|
References I 1. Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity, Annu Rev Cell Dev Biol. 18, 601-35. 2. Barnes, A. P. & Polleux, F. (2009) Establishment of axon-dendrite polarity in developing neurons, Annu Rev Neurosci. 32, 347-81. 3. Kapitein, L. C. & Hoogenraad, C. C. (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons, Mol Cell Neurosci. 46, 9-20. 4. Sainath, R. & Gallo, G. (2015) Cytoskeletal and signaling mechanisms of neurite formation, Cell Tissue Res. 359, 267-78. 5. Brouhard, G. J. (2015) Dynamic instability 30 years later: complexities in microtubule growth and catastrophe, Mol Biol Cell. 26, 1207-10. 6. Mitchison, T. & Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature. 312, 237-42. 7. Niwa, S. (2015) Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis, Anat Sci Int. 90, 1-6. 8. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. (2009) Kinesin superfamily motor proteins and intracellular transport, Nat Rev Mol Cell Biol. 10, 682-96. 9. Perlson, E., Maday, S., Fu, M. M., Moughamian, A. J. & Holzbaur, E. L. (2010) Retrograde axonal transport: pathways to cell death?, Trends Neurosci. 33, 335-44. 10. Hirokawa, N., Niwa, S. & Tanaka, Y. (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease, Neuron. 68, 610-38. 11. Hirokawa, N. & Takemura, R. (2005) Molecular motors and mechanisms of directional transport in neurons, Nat Rev Neurosci. 6, 201-14. 12. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation, Neuron. 84, 292-309. 13. Eschbach, J. & Dupuis, L. (2011) Cytoplasmic dynein in neurodegeneration, Pharmacol Ther. 130, 348-63. 14. Brooks, B. R. (1991) The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis, Can J Neurol Sci. 18, 435-8. 15. Franker, M. A. & Hoogenraad, C. C. (2013) Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis, J Cell Sci. 126, 2319-29. 16. Breuss, M. & Keays, D. A. (2014) Microtubules and neurodevelopmental disease: the movers and the makers, Adv Exp Med Biol. 800, 75-96. 17. Robberecht, W. & Philips, T. (2013) The changing scene of amyotrophic lateral sclerosis, Nat Rev Neurosci. 14, 248-64. 18. Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H. W., Terada, S., Nakata, T., Takei, Y., Saito, M., Tsuji, S., Hayashi, Y. & Hirokawa, N. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta, Cell. 105, 587-97. 19. Hall, D. H. & Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans, Cell. 65, 837-47. 20. Maeder, C. I., San-Miguel, A., Wu, E. Y., Lu, H. & Shen, K. (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking, Traffic. 15, 273-91. 45 21. Zahn, T. R., Angleson, J. K., MacMorris, M. A., Domke, E., Hutton, J. F., Schwartz, C. & Hutton, J. C. (2004) Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104, Traffic. 5, 544-59. 22. Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T. & Hirokawa, N. (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice, J Cell Biol. 141, 431-41. 23. Kern, J. V., Zhang, Y. V., Kramer, S., Brenman, J. E. & Rasse, T. M. (2013) The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila, Genetics. 195, 59-72. 24. Zhang, Y. V., Hannan, S. B., Stapper, Z. A., Kern, J. V., Jahn, T. R. & Rasse, T. M. (2016) The Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation, Front Cell Neurosci. 10, 207. 25. Brady, S. T. & Morfini, G. A. (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases, Neurobiol Dis. 105, 273-282. 26. Millecamps, S. & Julien, J. P. (2013) Axonal transport deficits and neurodegenerative diseases, Nat Rev Neurosci. 14, 161-76. 27. Tien, N. W., Wu, G. H., Hsu, C. C., Chang, C. Y. & Wagner, O. I. (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons, Neurobiol Dis. 43, 495-506. 28. Rashid, D. J., Bononi, J., Tripet, B. P., Hodges, R. S. & Pierce, D. W. (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A, J Pept Res. 65, 538-49. 29. Niwa, S., Lipton, D. M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H. & Shen, K. (2016) Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses, Cell Rep. 16, 2129-2141. 30. Klopfenstein, D. R. & Vale, R. D. (2004) The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans, Mol Biol Cell. 15, 3729-39. 31. Li, L. B., Lei, H., Arey, R. N., Li, P., Liu, J., Murphy, C. T., Xu, X. Z. & Shen, K. (2016) The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory, Curr Biol. 26, 605-15. 32. Sudhof, T. C. (2004) The synaptic vesicle cycle, Annu Rev Neurosci. 27, 509-47. 33. Dresbach, T., Qualmann, B., Kessels, M. M., Garner, C. C. & Gundelfinger, E. D. (2001) The presynaptic cytomatrix of brain synapses, Cell Mol Life Sci. 58, 94-116. 34. Schoch, S. & Gundelfinger, E. D. (2006) Molecular organization of the presynaptic active zone, Cell Tissue Res. 326, 379-91. 35. Gundelfinger, E. D. & tom Dieck, S. (2000) Molecular organization of excitatory chemical synapses in the mammalian brain, Naturwissenschaften. 87, 513-23. 36. Rosenmund, C., Rettig, J. & Brose, N. (2003) Molecular mechanisms of active zone function, Curr Opin Neurobiol. 13, 509-19. 37. Ziv, N. E. & Garner, C. C. (2004) Cellular and molecular mechanisms of presynaptic assembly, Nat Rev Neurosci. 5, 385-99. 38. Wagner, O. I., Esposito, A., Kohler, B., Chen, C. W., Shen, C. P., Wu, G. H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F. S. & Klopfenstein, D. R. (2009) Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans, Proc Natl Acad Sci U S A. 106, 19605-10. 46 39. Nonet, M. L., Staunton, J. E., Kilgard, M. P., Fergestad, T., Hartwieg, E., Horvitz, H. R., Jorgensen, E. M. & Meyer, B. J. (1997) Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles, J Neurosci. 17, 8061-73. 40. Xuan, Z., Manning, L., Nelson, J., Richmond, J. E., Colon-Ramos, D. A., Shen, K. & Kurshan, P. T. (2017) Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release, Elife. 6. 41. Wu, G. H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y. H. & Wagner, O. I. (2016) Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons, Traffic. 17, 891-907. 42. Zhen, M. & Jin, Y. (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans, Nature. 401, 371-5. 43. Yeh, E., Kawano, T., Weimer, R. M., Bessereau, J. L. & Zhen, M. (2005) Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans, J Neurosci. 25, 3833-41. 44. Ko, J., Na, M., Kim, S., Lee, J. R. & Kim, E. (2003) Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins, J Biol Chem. 278, 42377-85. 45. Chia, P. H., Patel, M. R., Wagner, O. I., Klopfenstein, D. R. & Shen, K. (2013) Intramolecular regulation of presynaptic scaffold protein SYD-2/liprin-alpha, Mol Cell Neurosci. 56, 76-84. 46. Stigloher, C., Zhan, H., Zhen, M., Richmond, J. & Bessereau, J. L. (2011) The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions, J Neurosci. 31, 4388-96. 47. Kittelmann, M., Hegermann, J., Goncharov, A., Taru, H., Ellisman, M. H., Richmond, J. E., Jin, Y. & Eimer, S. (2013) Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans, J Cell Biol. 203, 849-63. 48. Ackermann, F., Waites, C. L. & Garner, C. C. (2015) Presynaptic active zones in invertebrates and vertebrates, EMBO Rep. 16, 923-38. 49. Shin, H., Wyszynski, M., Huh, K. H., Valtschanoff, J. G., Lee, J. R., Ko, J., Streuli, M., Weinberg, R. J., Sheng, M. & Kim, E. (2003) Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha, J Biol Chem. 278, 11393-401. 50. Spangler, S. A., Schmitz, S. K., Kevenaar, J. T., de Graaff, E., de Wit, H., Demmers, J., Toonen, R. F. & Hoogenraad, C. C. (2013) Liprin-alpha2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission, J Cell Biol. 201, 915-28. 51. Dai, Y., Taru, H., Deken, S. L., Grill, B., Ackley, B., Nonet, M. L. & Jin, Y. (2006) SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS, Nat Neurosci. 9, 1479-87. 52. Ko, J., Kim, S., Valtschanoff, J. G., Shin, H., Lee, J. R., Sheng, M., Premont, R. T., Weinberg, R. J. & Kim, E. (2003) Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting, J Neurosci. 23, 1667-77. 53. Goodwin, P. R. & Juo, P. (2013) The scaffolding protein SYD-2/Liprin-alpha regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons, PLoS One. 8, e54763. 47 54. Wu, Y. E., Huo, L., Maeder, C. I., Feng, W. & Shen, K. (2013) The balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses, Neuron. 78, 994-1011. 55. Edwards, S. L., Yorks, R. M., Morrison, L. M., Hoover, C. M. & Miller, K. G. (2015) Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditis elegans, Genetics. 201, 91-116. 56. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T. C. (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion, Nature. 388, 593-8. 57. Koushika, S. P., Richmond, J. E., Hadwiger, G., Weimer, R. M., Jorgensen, E. M. & Nonet, M. L. (2001) A post-docking role for active zone protein Rim, Nat Neurosci. 4, 997-1005. 58. Wang, Y., Sugita, S. & Sudhof, T. C. (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins, J Biol Chem. 275, 20033-44. 59. Schoch, S., Castillo, P. E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R. C. & Sudhof, T. C. (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone, Nature. 415, 321-6. 60. Han, Y., Kaeser, P. S., Sudhof, T. C. & Schneggenburger, R. (2011) RIM determines Ca(2)+ channel density and vesicle docking at the presynaptic active zone, Neuron. 69, 304-16. 61. Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. & Malenka, R. C. (2002) RIM1alpha is required for presynaptic long-term potentiation, Nature. 415, 327-30. 62. Geppert, M., Bolshakov, V. Y., Siegelbaum, S. A., Takei, K., De Camilli, P., Hammer, R. E. & Sudhof, T. C. (1994) The role of Rab3A in neurotransmitter release, Nature. 369, 493-7. 63. Lin, C. G., Lin, Y. C., Liu, H. W. & Kao, L. S. (1997) Characterization of Rab3A, Rab3B and Rab3C: different biochemical properties and intracellular localization in bovine chromaffin cells, Biochem J. 324 ( Pt 1), 85-90. 64. Johnston, P. A., Archer, B. T., 3rd, Robinson, K., Mignery, G. A., Jahn, R. & Sudhof, T. C. (1991) rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence, Neuron. 7, 101-9. 65. Fischer von Mollard, G., Stahl, B., Li, C., Sudhof, T. C. & Jahn, R. (1994) Rab proteins in regulated exocytosis, Trends Biochem Sci. 19, 164-8. 66. Coleman, W. L., Bill, C. A. & Bykhovskaia, M. (2007) Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse, Neuroscience. 148, 1-6. 67. Graf, E. R., Daniels, R. W., Burgess, R. W., Schwarz, T. L. & DiAntonio, A. (2009) Rab3 dynamically controls protein composition at active zones, Neuron. 64, 663-77. 68. Mahoney, T. R., Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z. W., Fukuda, M. & Nonet, M. L. (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans, Mol Biol Cell. 17, 2617-25. 69. Iwasaki, K. & Toyonaga, R. (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission, EMBO J. 19, 4806-16. 70. Li, J. Y., Jahn, R. & Dahlstrom, A. (1995) Rab3a, a small GTP-binding protein, undergoes fast anterograde transport but not retrograde transport in neurons, Eur J Cell Biol. 67, 297-307. 48 71. Niwa, S., Tanaka, Y. & Hirokawa, N. (2008) KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD, Nat Cell Biol. 10, 1269-79. 72. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J Neurosci. 18, 70-80. 73. Sudhof, T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature. 375, 645-53. 74. Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin, Cell. 73, 1291-305. 75. Ward, S., Burke, D. J., Sulston, J. E., Coulson, A. R., Albertson, D. G., Ammons, D., Klass, M. & Hogan, E. (1988) Genomic organization of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans, Journal of molecular biology. 199, 1-13. 76. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis, Nature methods. 9, 671-5. 77. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94. 78. Hsu, C. C., Moncaleano, J. D. & Wagner, O. I. (2011) Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons, Neuroscience. 176, 39-52. 79. Kumar, J., Choudhary, B. C., Metpally, R., Zheng, Q., Nonet, M. L., Ramanathan, S., Klopfenstein, D. R. & Koushika, S. P. (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo, PLoS Genet. 6, e1001200. 80. Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. & Stanley, E. F. (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization, J Neurosci. 24, 4070-81. 81. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. & Tsien, R. Y. (2002) A monomeric red fluorescent protein, Proc Natl Acad Sci U S A. 99, 7877-82. 82. Zhen, M. & Jin, Y. (2004) Presynaptic terminal differentiation: transport and assembly, Curr Opin Neurobiol. 14, 280-7. 83. Taru, H. & Jin, Y. (2011) The Liprin homology domain is essential for the homomeric interaction of SYD-2/Liprin-alpha protein in presynaptic assembly, J Neurosci. 31, 16261-8. 84. Miller, K. E., DeProto, J., Kaufmann, N., Patel, B. N., Duckworth, A. & Van Vactor, D. (2005) Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles, Curr Biol. 15, 684-9. 85. Gracheva, E. O., Hadwiger, G., Nonet, M. L. & Richmond, J. E. (2008) Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density, Neurosci Lett. 444, 137-42. 86. Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. (2016) Microtubule Organization Determines Axonal Transport Dynamics, Neuron. 92, 449-460. 87. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. (2007) Multiple-motor based transport and its regulation by Tau, Proc Natl Acad Sci U S A. 104, 87-92. 88. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor, Cell. 109, 347-58. 49 89. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization, Science. 297, 2263-7. 90. Zheng, Q., Ahlawat, S., Schaefer, A., Mahoney, T., Koushika, S. P. & Nonet, M. L. (2014) The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport, PLoS Genet. 10, e1004644. 91. Tyers, M., Haslam, R. J., Rachubinski, R. A. & Harley, C. B. (1989) Molecular analysis of pleckstrin: the major protein kinase C substrate of platelets, J Cell Biochem. 40, 133-45. 92. Haslam, R. J., Koide, H. B. & Hemmings, B. A. (1993) Pleckstrin domain homology, Nature. 363, 309-10. 93. Shaw, G. (1996) The pleckstrin homology domain: an intriguing multifunctional protein module, Bioessays. 18, 35-46. 94. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. (1993) The PH domain: a common piece in the structural patchwork of signalling proteins, Trends Biochem Sci. 18, 343-8. 95. Gibson, T. J., Hyvonen, M., Musacchio, A., Saraste, M. & Birney, E. (1994) PH domain: the first anniversary, Trends Biochem Sci. 19, 349-53. 96. M, A. L., M, F., J, S. & K, F. (1997) Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains, Trends Cell Biol. 7, 237-42. 97. Kavran, J. M., Klein, D. E., Lee, A., Falasca, M., Isakoff, S. J., Skolnik, E. Y. & Lemmon, M. A. (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains, J Biol Chem. 273, 30497-508. 98. Lemmon, M. A. & Ferguson, K. M. (2001) Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides, Biochem Soc Trans. 29, 377-84. 99. Joanna L.Richens, Jordan S.L, Jonathan P.B, Paul O’Shea (2015) The electrical interplay between proteins and lipids in membranes, Biochimica et Biophysica Acta (BBA) – Biomembranes. 1848, Issue 9. References II 1. Prevo, B., Scholey, J. M. & Peterman, E. J. G. (2017) Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery, FEBS J. 284, 2905-2931. 2. Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. & Anderson, K. V. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature. 426, 83-7. 3. Huangfu, D. & Anderson, K. V. (2005) Cilia and Hedgehog responsiveness in the mouse, Proceedings of the National Academy of Sciences of the United States of America. 102, 11325-30. 4. Ocbina, P. J. & Anderson, K. V. (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts, Dev Dyn. 237, 2030-8. 5. Ishikawa, H. & Marshall, W. F. (2011) Ciliogenesis: building the cell's antenna, Nat Rev Mol Cell Biol. 12, 222-34. 6. Zaghloul, N. A. & Brugmann, S. A. (2011) The emerging face of primary cilia, Genesis (New York, NY : 2000). 49, 231-46. 7. Mourao, A., Christensen, S. T. & Lorentzen, E. (2016) The intraflagellar transport machinery in ciliary signaling, Current opinion in structural biology. 41, 98-108. 8. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans, Dev Biol. 117, 456-87. 9. Inglis, P., Guangshuo Ou, Michel R. Leroux & Scholey, J. M. (2006) The sensory cilia of Caenorhabditis elegans, WormBook, ed The C elegans research community. 10. Snow, J. J., Ou, G., Gunnarson, A. L., Walker, M. R., Zhou, H. M., Brust-Mascher, I. & Scholey, J. M. (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons, Nature cell biology. 6, 1109-13. 11. Cornella I Bargmann, Erika Hartwieg & Horvitz, H. R. (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans, Cell. 74, 515-527. 12. Pan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O. E., Endres, N. F., Tao, L., Mogilner, A., Leroux, M. R., Vale, R. D. & Scholey, J. M. (2006) Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors, The Journal of cell biology. 174, 1035-45. 13. Han, Y. G., Kwok, B. H. & Kernan, M. J. (2003) Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm, Current biology : CB. 13, 1679-86. 14. Stepanek, L. & Pigino, G. (2016) Microtubule doublets are double-track railways for intraflagellar transport trains, Science (New York, NY). 352, 721-4. 15. Prevo, B., Mangeol, P., Oswald, F., Scholey, J. M. & Peterman, E. J. (2015) Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia, Nature cell biology. 16. Chien, A., Shih, S. M., Bower, R., Tritschler, D., Porter, M. E. & Yildiz, A. (2017) Dynamics of the IFT machinery at the ciliary tip, Elife. 6. 17. Luo, W., Ruba, A., Takao, D., Zweifel, L. P., Lim, R. Y. H., Verhey, K. J. & Yang, W. (2017) Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium, Sci Rep. 7, 15793. 105 18. Wren, K. N., Craft, J. M., Tritschler, D., Schauer, A., Patel, D. K., Smith, E. F., Porter, M. E., Kner, P. & Lechtreck, K. F. (2013) A differential cargo-loading model of ciliary length regulation by IFT, Current biology : CB. 23, 2463-71. 19. Lechtreck, K. F. (2015) IFT-Cargo Interactions and Protein Transport in Cilia, Trends in biochemical sciences. 40, 765-78. 20. Blacque, O. E. & Sanders, A. A. (2014) Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease, Organogenesis. 10, 126-37. 21. Sung, C. H. & Leroux, M. R. (2013) The roles of evolutionarily conserved functional modules in cilia-related trafficking, Nature cell biology. 15, 1387-97. 22. Keeling, J., Tsiokas, L. & Maskey, D. (2016) Cellular Mechanisms of Ciliary Length Control, Cells. 5. 23. Marshall, W. F., Qin, H., Rodrigo Brenni, M. & Rosenbaum, J. L. (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover, Mol Biol Cell. 16, 270-8. 24. Marshall, W. F. & Rosenbaum, J. L. (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, The Journal of cell biology. 155, 405-14. 25. Liang, Y., Meng, D., Zhu, B. & Pan, J. (2016) Mechanism of ciliary disassembly, Cell Mol Life Sci. 73, 1787-802. 26. Canning, P., Park, K., Goncalves, J., Li, C., Howard, C. J., Sharpe, T. D., Holt, L. J., Pelletier, L., Bullock, A. N. & Leroux, M. R. (2018) CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function, Cell Rep. 22, 885-894. 27. Hildebrandt, F., Benzing, T. & Katsanis, N. (2011) Ciliopathies, The New England journal of medicine. 364, 1533-43. 28. Waters, A. M. & Beales, P. L. (2011) Ciliopathies: an expanding disease spectrum, Pediatric nephrology (Berlin, Germany). 26, 1039-56. 29. Brown, J. M. & Witman, G. B. (2014) Cilia and Diseases, Bioscience. 64, 1126-1137. 30. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating, Proceedings of the National Academy of Sciences of the United States of America. 90, 5519-23. 31. Cantagrel, V., Silhavy, J. L., Bielas, S. L., Swistun, D., Marsh, S. E., Bertrand, J. Y., Audollent, S., Attie-Bitach, T., Holden, K. R., Dobyns, W. B., Traver, D., Al-Gazali, L., Ali, B. R., Lindner, T. H., Caspary, T., Otto, E. A., Hildebrandt, F., Glass, I. A., Logan, C. V., Johnson, C. A., Bennett, C., Brancati, F., International Joubert Syndrome Related Disorders Study, G., Valente, E. M., Woods, C. G. & Gleeson, J. G. (2008) Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome, Am J Hum Genet. 83, 170-9. 32. Larkins, C. E., Aviles, G. D., East, M. P., Kahn, R. A. & Caspary, T. (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins, Mol Biol Cell. 22, 4694-703. 33. Cevik, S., Hori, Y., Kaplan, O. I., Kida, K., Toivenon, T., Foley-Fisher, C., Cottell, D., Katada, T., Kontani, K. & Blacque, O. E. (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans, The Journal of cell biology. 188, 953-69. 106 34. Masyukova, S. V., Landis, D. E., Henke, S. J., Williams, C. L., Pieczynski, J. N., Roszczynialski, K. N., Covington, J. E., Malarkey, E. B. & Yoder, B. K. (2016) A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4, PLoS genetics. 12, e1005841. 35. Pan, J. & Snell, W. J. (2003) Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase, J Cell Sci. 116, 2179-86. 36. Bradley, B. A. & Quarmby, L. M. (2005) A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas, J Cell Sci. 118, 3317-26. 37. Meng, D. & Pan, J. (2016) A NIMA-related kinase, CNK4, regulates ciliary stability and length, Mol Biol Cell. 27, 838-47. 38. Liang, Y., Pang, Y., Wu, Q., Hu, Z., Han, X., Xu, Y., Deng, H. & Pan, J. (2014) FLA8/KIF3B Phosphorylation Regulates Kinesin-II Interaction with IFT-B to Control IFT Entry and Turnaround, Developmental cell. 39. Blacque, O. E., Reardon, M. J., Li, C., McCarthy, J., Mahjoub, M. R., Ansley, S. J., Badano, J. L., Mah, A. K., Beales, P. L., Davidson, W. S., Johnsen, R. C., Audeh, M., Plasterk, R. H., Baillie, D. L., Katsanis, N., Quarmby, L. M., Wicks, S. R. & Leroux, M. R. (2004) Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport, Genes Dev. 18, 1630-42. 40. Wei, Q., Zhang, Y., Li, Y., Zhang, Q., Ling, K. & Hu, J. (2012) The BBSome controls IFT assembly and turnaround in cilia, Nature cell biology. 14, 950-7. 41. Ou, G., Koga, M., Blacque, O. E., Murayama, T., Ohshima, Y., Schafer, J. C., Li, C., Yoder, B. K., Leroux, M. R. & Scholey, J. M. (2007) Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles, Mol Biol Cell. 18, 1554-69. 42. Imanishi, M., Endres, N. F., Gennerich, A. & Vale, R. D. (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3, The Journal of cell biology. 174, 931-7. 43. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. (2005) Functional coordination of intraflagellar transport motors, Nature. 436, 583-7. 44. Burghoorn, J., Dekkers, M. P., Rademakers, S., de Jong, T., Willemsen, R. & Jansen, G. (2007) Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America. 104, 7157-62. 45. Phirke, P., Efimenko, E., Mohan, S., Burghoorn, J., Crona, F., Bakhoum, M. W., Trieb, M., Schuske, K., Jorgensen, E. M., Piasecki, B. P., Leroux, M. R. & Swoboda, P. (2011) Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport, Dev Biol. 357, 235-47. 46. Yi, P., Xie, C. & Ou, G. (2018) The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility in Caenorhabditis elegans neuronal cilia, Traffic. 19, 522-535. 47. Milic, B., Andreasson, J. O. L., Hogan, D. W. & Block, S. M. (2017) Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load, Proceedings of the National Academy of Sciences of the United States of America. 114, E6830-E6838. 107 48. Yi, P., Li, W. J., Dong, M. Q. & Ou, G. (2017) Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C. elegans Sensory Cilia, Current biology : CB. 27, 1448-1461 e7. 49. Janke, C. & Bulinski, J. C. (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat Rev Mol Cell Biol. 12, 773-86. 50. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. (2010) The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation, Proceedings of the National Academy of Sciences of the United States of America. 107, 21517-22. 51. Hammond, J. W., Cai, D. & Verhey, K. J. (2008) Tubulin modifications and their cellular functions, Curr Opin Cell Biol. 20, 71-6. 52. Nakakura, T., Asano-Hoshino, A., Suzuki, T., Arisawa, K., Tanaka, H., Sekino, Y., Kiuchi, Y., Kawai, K. & Hagiwara, H. (2015) The elongation of primary cilia via the acetylation of alpha-tubulin by the treatment with lithium chloride in human fibroblast KD cells, Med Mol Morphol. 48, 44-53. 53. Loktev, A. V., Zhang, Q., Beck, J. S., Searby, C. C., Scheetz, T. E., Bazan, J. F., Slusarski, D. C., Sheffield, V. C., Jackson, P. K. & Nachury, M. V. (2008) A BBSome subunit links ciliogenesis, microtubule stability, and acetylation, Developmental cell. 15, 854-65. 54. Hammond, J. W., Huang, C. F., Kaech, S., Jacobson, C., Banker, G. & Verhey, K. J. (2010) Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons, Mol Biol Cell. 21, 572-83. 55. Reed, N. A., Cai, D., Blasius, T. L., Jih, G. T., Meyhofer, E., Gaertig, J. & Verhey, K. J. (2006) Microtubule acetylation promotes kinesin-1 binding and transport, Current biology : CB. 16, 2166-72. 56. Balabanian, L., Berger, C. L. & Hendricks, A. G. (2017) Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility, Biophys J. 113, 1551-1560. 57. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F. & Yao, T. P. (2002) HDAC6 is a microtubule-associated deacetylase, Nature. 417, 455-8. 58. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase, Mol Cell. 11, 437-44. 59. Burghoorn, J., Piasecki, B. P., Crona, F., Phirke, P., Jeppsson, K. E. & Swoboda, P. (2012) The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box, Dev Biol. 60. Piasecki, B. P., Burghoorn, J. & Swoboda, P. (2010) Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals, Proceedings of the National Academy of Sciences of the United States of America. 107, 12969-74. 61. Swoboda, P., Adler, H. T. & Thomas, J. H. (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans, Mol Cell. 5, 411-21. 62. Chen, N., Mah, A., Blacque, O. E., Chu, J., Phgora, K., Bakhoum, M. W., Newbury, C. R., Khattra, J., Chan, S., Go, A., Efimenko, E., Johnsen, R., Phirke, P., Swoboda, P., Marra, M., Moerman, D. G., Leroux, M. R., Baillie, D. L. & Stein, L. D. (2006) Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics, Genome Biol. 7, R126. 63. Efimenko, E., Bubb, K., Mak, H. Y., Holzman, T., Leroux, M. R., Ruvkun, G., Thomas, J. H. & Swoboda, P. (2005) Analysis of xbx genes in C. elegans, Development. 132, 1923-34. 108 64. Inglis, P. N., Boroevich, K. A. & Leroux, M. R. (2006) Piecing together a ciliome, Trends Genet. 22, 491-500. 65. Hirose, T., Nakano, Y., Nagamatsu, Y., Misumi, T., Ohta, H. & Ohshima, Y. (2003) Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans, Development. 130, 1089-99. 66. Nakano, Y., Nagamatsu, Y. & Ohshima, Y. (2004) cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4, Genes Cells. 9, 773-9. 67. Krzyzanowski, M. C., Brueggemann, C., Ezak, M. J., Wood, J. F., Michaels, K. L., Jackson, C. A., Juang, B. T., Collins, K. D., Yu, M. C., L'Etoile N, D. & Ferkey, D. M. (2013) The C. elegans cGMP-dependent protein kinase EGL-4 regulates nociceptive behavioral sensitivity, PLoS genetics. 9, e1003619. 68. van der Linden, A. M., Wiener, S., You, Y. J., Kim, K., Avery, L. & Sengupta, P. (2008) The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans, Genetics. 180, 1475-91. 69. L'Etoile, N. D., Coburn, C. M., Eastham, J., Kistler, A., Gallegos, G. & Bargmann, C. I. (2002) The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans, Neuron. 36, 1079-89. 70. O'Halloran, D. M., Hamilton, O. S., Lee, J. I., Gallegos, M. & L'Etoile, N. D. (2012) Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans, PLoS One. 7, e31614. 71. Lee, J. I., O'Halloran, D. M., Eastham-Anderson, J., Juang, B. T., Kaye, J. A., Scott Hamilton, O., Lesch, B., Goga, A. & L'Etoile, N. D. (2010) Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation, Proc Natl Acad Sci U S A. 107, 6016-21. 72. Findlay, G. M., Yan, L., Procter, J., Mieulet, V. & Lamb, R. F. (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling, Biochem J. 403, 13-20. 73. Resnik-Docampo, M. & de Celis, J. F. (2011) MAP4K3 is a component of the TORC1 signalling complex that modulates cell growth and viability in Drosophila melanogaster, PLoS One. 6, e14528. 74. Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. (2010) MAP4K3 regulates body size and metabolism in Drosophila, Dev Biol. 344, 150-7. 75. Khan, M. H., Hart, M. J. & Rea, S. L. (2012) The role of MAP4K3 in lifespan regulation of Caenorhabditis elegans, Biochem Biophys Res Commun. 425, 413-8. 76. Burghoorn, J., Piasecki, B. P., Crona, F., Phirke, P., Jeppsson, K. E. & Swoboda, P. (2012) The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box, Dev Biol. 368, 415-26. 77. Wang, J., Schwartz, H. T. & Barr, M. M. (2010) Functional specialization of sensory cilia by an RFX transcription factor isoform, Genetics. 186, 1295-307. 78. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94. 79. Haycraft, C. J., Swoboda, P., Taulman, P. D., Thomas, J. H. & Yoder, B. K. (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms, Development. 128, 1493-505. 109 80. Simon, J. M. & Sternberg, P. W. (2002) Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America. 99, 1598-603. 81. Muthaiyan Shanmugam, M., Bhan, P., Huang, H. Y., Hsieh, J., Hua, T. E., Wu, G. H., Punjabi, H., Lee Aplicano, V. D., Chen, C. W. & Wagner, O. I. (2018) Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons, Mol Cell Biol. 38. 82. Tong, Y. G. & Burglin, T. R. (2010) Conditions for dye-filling of sensory neurons in Caenorhabditis elegans, Journal of neuroscience methods. 188, 58-61. 83. Margie, O., Palmer, C. & Chin-Sang, I. (2013) C. elegans chemotaxis assay, Journal of visualized experiments : JoVE, e50069. 84. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans, Genome Biol. 2, RESEARCH0002. 85. McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A. & Burgess, A. (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events, Cell Cycle. 13, 1400-12. 86. Collet, J., Spike, C. A., Lundquist, E. A., Shaw, J. E. & Herman, R. K. (1998) Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans, Genetics. 148, 187-200. 87. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. (1999) Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans, Mol Biol Cell. 10, 345-60. 88. Blacque, O. E., Li, C., Inglis, P. N., Esmail, M. A., Ou, G., Mah, A. K., Baillie, D. L., Scholey, J. M. & Leroux, M. R. (2006) The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport, Mol Biol Cell. 17, 5053-62. 89. Schafer, J. C., Haycraft, C. J., Thomas, J. H., Yoder, B. K. & Swoboda, P. (2003) XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans, Mol Biol Cell. 14, 2057-70. 90. Robida-Stubbs, S., Glover-Cutter, K., Lamming, D. W., Mizunuma, M., Narasimhan, S. D., Neumann-Haefelin, E., Sabatini, D. M. & Blackwell, T. K. (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO, Cell Metab. 15, 713-24. 91. Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C. & Inoki, K. (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation, J Biol Chem. 289, 13132-41. 92. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. (2006) The ciliopathies: an emerging class of human genetic disorders, Annu Rev Genomics Hum Genet. 7, 125-48. 93. John Stanberry, Eric J. Baude, Merritt K. Taylor, Pei-Jiun Chen, Suk-Won Jin, Ronald E. Ellis & Uhler, M. D. (2001) A cGMP -dependent protein kinase is implicated in wild-type motility of C. elegans, Journal of Neurochemistry. 76, 1177-1187. 94. Raizen, D. M., Cullison, K. M., Pack, A. I. & Sundaram, M. V. (2006) A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans, Genetics. 173, 177-87. 110 95. Scholey, J. M. (2013) Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions, Annual review of cell and developmental biology. 29, 443-69. 96. L'Etoile, N. D. & Bargmann, C. I. (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1, Neuron. 25, 575-86. 97. Daniels, S. A., Ailion, M., Thomas, J. H. & Sengupta, P. (2000) egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues, Genetics. 156, 123-41. 98. Verhey, K. J. & Gaertig, J. (2007) The tubulin code, Cell Cycle. 6, 2152-60. 99. Jaulin, F. & Kreitzer, G. (2010) KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC, The Journal of cell biology. 190, 443-60. 100. Laplante, M. & Sabatini, D. M. (2012) mTOR signaling in growth control and disease, Cell. 149, 274-93. 101. Yuan, S., Li, J., Diener, D. R., Choma, M. A., Rosenbaum, J. L. & Sun, Z. (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation, Proceedings of the National Academy of Sciences of the United States of America. 109, 2021-6. 102. Ko, J. Y. (2016) Functional Study of the Primary Cilia in ADPKD, Adv Exp Med Biol. 933, 45-57. 103. Broekhuis, J. R., Verhey, K. J. & Jansen, G. (2014) Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells, PLoS One. 9, e108470. 104. Sun, D. F., Zhang, Y. J., Tian, X. Q., Chen, Y. X. & Fang, J. Y. (2014) Inhibition of mTOR signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation, Cell Biol Int. 38, 50-63. 105. Bamps, S., Wirtz, J., Savory, F. R., Lake, D. & Hope, I. A. (2009) The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction, Mech Ageing Dev. 130, 762-70. 106. Frye, R. A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins, Biochem Biophys Res Commun. 273, 793-8. 107. Zhou, X., Fan, L. X., Sweeney, W. E., Jr., Denu, J. M., Avner, E. D. & Li, X. (2013) Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease, J Clin Invest. 123, 3084-98. 108. Pillai, V. B., Sundaresan, N. R. & Gupta, M. P. (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging, Circ Res. 114, 368-78. 109. Yu, I., Garnham, C. P. & Roll-Mecak, A. (2015) Writing and Reading the Tubulin Code, J Biol Chem. 290, 17163-72. 110. Wloga, D. & Gaertig, J. (2011) Post-translational modifications of microtubules, The journal of cell science. 123, 3447-3455.
References III 1. Lepinoux-Chambaud, C. & Eyer, J. (2013) Review on intermediate filaments of the nervous system and their pathological alterations, Histochemistry and cell biology. 140, 13-22. 2. Gentil, B. J., Tibshirani, M. & Durham, H. D. (2015) Neurofilament dynamics and involvement in neurological disorders, Cell Tissue Res. 360, 609-20. 3. Calahorro, F. & Ruiz-Rubio, M. (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder, Invertebrate neuroscience : IN. 11, 73-83. 4. Therrien, M. & Parker, J. A. (2014) Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans, Frontiers in genetics. 5, 85. 5. Wentzell, J. & Kretzschmar, D. (2010) Alzheimer's disease and tauopathy studies in flies and worms, Neurobiol Dis. 40, 21-8. 6. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation, Neuron. 84, 292-309. 7. Millecamps, S. & Julien, J. P. (2013) Axonal transport deficits and neurodegenerative diseases, Nature reviews Neuroscience. 14, 161-76. 8. Carberry, K., Wiesenfahrt, T., Windoffer, R., Bossinger, O. & Leube, R. E. (2009) Intermediate filaments in Caenorhabditis elegans, Cell Motil Cytoskeleton. 66, 852-64. 9. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. (2012) Neurofilaments at a glance, Journal of cell science. 125, 3257-63. 10. Yuan, A., Sasaki, T., Rao, M. V., Kumar, A., Kanumuri, V., Dunlop, D. S., Liem, R. K. & Nixon, R. A. (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons, J Neurosci. 29, 11316-29. 11. Wagner, O. I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J. F. & Janmey, P. A. (2007) Softness, strength and self-repair in intermediate filament networks, Exp Cell Res. 313, 2228-35. 12. Wagner, O. I., Lifshitz, J., Janmey, P. A., Linden, M., McIntosh, T. K. & Leterrier, J. F. (2003) Mechanisms of mitochondria-neurofilament interactions, J Neurosci. 23, 9046-58. 13. Bocquet, A., Berges, R., Frank, R., Robert, P., Peterson, A. C. & Eyer, J. (2009) Neurofilaments bind tubulin and modulate its polymerization, J Neurosci. 29, 11043-54. 14. Laser-Azogui, A., Kornreich, M., Malka-Gibor, E. & Beck, R. (2015) Neurofilament assembly and function during neuronal development, Current opinion in cell biology. 32, 92-101. 15. Sternberger, L. A. & Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ, Proceedings of the National Academy of Sciences of the United States of America. 80, 6126-30. 16. Julie Carter, Alexander Gragerov, Karel Konvicka, Gregory Elder, Harel Weinstein & Lazzarini, R. A. (1998) Neurofilament (NF) assenbly; Divergent characteristics of human and rodent NF-L subunits, The journal of biological chemistry. 273, 5101-5108. 17. Carden, M. J. & Eagles, P. A. (1986) Chemical cross-linking analyses of ox neurofilaments, Biochem J. 234, 587-91. 18. Krishnan, N., Kaiserman-Abramof, I. R. & Lasek, R. J. (1979) Helical substructure of neurofilaments isolated from Myxicola and squid giant axons, J Cell Biol. 82, 323-35. 163 19. Leterrier, J. F., Liem, R. K. & Shelanski, M. L. (1982) Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intraorganellar bridging, J Cell Biol. 95, 982-6. 20. Hirokawa, N., Hisanaga, S. & Shiomura, Y. (1988) MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies, J Neurosci. 8, 2769-79. 21. Chang, R., Kwak, Y. & Gebremichael, Y. (2009) Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture, J Mol Biol. 391, 648-60. 22. Wagner, O. I., Ascano, J., Tokito, M., Leterrier, J. F., Janmey, P. A. & Holzbaur, E. L. (2004) The interaction of neurofilaments with the microtubule motor cytoplasmic dynein, Mol Biol Cell. 15, 5092-100. 23. Alami, N. H., Jung, P. & Brown, A. (2009) Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses, J Neurosci. 29, 6625-34. 24. Matveeva, E. A., Venkova, L. S., Chernoivanenko, I. S. & Minin, A. A. (2015) Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1, Biology open. 4, 1290-7. 25. Uchida, A., Alami, N. H. & Brown, A. (2009) Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments, Mol Biol Cell. 20, 4997-5006. 26. Trivedi, N., Jung, P. & Brown, A. (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons, J Neurosci. 27, 507-16. 27. Yabe, J. T., Chan, W. K., Chylinski, T. M., Lee, S., Pimenta, A. F. & Shea, T. B. (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation, Cell Motil Cytoskeleton. 48, 61-83. 28. Encalada, S. E. & Goldstein, L. S. (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration, Annual review of biophysics. 43, 141-69. 29. Hancock, W. O. (2014) Bidirectional cargo transport: moving beyond tug of war, Nature reviews Molecular cell biology. 15, 615-28. 30. Kurup, N., Li, Y., Goncharov, A. & Jin, Y. (2018) Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons, Proceedings of the National Academy of Sciences of the United States of America. 115, 3114-3119. 31. Hall, D. H. & Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans, Cell. 65, 837-47. 32. Maeder, C. I., San-Miguel, A., Wu, E. Y., Lu, H. & Shen, K. (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking, Traffic. 15, 273-91. 33. Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T. & Hirokawa, N. (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice, J Cell Biol. 141, 431-41. 34. Kern, J. V., Zhang, Y. V., Kramer, S., Brenman, J. E. & Rasse, T. M. (2013) The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila, Genetics. 195, 59-72. 35. Brady, S. T. & Morfini, G. A. (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases, Neurobiol Dis. 105, 273-282. 36. Rashid, D. J., Bononi, J., Tripet, B. P., Hodges, R. S. & Pierce, D. W. (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A, J Pept Res. 65, 538-49. 164 37. Niwa, S., Lipton, D. M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H. & Shen, K. (2016) Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses, Cell Rep. 16, 2129-2141. 38. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94. 39. Wu, G. H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y. H. & Wagner, O. I. (2016) Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons, Traffic. 17, 891-907. 40. Tien, N. W., Wu, G. H., Hsu, C. C., Chang, C. Y. & Wagner, O. I. (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons, Neurobiol Dis. 43, 495-506. 41. Kumar, J., Choudhary, B. C., Metpally, R., Zheng, Q., Nonet, M. L., Ramanathan, S., Klopfenstein, D. R. & Koushika, S. P. (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo, PLoS Genet. 6, e1001200. 42. Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. & Stanley, E. F. (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization, J Neurosci. 24, 4070-81. 43. Gruber, M., Soding, J. & Lupas, A. N. (2006) Comparative analysis of coiled-coil prediction methods, J Struct Biol. 155, 140-5. 44. Consortium (2012) Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome, G3 (Bethesda, Md). 2, 1415-25. 45. Carter, J., Gragerov, A., Konvicka, K., Elder, G., Weinstein, H. & Lazzarini, R. A. (1998) Neurofilament (NF) assembly; Divergent characteristics of human and rodent NF-L subunits, J Biol Chem. 273, 5101-5108. 46. Vannucchi, M. G., Midrio, P., Zardo, C. & Faussone-Pellegrini, M. S. (2004) Neurofilament formation and synaptic activity are delayed in the myenteric neurons of the rat fetus with gastroschisis, Neurosci Lett. 364, 81-5. 47. Dubey, M., Chaudhury, P., Kabiru, H. & Shea, T. B. (2008) Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability, Cell Motil Cytoskeleton. 65, 89-99. 48. Soler-Martin, C., Boadas-Vaello, P., Verdu, E., Garcia, N. & Llorens, J. (2014) Chronic proximal axonopathy in rats is associated with long-standing neurofilament depletion in neuromuscular junctions and behavioral deficits, Journal of neuropathology and experimental neurology. 73, 568-79. 49. Conde, C. & Caceres, A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites, Nature reviews Neuroscience. 10, 319-32. 50. Dillon, C. & Goda, Y. (2005) The actin cytoskeleton: integrating form and function at the synapse, Annu Rev Neurosci. 28, 25-55. 51. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. (2017) Neurofilaments and Neurofilament Proteins in Health and Disease, Cold Spring Harb Perspect Biol. 9. 52. Lee, M. K. & Cleveland, D. W. (1996) Neuronal intermediate filaments, Annu Rev Neurosci. 19, 187-217. 53. Rudrabhatla, P. (2014) Regulation of neuronal cytoskeletal protein phosphorylation in neurodegenerative diseases, Journal of Alzheimer's disease : JAD. 41, 671-84. 54. Yuan, A. & Nixon, R. A. (2016) Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders, Brain Res Bull. 126, 334-346. 165 55. Martin-Jimenez, R., Campanella, M. & Russell, C. (2015) New zebrafish models of neurodegeneration, Current neurology and neuroscience reports. 15, 33. 56. McGurk, L., Berson, A. & Bonini, N. M. (2015) Drosophila as an In Vivo Model for Human Neurodegenerative Disease, Genetics. 201, 377-402. 57. Alexander, A. G., Marfil, V. & Li, C. (2014) Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases, Frontiers in genetics. 5, 279. 58. Li, J. & Le, W. (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans, Experimental neurology. 250, 94-103. 59. Herrmann, H., Haner, M., Brettel, M., Ku, N. O. & Aebi, U. (1999) Characterization of distinct early assembly units of different intermediate filament proteins, J Mol Biol. 286, 1403-20. 60. Shah, J. V. & Cleveland, D. W. (2002) Slow axonal transport: fast motors in the slow lane, Current opinion in cell biology. 14, 58-62. 61. Jung, C., Lee, S., Ortiz, D., Zhu, Q., Julien, J. P. & Shea, T. B. (2005) The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit, Brain research Molecular brain research. 141, 151-5. 62. Tang, H. L., Lung, H. L., Wu, K. C., Le, A. H., Tang, H. M. & Fung, M. C. (2008) Vimentin supports mitochondrial morphology and organization, Biochem J. 410, 141-6. 63. Nekrasova, O. E., Mendez, M. G., Chernoivanenko, I. S., Tyurin-Kuzmin, P. A., Kuczmarski, E. R., Gelfand, V. I., Goldman, R. D. & Minin, A. A. (2011) Vimentin intermediate filaments modulate the motility of mitochondria, Mol Biol Cell. 22, 2282-9. 64. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D. & Minin, A. A. (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments, FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 29, 820-7. 65. Gyoeva, F. K. & Gelfand, V. I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin, Nature. 353, 445-8. 66. Liao, G. & Gundersen, G. G. (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin, J Biol Chem. 273, 9797-803. 67. Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. & Goldman, R. D. (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks, J Cell Biol. 143, 159-70. 68. Shim, S. Y., Samuels, B. A., Wang, J., Neumayer, G., Belzil, C., Ayala, R., Shi, Y., Shi, Y., Tsai, L. H. & Nguyen, M. D. (2008) Ndel1 controls the dynein-mediated transport of vimentin during neurite outgrowth, J Biol Chem. 283, 12232-40. 69. Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R. & Fainzilber, M. (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve, Neuron. 45, 715-26. 70. Gerashchenko, M. V., Chernoivanenko, I. S., Moldaver, M. V. & Minin, A. A. (2009) Dynein is a motor for nuclear rotation while vimentin IFs is a "brake", Cell biology international. 33, 1057-64. 71. Mussel, M., Zeevy, K., Diamant, H. & Nevo, U. (2014) Drag of the cytosol as a transport mechanism in neurons, Biophys J. 106, 2710-9. 166 72. Bass, L. & Moore, W. J. (1966) Electrokinetic mechanism of miniature postsynaptic potentials, Proceedings of the National Academy of Sciences of the United States of America. 55, 1214-7. 73. Remler, M. P. (1973) A semiquantitative theory of synaptic vesicle movements, Biophys J. 13, 104-17. 74. Ohsawa, K., Ohshima, H. & Ohki, S. (1981) Surface potential and surface charge density of the cerebral-cortex synaptic vesicle and stability of vesicle suspension, Biochimica et biophysica acta. 648, 206-14. 75. Aranda-Espinoza, H., Carl, P., Leterrier, J. F., Janmey, P. & Discher, D. E. (2002) Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP, FEBS letters. 531, 397-401. 76. Lund, M. & Jonsson, B. (2013) Charge regulation in biomolecular solution, Quarterly reviews of biophysics. 46, 265-81. 77. Hammond, J. W., Cai, D., Blasius, T. L., Li, Z., Jiang, Y., Jih, G. T., Meyhofer, E. & Verhey, K. J. (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition, PLoS Biol. 7, e72. 78. Soppina, V., Norris, S. R., Dizaji, A. S., Kortus, M., Veatch, S., Peckham, M. & Verhey, K. J. (2014) Dimerization of mammalian kinesin-3 motors results in superprocessive motion, Proceedings of the National Academy of Sciences of the United States of America. 111, 5562-7. 79. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization, Science. 297, 2263-7. 80. Reddy, B. J., Mattson, M., Wynne, C. L., Vadpey, O., Durra, A., Chapman, D., Vallee, R. B. & Gross, S. P. (2016) Load-induced enhancement of Dynein force production by LIS1-NudE in vivo and in vitro, Nature communications. 7, 12259. 81. Andreasson, J. O., Shastry, S., Hancock, W. O. & Block, S. M. (2015) The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load, Current biology : CB. 25, 1166-75. 82. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell. 134, 1030-41. 83. Yuan, A., Rao, M. V., Sasaki, T., Chen, Y., Kumar, A., Veeranna, Liem, R. K., Eyer, J., Peterson, A. C., Julien, J. P. & Nixon, R. A. (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS, J Neurosci. 26, 10006-19. 84. Yuan, A., Sasaki, T., Kumar, A., Peterhoff, C. M., Rao, M. V., Liem, R. K., Julien, J. P. & Nixon, R. A. (2012) Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons, J Neurosci. 32, 8501-8. |