.E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A 1996, 93, 2493-2498. 46. Lountos, G.T.; Cherry, S.; Tropea, J.E.; Waugh, D.S. Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate. Acta Crystallogr F Struct Biol Commun 2015, 71, 199-205, doi:10.1107/S2053230X15000217. 47. Alonso, A.; Burkhalter, S.; Sasin, J.; Tautz, L.; Bogetz, J.; Huynh, H.; Bremer, M.C.; Holsinger, L.J.; Godzik, A.; Mustelin, T. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 2004, 279, 35768-35774, doi:10.1074/jbc.M403412200. 48. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009, 44, 213-223, doi:10.1007/s10858-009-9333-z. 49. Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M.J.; Ramachandran, C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 1997, 272, 843-851, doi:10.1074/jbc.272.2.843. 50. Xie, L.; Zhang, Y.L.; Zhang, Z.Y. Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry 2002, 41, 4032-4039. 51. Won, E.Y.; Xie, Y.; Takemoto, C.; Chen, L.; Liu, Z.J.; Wang, B.C.; Lee, D.; Woo, E.J.; Park, S.G.; Shirouzu, M., et al. High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. Acta Crystallogr D Biol Crystallogr 2013, 69, 1160-1170, doi:10.1107/S0907444913004770. 52. Won, E.Y.; Lee, S.O.; Lee, D.H.; Lee, D.; Bae, K.H.; Lee, S.C.; Kim, S.J.; Chi, S.W. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. PLoS One 2016, 11, e0162115, doi:10.1371/journal.pone.0162115. 53. Flint, A.J.; Tiganis, T.; Barford, D.; Tonks, N.K. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 1997, 94, 1680-1685, doi:10.1073/pnas.94.5.1680. 54. Lin, H.P.; Ho, H.M.; Chang, C.W.; Yeh, S.D.; Su, Y.W.; Tan, T.H.; Lin, W.J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis. FASEB J 2019, 33, 14653-14667, doi:10.1096/fj.201802558RR. 55. Chuang, H.C.; Tan, T.H. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019, 8, doi:10.3390/cells8111433. 56. Deng, Q.; Li, K.Y.; Chen, H.; Dai, J.H.; Zhai, Y.Y.; Wang, Q.; Li, N.; Wang, Y.P.; Han, Z.G. RNA interference against cancer/testis genes identifies dual specificity phosphatase 21 as a potential therapeutic target in human hepatocellular carcinoma. Hepatology 2014, 59, 518-530, doi:10.1002/hep.26665. 57. Wang, Y.; Kuramitsu, Y.; Kitagawa, T.; Baron, B.; Yoshino, S.; Maehara, S.; Maehara, Y.; Oka, M.; Nakamura, K. Cofilin-phosphatase slingshot-1L (SSH1L) is over-expressed in pancreatic cancer (PC) and contributes to tumor cell migration. Cancer Lett 2015, 360, 171-176, doi:10.1016/j.canlet.2015.02.015. 58. Beaumont, V.A.; Reiss, K.; Qu, Z.; Allen, B.; Batista, V.S.; Loria, J.P. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Biochemistry 2020, 59, 1896-1908, doi:10.1021/acs.biochem.0c00245. 59. Liu, X.; Zhang, C.S.; Lu, C.; Lin, S.C.; Wu, J.W.; Wang, Z.X. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun 2016, 7, 10879, doi:10.1038/ncomms10879.
|