|
1 Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 479-480, 672-686, doi:10.1016/j.virol.2015.02.031 (2015). 2 World Health Organization. Hepatitis B Fact Sheet, <http://www.who.int/en/news-room/fact-sheets/detail/hepatitis-b> (2018 ). 3 Kim, G. A. et al. HBsAg seroclearance after nucleoside analogue therapy in patients with chronic hepatitis B: clinical outcomes and durability. Gut 63, 1325-1332, doi:10.1136/gutjnl-2013-305517 (2014). 4 Chau, K. H., Hargie, M. P., Decker, R. H., Mushahwar, I. K. & Overby, L. R. Serodiagnosis of recent hepatitis B infection by IgM class anti-HBc. Hepatology 3, 142-149 (1983). 5 Mommeja‐Marin, H., Mondou, E., Blum, M. R. & Rousseau, F. Serum HBV DNA as a marker of efficacy during therapy for chronic HBV infection: analysis and review of the literature. Hepatology 37, 1309-1319 (2003). 6 Lucifora, J. & Protzer, U. Attacking hepatitis B virus cccDNA–The holy grail to hepatitis B cure. Journal of hepatology 64, S41-S48 (2016). 7 Chang, J., Guo, F., Zhao, X. & Guo, J. T. Therapeutic strategies for a functional cure of chronic hepatitis B virus infection. Acta Pharm Sin B 4, 248-257, doi:10.1016/j.apsb.2014.05.002 (2014). 8 Ringelhan, M., O'Connor, T., Protzer, U. & Heikenwalder, M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J Pathol 235, 355-367, doi:10.1002/path.4434 (2015). 9 Arzumanyan, A., Reis, H. M. & Feitelson, M. A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13, 123-135, doi:10.1038/nrc3449 (2013). 10 Kondo, Y., Ninomiya, M., Kakazu, E., Kimura, O. & Shimosegawa, T. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection. ISRN gastroenterology 2013 (2013). 11 Op den Brouw, M. L. et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology 126, 280-289, doi:10.1111/j.1365-2567.2008.02896.x (2009). 12 Tu, T., Budzinska, M. A., Shackel, N. A. & Urban, S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 9, 75, doi:10.3390/v9040075 (2017). 13 Lau, C. C. et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25, 335-349, doi:10.1016/j.ccr.2014.01.030 (2014). 14 Tu, T., Budzinska, M. A., Vondran, F. W. R., Shackel, N. A. & Urban, S. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles. J Virol, JVI. 02007-02017, doi:10.1128/JVI.02007-17 (2018). 15 Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452-462, doi:10.1016/j.cell.2007.10.022 (2007). 16 Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5, 45-54, doi:10.1038/nrm1276 (2004). 17 Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27, 585-610, doi:10.1146/annurev-cellbio-092910-154234 (2011). 18 Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16, 473-485, doi:10.1038/nrm4025 (2015). 19 Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13, 189-203, doi:10.1038/nrg3123 (2012). 20 Gupta, S. Hepatic polyploidy and liver growth control. Semin Cancer Biol 10, 161-171, doi:10.1006/scbi.2000.0317 (2000). 21 Margall-Ducos, G., Celton-Morizur, S., Couton, D., Bregerie, O. & Desdouets, C. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. Journal of Cell Science 120, 3633-3639, doi:10.1242/jcs.016907 (2007). 22 Gentric, G. & Desdouets, C. Polyploidization in liver tissue. Am J Pathol 184, 322-331, doi:10.1016/j.ajpath.2013.06.035 (2014). 23 Celton-Morizur, S., Merlen, G., Couton, D. & Desdouets, C. Polyploidy and liver proliferation: central role of insulin signaling. Cell Cycle 9, 460-466, doi:10.4161/cc.9.3.10542 (2010). 24 Toyoda, H. et al. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. Gut 54, 297-302, doi:10.1136/gut.2004.043893 (2005). 25 Studach, L. et al. Polo-like kinase 1 activated by the hepatitis B virus X protein attenuates both the DNA damage checkpoint and DNA repair resulting in partial polyploidy. J Biol Chem 285, 30282-30293, doi:10.1074/jbc.M109.093963 (2010). 26 Park, Y. N. Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med 135, 704-715, doi:10.1043/2010-0524-RA.1 (2011). 27 Anthony, P. P., Vogel, C. L. & Barker, L. F. Liver cell dysplasia: a premalignant condition. J Clin Pathol 26, 217-223 (1973). 28 Kim, H. et al. Large liver cell change in hepatitis B virus-related liver cirrhosis. Hepatology 50, 752-762, doi:10.1002/hep.23072 (2009). 29 Gripon, P., Le Seyec, J., Rumin, S. & Guguen-Guillouzo, C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213, 292-299, doi:10.1006/viro.1995.0002 (1995). 30 Le Seyec, J., Chouteau, P., Cannie, I., Guguen-Guillouzo, C. & Gripon, P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 73, 2052-2057 (1999). 31 Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1, e00049, doi:ARTN e0004910.7554/eLife.00049 (2012). 32 Bruss, V. Hepatitis B virus morphogenesis. World J Gastroenterol 13, 65-73 (2007). 33 Pollicino, T., Cacciola, I., Saffioti, F. & Raimondo, G. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. Journal of hepatology 61, 408-417, doi:10.1016/j.jhep.2014.04.041 (2014). 34 Tseng, T. C. & Kao, J. H. Clinical utility of quantitative HBsAg in natural history and nucleos(t)ide analogue treatment of chronic hepatitis B: new trick of old dog. J Gastroenterol 48, 13-21, doi:10.1007/s00535-012-0668-y (2013). 35 Chiang, C. J., Yang, Y. W., You, S. L., Lai, M. S. & Chen, C. J. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. JAMA 310, 974-976, doi:10.1001/jama.2013.276701 (2013). 36 Ni, Y. H. & Chen, D. S. Hepatitis B vaccination in children: the Taiwan experience. Pathol Biol (Paris) 58, 296-300, doi:10.1016/j.patbio.2009.11.002 (2010). 37 Volz, T. et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. Journal of hepatology 58, 861-867, doi:10.1016/j.jhep.2012.12.008 (2013). 38 Churin, Y., Roderfeld, M. & Roeb, E. Hepatitis B virus large surface protein: function and fame. Hepatobiliary Surg Nutr 4, 1-10, doi:10.3978/j.issn.2304-3881.2014.12.08 (2015). 39 Hildt, E., Saher, G., Bruss, V. & Hofschneider, P. H. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator. Virology 225, 235-239, doi:10.1006/viro.1996.0594 (1996). 40 Meyer, M. et al. Hepatitis B virus transactivator MHBst: activation of NF-kappa B, selective inhibition by antioxidants and integral membrane localization. The EMBO journal 11, 2991-3001 (1992). 41 Hildt, E., Munz, B., Saher, G., Reifenberg, K. & Hofschneider, P. H. The PreS2 activator MHBst of hepatitis B virus activates c‐raf‐1/Erk2 signaling in transgenic mice. The EMBO journal 21, 525-535 (2002). 42 Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. American Journal of Pathology 163, 2441-2449, doi:Doi 10.1016/S0002-9440(10)63599-7 (2003). 43 Hadziyannis, S., Gerber, M. A., Vissoulis, C. & Popper, H. Cytoplasmic Hepatitis-B Antigen in Ground-Glass Hepatocytes of Carriers. Archives of Pathology 96, 327-330 (1973). 44 Fan, Y. F. et al. Identification of a pre-S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. J Gastroenterol Hepatol 15, 519-528 (2000). 45 Hung, J.-H. et al. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-κB and pp38 mitogen-activated protein kinase. Journal of Biological Chemistry 279, 46384-46392 (2004). 46 Yang, J. C. et al. Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49, 1962-1971, doi:10.1002/hep.22889 (2009). 47 Wang, H. C. et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41, 761-770, doi:10.1002/hep.20615 (2005). 48 Hsieh, Y.-H. et al. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Molecular Cancer Research 5, 1063-1072 (2007). 49 Wang, H. C., Huang, W., Lai, M. D. & Su, I. J. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97, 683-688, doi:10.1111/j.1349-7006.2006.00235.x (2006). 50 Su, I. J., Wang, H. C., Wu, H. C. & Huang, W. Y. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J Gastroenterol Hepatol 23, 1169-1174, doi:10.1111/j.1440-1746.2008.05348.x (2008). 51 Tsai, H. W. et al. Resistance of ground glass hepatocytes to oral antivirals in chronic hepatitis B patients and implication for the development of hepatocellular carcinoma. Oncotarget 7, 27724-27734, doi:10.18632/oncotarget.8388 (2016). 52 Chou, Y. C. et al. Evaluation of transcriptional efficiency of hepatitis B virus covalently closed circular DNA by reverse transcription-PCR combined with the restriction enzyme digestion method. J Virol 79, 1813-1823, doi:10.1128/JVI.79.3.1813-1823.2005 (2005). 53 Sells, M. A., Chen, M. L. & Acs, G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84, 1005-1009 (1987). 54 Yen, T. T. et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget 7, 23346-23360, doi:10.18632/oncotarget.8109 (2016). 55 Reid, Y., Gaddipati, J. P., Yadav, D. & Kantor, J. Establishment of a human neonatal hepatocyte cell line. In Vitro Cell Dev Biol Anim 45, 535-542, doi:10.1007/s11626-009-9219-0 (2009). 56 Bissig, K. D., Le, T. T., Woods, N. B. & Verma, I. M. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 104, 20507-20511, doi:10.1073/pnas.0710528105 (2007). 57 Shih, Y. M. et al. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice. Sci Rep 5, 15259, doi:10.1038/srep15259 (2015). 58 Chen, C. C. et al. Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther 14, 11-19, doi:10.1038/sj.gt.3302846 (2007). 59 Yuh, C. H., Chang, Y. L. & Ting, L. P. Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus. J Virol 66, 4073-4084 (1992). 60 Nielsen, C. F. et al. PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nat Commun 6, 8962, doi:10.1038/ncomms9962 (2015). 61 Giam, M. & Rancati, G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div 10, 3, doi:10.1186/s13008-015-0009-7 (2015). 62 Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492-496, doi:10.1038/nature11935 (2013). 63 Timofeev, O., Cizmecioglu, O., Settele, F., Kempf, T. & Hoffmann, I. CDC25 phosphatases are required for timely assembly of CDK1/cyclin B at the G2/M transition. Journal of Biological Chemistry, jbc. M109. 096552 (2010). 64 de Gooijer, M. C. et al. The G2 checkpoint—a node‐based molecular switch. FEBS open bio 7, 439-455 (2017). 65 Hyun, S. Y., Hwang, H. I. & Jang, Y. J. Polo-like kinase-1 in DNA damage response. BMB Rep 47, 249-255 (2014). 66 Hall-Jackson, C. A., Cross, D. A. E., Morrice, N. & Smythe, C. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18, 6707-6713, doi:DOI 10.1038/sj.onc.1203077 (1999). 67 Sarkaria, J. N. et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59, 4375-4382 (1999). 68 Huang, S. N. & Chisari, F. V. Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21, 620-626 (1995). 69 Celton-Morizur, S. & Desdouets, C. Polyploidization of liver cells. Adv Exp Med Biol 676, 123-135 (2010). 70 Celton-Morizur, S., Merlen, G., Couton, D., Margall-Ducos, G. & Desdouets, C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 119, 1880-1887 (2009). 71 Margall-Ducos, G., Celton-Morizur, S., Couton, D., Bregerie, O. & Desdouets, C. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J Cell Sci 120, 3633-3639, doi:10.1242/jcs.016907 (2007). 72 Kudryavtsev, B. N., Kudryavtseva, M. V., Sakuta, G. A. & Stein, G. I. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch B Cell Pathol Incl Mol Pathol 64, 387-393 (1993). 73 Duncan, A. W. et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467, 707-710, doi:10.1038/nature09414 (2010). 74 Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25-28, doi:10.1053/j.gastro.2011.10.029 (2012). 75 Roessler, S. et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology 142, 957-966 e912, doi:10.1053/j.gastro.2011.12.039 (2012). 76 Kusano, N. et al. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 29, 1858-1862, doi:10.1002/hep.510290636 (1999). 77 Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043-1047, doi:10.1038/nature04217 (2005). 78 Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12, 1315-1328, doi:10.1091/mbc.12.5.1315 (2001). 79 Pellegrino, R. et al. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 51, 857-868, doi:10.1002/hep.23467 (2010). 80 Sun, W. et al. High expression of polo-like kinase 1 is associated with early development of hepatocellular carcinoma. Int J Genomics 2014, 312130, doi:10.1155/2014/312130 (2014). 81 Studach, L. L. et al. Polo-like kinase 1 inhibition suppresses hepatitis B virus X protein-induced transformation in an in vitro model of liver cancer progression. Hepatology 50, 414-423, doi:10.1002/hep.22996 (2009). 82 Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17, 316-322, doi:10.1016/j.cub.2006.12.037 (2007). 83 Haupenthal, J. et al. Reduced efficacy of the Plk1 inhibitor BI 2536 on the progression of hepatocellular carcinoma due to low intratumoral drug levels. Neoplasia 14, 410-419 (2012). 84 Shirakawa, J. et al. Insulin signaling regulates the FoxM1/PLK1/CENP-a pathway to promote adaptive pancreatic β cell proliferation. Cell metabolism 25, 868-882. e865 (2017). 85 Smith, L. et al. The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation. Sci Rep 7, 16115, doi:10.1038/s41598-017-16394-2 (2017). 86 Chisari, F. V. et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59, 1145-1156 (1989). 87 Wu, J. et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49, 1132-1140, doi:10.1002/hep.22751 (2009). 88 Su, I. J. et al. The emerging role of hepatitis B virus pre-S2 deletion mutant proteins in HBV tumorigenesis. Journal of biomedical science 21, 98, doi:10.1186/s12929-014-0098-7 (2014). 89 Chen, B. F. et al. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 130, 1153-1168, doi:10.1053/j.gastro.2006.01.011 (2006). 90 Chen, C. H. et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology 133, 1466-1474, doi:10.1053/j.gastro.2007.09.002 (2007). 91 Mathai, A. M. et al. Type II ground-glass hepatocytes as a marker of hepatocellular carcinoma in chronic hepatitis B. Human pathology 44, 1665-1671, doi:10.1016/j.humpath.2013.01.020 (2013). 92 Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163, 2441-2449, doi:10.1016/S0002-9440(10)63599-7 (2003). 93 Hung, J. H. et al. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279, 46384-46392, doi:10.1074/jbc.M403568200 (2004). 94 Hsieh, Y. H. et al. Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis. J Pathol 236, 337-347, doi:10.1002/path.4531 (2015). 95 Koo, J. S. et al. Predictive value of liver cell dysplasia for development of hepatocellular carcinoma in patients with chronic hepatitis B. J Clin Gastroenterol 42, 738-743, doi:10.1097/MCG.0b013e318038159d (2008). 96 Libbrecht, L., Craninx, M., Nevens, F., Desmet, V. & Roskams, T. Predictive value of liver cell dysplasia for development of hepatocellular carcinoma in patients with non-cirrhotic and cirrhotic chronic viral hepatitis. Histopathology 39, 66-73 (2001). 97 Lee, R. G., Tsamandas, A. C. & Demetris, A. J. Large cell change (liver cell dysplasia) and hepatocellular carcinoma in cirrhosis: matched case-control study, pathological analysis, and pathogenetic hypothesis. Hepatology 26, 1415-1422, doi:10.1002/hep.510260607 (1997). 98 Borzio, M. et al. Liver cell dysplasia is a major risk factor for hepatocellular carcinoma in cirrhosis: a prospective study. Gastroenterology 108, 812-817 (1995).
|