帳號:guest(18.225.57.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沛蕊娜
作者(外文):Bhan, Prerana
論文名稱(中文):第一章: 線蟲三聯複合體RAB-3-UNC-10-SYD-2之活性區調控驅動蛋白-3 UNC-104的作用角色 第二章: PKG-1與GCK-2 能調節線蟲感覺神經之纖毛長度與鞭毛內運輸 第三章: 線蟲中似神經絲蛋白TAG-63能促進神經軸突傳遞機制
論文名稱(外文):Chapter 1: “Role of active zone tripartite complex RAB-3-UNC-10-SYD-2 on the regulation of kinesin-3 UNC-104 in C. elegans”. Chapter 2: Cilium length and intraflagellar transport regulation by kinases PKG-1 and GCK-2 in C. elegans sensory neurons.Chapter 3: TAG-63 is a neurofilament-like protein that affects the fast axonal transport machinery in C. elegans.
指導教授(中文):王歐力
指導教授(外文):Wagner, Oliver
口試委員(中文):莊碧簪
桑自剛
彭明德
黃兆祺
口試委員(外文):Juang, Bi-Tzen
Sang, Tzu-Kang
Perng, Ming-Der
Huang, Eric
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:101080421
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:187
中文關鍵詞:第三章三聯複合體鞭毛內運輸似神經絲蛋白
外文關鍵詞:three chapterstripartite linkerciliogenesis and IFTNeurofilament-like protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
Abstract I
神經細胞體中合成的突觸蛋白經由微管依賴馬達沿軸突將蛋白運輸至其各自的目的地。UNC-104是線蟲中KIF1A的同系物,為運輸突觸小泡前體必需物。 它的C終端PH結構區域可以特異地與囊泡膜上的酸性磷脂(PI(4,5)P2)直接結合,並將馬達和貨物連結起來。 然而,我們假設UNC-104之PH域與貨物的聯繫很微弱,並且可能不足以用於捆綁和識別貨物。有趣的是,研究已經顯示RIM / unc-10在C端表現了Liprinα/ syd-2的結合位點,而其N端與Rab3 / RAB-3結合。 因此,我們推斷增加連接RAB-3 / UNC-10 / SYD-2,以提高馬達-貨物的連通性和強度。
為了證明我們提出的連接子存在,我們首先進行即時PCR分析,指出unc-10突變體中SYD-2增加表現量,而其在rab-3突變體中明顯降低。此外CO-IP實驗鑑定出unc-10突變體和rab-3突變體中會降低SYD-2與UNC-104的結合能力。在unc-10和rab-3突變體中,UNC-104集群區域也受到嚴重影響。 SYD-2和UNC-104在線蟲神經元中彼此共定位。然而此共定位在unc-10和rab-3突變體中大大減少。且類似地,UNC-104和SYD-2相互作用的BiFC信號分佈模式也分別在unc-10和rab-3突變體中降低。此外,三種活性區域蛋白(syd-2,unc-10和rab-3) 突變體中,UNC-104運動能力均受到強烈影響。另外對於含有RAB-3的囊泡觀察到類似的運動模式,表明RAB-3運輸需要SYD-2 / UNC-10結合,但SNB-1則無需。同樣地,在軸丘中RAB-3行進距離在syd-2和unc-10突變體中都受到影響,但SNB-1僅在syd-2突變體中受影響。
而從另一種方法,我們試圖了解與SNB-1和UNC-104相比,RAB-3和UNC-104之間額外連接點是否存在,當去除PH結構域時有較低的共定位程度影響。事實上,當去除PH區時,SNB-1和UNC-104之間的共定位有強烈影響,而RAB-3和UNC-104共定位則無。相應地,在syd-2和unc-10突變體動物中,UNC-104(缺失PH結構域)和RAB-3共定位明顯減弱。RAB-3和SNB-1在BiFC分析中也表現出輕微的相互作用,並且這種複合體進一步與體內UNC-104共定位。 從我們的研究中,我們得出結論認為要加強SYD-2與UNC-104的聯繫,需要UNC-10 / RAB-3複合體存在,而進一步增強馬達與貨物的連接性。

Abstract II
過多的人類疾病是來自於纖毛功能障礙,包括多囊性腎病變,Bardet- Biedl和Meckel-Gruber綜合症。幸運地,近幾年來纖毛發育和鞭毛內運輸(IFT)的基礎機制更加清楚明瞭。然而在纖毛機制被解開的同時,也產生了許多出現新的問題,尤其是IFT貨物如何在纖毛基部組成、如何定位纖毛、以及如何調節“IFT列車”。最近有個令人感興趣的研究,兩種線蟲激酶DYF-5和DYF-18的纖毛調節功能被找出來,我們推測應該還能發現許多激酶與磷酸酶。我們因此使用資料探勘的工具,來鑑定線蟲纖毛感覺神經元中特定表達之激酶和磷酸酶。使用廣泛的方法來探討已選定的激酶和磷酸酶對纖毛形成和IFT的影響,例如染劑填充,化學趨化性,IFT組成表達模式,並確定PKG-1和GCK2 為可能的候選蛋白且明顯影響纖毛發育和貨物運輸。
在pkg-1突變中一同被發現到,驅動蛋白2 OSM-3同源二聚體在纖毛末梢大量積累並降低纖毛動力蛋白XBX-1逆行速度,導致異常纖毛形態,且可能伴隨減少纖毛微管蛋白乙酰化。而在gck-2突變體中,OSM-3和IFT-顆粒A(CHE-11)運動性隨著微管蛋白乙酰化的增加而明顯升高,降低KAP-1運動性,證實最近的模型,KAP馬達限制了OSM-3運動。最重要的是,我們觀察到突變體動物都可以利用過度表達PKG-1或GCK-2蛋白來挽救這些缺陷(在纖毛特異性Posm-5啟動子下)。 由於PKG-1和GCK-2與IFT之組成元件的共定位,兩種蛋白在纖毛中都遵循相似的表達模式以及表現運動。PKG-1與cGMP途徑有關,我們分別研究了上游效應物DAF-11和ODR-1的影響,發現與pkg-1突變體具有相似的結果。相反地,GCK-2與mTOR途徑有關,所以我們使用雷帕黴素來抑制該途徑,也發現與gck-2突變體中所見的影響相似。有趣的是,我們還利用組蛋白脫乙酰酶HDA-4和SIR-2.1來了解調節cGMP和mTOR途徑中的作用角色。簡要來說,我們描述以及確定了兩種新穎激酶的獨特功能,來影響秀麗隱桿線蟲的纖毛形成和鞭毛內運輸。

Abstract III
有發現不同的神經疾病包含帕金森病,肌萎縮性側索硬化症,Charcot-Marie-Tooth疾病和Tau蛋白病都與神經絲(NF’s)缺陷有關。神經病理學中已經確定NF的角色與作用,但對於這些疾病在分子層級是如何發展的知識仍甚少,是促進未來藥物設計的重要關鍵。模式生物例如斑馬魚、果蠅、線蟲,都有被利用研究這些疾病的發展,然而在線蟲中是否存在NF同原物仍然不清楚。因此,我們的目標主要是辨識與描繪線蟲假定的似NF蛋白。使用生物資訊工具我們鑑定了與NEFH (BLAST e值為 5E-09) 於三螺旋以及各種磷酸化位點有高度同源性的TAG-63,並採用廣泛技術,例如西方墨點法、穿透式電子顯微鏡、線蟲成像、運動分析來描摹TAG-63在線蟲的角色。
為了鑑定NF同源物,KEGG數據庫提供了來自多種動物的NEFH同源基因。生物資訊工具顯示後,我們注意到一群NEFH直系同源基因在來自一般TAG-63祖先根源。雖然我們沒有辦法檢測到KSP重複序列,但利用Scansite工具我們確定了9個潛在的磷酸化位點。此外,捲曲螺旋預測工具在TAG-63中發現了三個潛在的捲曲螺旋。為了理解TAG-63是否在神經元組織中表達,我們製作了轉錄TAG-63報告能在廣泛的身體,頭部和尾部神經元中表現。最重要的是,TAG-63還具有NF-L的特徵,例如分子量約70kDa,缺乏KSP重複序列和在透射式電子顯微鏡下觀察時呈現絲狀結構。
此外有研究指出,NF’s會影響軸突運輸,我們調查敲除tag-63對突觸小泡運輸的影響。發現TAG-63突變體動物中UNC-104的順行運輸明顯減少,指出TAG-63的激活馬達運動之作用。雖然我們沒有得到UNC-104與貨物SNB-1有類似的影響,但我們測量後發現這種貨物有增加逆行運動。而且tag-63缺陷線蟲的UNC-104速度與流量顯著減少,另一方面,tag-63突變體中SNB-1在細胞體中螢光強度增強,但在靠近HSN神經突觸區域減少。總之,我們在線蟲中鑑定並表徵了似NF蛋白質,並且還證明缺乏這種蛋白會限制軸突運輸效率,表明這種模型生物體可以用於研究有關神經絲的神經疾病。
Abstract I
Newly synthesized synaptic proteins in the cell body are transported down the axonal processes to their respective destinations by microtubule-dependent motors. UNC-104, a homologue of KIF1A in C. elegans is required for the transport of synaptic vesicle precursors. Its C-terminal PH domain can specifically and directly bind to acidic phospholipids (PI (4,5)P2 ) located on the vesicular membrane and associate the motor to the cargo. However, we hypothesize that the classical linkage of UNC-104 to the cargo via its PH domain is weak owing to protein-lipid interaction and may not be sufficient for motor-cargo binding and recognition. Interestingly, it has been shown that RIM/UNC-10 reveals a binding site for Liprin-α/SYD-2 at the C-terminus, while its N-terminus binds to Rab3/RAB-3. As it has been shown that SYD-2 is a functional adaptor for UNC-104 and RAB-3 is known to be a synaptic-vesicle specific, membrane-bound protein, we propose the presence of an additional linker RAB-3/UNC-10/SYD-2 that could enhance the motor-cargo connectivity.
To prove the existence of this proposed linker, we performed real-time PCR analysis in the first place indicating an increase of SYD-2 expression in unc-10 mutants while its expression in rab-3 mutants is significantly reduced. Further, from Co-IP assays, we identified that SYD-2’s association to UNC-104 was strongly reduced in both unc-10 and rab-3 mutants. Also, the UNC-104 cluster area in sublateral as well as ALM neurons was severely affected in these (unc-10 and rab-3) mutants. SYD-2 and UNC-104 colocalize with each other in C. elegans neurons. However, the colocalization between SYD-2 and UNC-104 largely diminished in unc-10 and rab-3 mutants. Similarly, the distribution patterns of bimolecular fluorescence complementation assay (BiFC) signals revealing UNC-104 and SYD-2 interactions were also reduced in unc-10 and rab-3 mutants respectively. Alongside, UNC-104 motor motility was
5
significantly affected in all the three active zone protein (syd-2, unc-10 and rab-3) mutants. In addition, we also observed the motility pattern of RAB-3-containing vesicles demonstrating that SYD-2/UNC-10 combination are essential for RAB-3 transport but not for SNB-1. In the same way, the distance travelled by RAB-3 particles from axonal hillock to distal segments of ALM neuron was affected in both syd-2 and unc-10 mutants but SNB-1 travel was affected only in syd-2 mutant background.
In another approach, assuming that an additional linker between RAB-3 and UNC-104 exists, deletion of the motor’s PH domain may affect the colocalization between UNC-104 and RAB-3 to a lesser extent as compared to SNB-1 and UNC-104. Indeed, the colocalization between SNB-1 and UNC-104 was largely affected when deleting the PH domain, while RAB-3 and UNC-104 colocalization remained unaffected. Consistently with our model, in syd-2 and unc-10 mutant animals, UNC-104 (with a deleted PH domain) and RAB-3 colocalization was strongly diminished. RAB-3 and SNB-1 also exhibited interactions in BiFC assays and this complex further colocalizes with UNC-104 in somas. From these results, we may indeed conclude that UNC-10/RAB-3 complex is required to additionally strengthen the association of SYD-2 with UNC-104, further enhancing the connectivity of motor to its cargo.

Abstract II
A plethora of human diseases are based on cilia dysfunctions including polycystic kidney disease, Bardet-Biedl and Meckel-Gruber syndrome. Fortunately, basic mechanisms underlying cilia development and intraflagellar transport (IFT) became more understandable in recent years. Though at the same time a complex ciliary machinery was unraveled leading to new questions, specifically, how IFT cargo assembles at the cilia base, how it localizes to cilia, and how “IFT trains” are regulated. One intriguing recent finding describes the ciliary regulating function of two C. elegans kinases DYF-5 and DYF-18, and we hypothesized that even more kinases and phosphatases may be uncovered. We therefore employed data mining tools to identify kinases and phosphatases specifically expressing in C. elegans ciliated sensory neurons. We then used a broad range of methods such as dye-filling, chemotaxis, IFT component expression pattern etc. to investigate the effects of selected kinases and phosphatases from a candidate screen on ciliogenesis and IFT, and have identified PKG-1 as well as GCK-2 as potential candidates significantly affecting cilia development as well as intraflagellar cargo transport.
In pkg-1 mutants, severe accumulation of homodimeric kinesin-2 OSM-3 at the cilia tip was observed in conjunction with an overall reduction in retrograde speeds of ciliary dynein XBX-1, leading to abnormal cilia morphology, likely as a function of reduced tubulin acetylation. While in gck-2 mutants OSM-3 and IFT-particle A (CHE-11) motility was significantly elevated in conjunction with increased tubulin acetylation, KAP-1 motility was decreased, confirming a recent model in which the slow KAP-1 motor restricts the motility of the fast OSM-3 motor. Crucially, all observed effects in mutant animals can be rescued by overexpressing the respective protein PKG-1 or GCK-2 (under the cilia specific Posm-5 promoter). Both, PKG-1 and GCK-2 follow similar expression pattern in cilia and also display
75
movements owing to their colocalization with other investigated IFT machinery components. Because PKG-1 is related to cGMP pathways, we also studied the effect of upstream effectors DAF-11 and ODR-1, respectively, leading to similar observations compared with the pkg-1 mutants. Vice versa, since GCK-2 is related to the mTOR pathway, we used rapamycin to inhibit this pathway leading to similar effects as seen in gck-2 mutants. Importantly, we also manipulated the histone deacetylases HDA-4 and SIR-2.1 to understand their role in regulating cGMP and mTOR pathways. In summary, we identified and characterized the distinct functions of two novel kinases affecting ciliogenesis and IFT in C. elegans.

Abstract III
Various neurological diseases bearing defects in neurofilaments (NF’s) are known including Parkinson’s disease, Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth disease and Tauopathies. Though a critical role of NF’s has been ascertained in neuropathological diseases, little is known about how these diseases develop on the molecular level, critical to facilitate future drug design. Model organisms, such as Zebrafish, Drosophila and C.elegans, are employed to study and understand how these diseases develop. However, whether a neurofilament (NF) homolog exist in the nematode still remains unclear. Therefore, the major goal of this study was to identify and characterize a putative NF-like protein in C. elegans. Using bioinformatics tools, we identified TAG-63 with numerous sequence homologies to NEFH (BLAST e-value of 5E-09), three coiled coils as well as various phosphorylation sites. We then employed a broad range of techniques such as Western blotting, transmission electron microscopy (TEM), worm imaging, motility analysis etc. to delineate the role of tag-63 in C.elegans.
To identify NF homologs, using KEGG database, we received hits for NEFH orthologs from various animals. Using this bioinformatics tool, we also note a cluster of NEFH orthologs in a rooted phylogenetic tree emerging from a common TAG-63 ancestor. Though we cannot detect KSP repeats in TAG-63, we identified nine potential phosphorylation sites using Scansite tool. Furthermore, the coiled coil prediction tool identified three potential coiled coils in TAG-63. To understand if tag-63 is expressed in neuronal tissues, we generated a transcriptional tag-63 reporter that expresses in a broad range of body, head and tail neurons. Most importantly, TAG-63 also exhibits features of NF-L such as molecular weight of around 70 kDa, lack of KSP
134
repeats and the ability to form filamentous structures when viewed under transmission electron microscopy.
Moreover, as it has been reported that NF’s affect axonal transport, we investigated the effect of tag-63 knockout on synaptic vesicle transport. We found that anterograde transport of UNC-104 is significantly reduced in tag-63 mutant animals pointing to a motor-activating role of TAG-63. Though we do not reveal similar effects on UNC-104’s cargo SNB-1, we did measure increased retrograde movements of this cargo. Further, velocity and flux of UNC-104(KIF1A) are largely diminished in tag-63 knockout worms. In addition, fluorescence intensity of SNB-1 increases in the cell body while near the synapse of HSN neuron it decreases in tag-63 mutant background. In summary, we identified and characterized a NF-like protein in C.elegans, and also demonstrate that lack of this protein limits axonal transport efficiencies, suggesting that this model organism may be used for studying neurofilament-based neurological diseases.
Table of Contents (Chapter-1)
1. Introduction I ....................................................................................................................- 9-
1.1 Molecular motors in axonal transport.......................................................................- 9-
1.2 Axonal transport and disease ...................................................................................- 10-
1.3 Neuron-specific kinesin-3 UNC-104.........................................................................- 11-
1.4 Active zone proteins and their role in axonal transport ........................................- 12-
1.4.1 Syd-2/Liprin-α………………………………………………………………… -13-
1.4.2 UNC-10/RIM…………………………………………………………………… -14-
1.4.3 Rab3/RAB-3…………………………………………………………………… -15-
1.4.4 SNB-1/VAMP……………………………………………………………………-16-
1.5 Hypothesis ..................................................................................................................- 16-
2. Materials and Methods I ................................................................................................- 18-
2.1 RNA isolation.............................................................................................................- 18-
2.2 cDNA synthesis ..........................................................................................................- 18-
2.3 Real-time PCR...........................................................................................................- 19-
2.4 RNAi feeding assay....................................................................................................- 19-
2.5 Protein harvesting, extraction and quantification..................................................- 19-
2.6 Western blotting and Co-immunoprecipitation .....................................................- 20-
2.7 Mutant worms used in this study.............................................................................- 20-
2.8 C. elegans strains and plasmids................................................................................- 21-
2.9 Worm imaging and motility analysis.......................................................................- 24-
3. Results I............................................................................................................................- 26-
3.1 Relative expression of SYD-2 in unc-10 and rab-3 mutants ..................................- 26-
3.2 Functional interaction between SYD-2 and UNC-104 in unc-10 and rab-3 mutants……………………………………………………………………………………26-
8
3.3 Affect of SYD-2/UNC-10/RAB-3 on UNC-104 cluster ...........................................- 27-
3.4 SYD-2 and UNC-104 interaction is dependent on UNC-10 and RAB-3...............- 28-
3.5 UNC-10 and RAB-3 positively affects the motility characteristics of UNC-104..- 30-
3.6 SYD-2/UNC-10 combination is required for RAB-3 transport but not SNB-1 ...- 31-
3.7 Cargo accumulation in ALM neurons.....................................................................- 32-
3.8 Role of PH domain in regulating the interaction of UNC-104 with SNB-1 and RAB-3 .........................................................................................................................................- 33-
4. Discussion I ......................................................................................................................- 35-
4.1 Effect of UNC-10 and RAB-3 on SYD-2’s binding to UNC-104 ...........................- 36-
4.2 Antagonistic effects of UNC-10 and RAB-3 on UNC-104’s clustering .................- 37-
4.3 The role of tripartite linker in facilitating UNC-104’s transport characteristics- 38-
4.4 SYD-2/UNC-10 combination is selectively required to transport RAB-3 containing vesicles…………………………………………………………………………………....-40-
4.5 The role of PH domain in motor-cargo interaction and how this interaction could be strengthened by an additional linker.........................................................................- 42-
5. References I......................................................................................................................- 44-
6. Figures I ...........................................................................................................................- 50-
7. Appendix I .......................................................................................................................- 70-

Table of Contents (Chapter-2)
1. Introduction II................................................................................................................... 79-
1.1 Ciliogenesis and Intraflagellar transport .................................................................. 79-
1.2 Ciliopathies................................................................................................................... 82-
1.3 Intraflagellar transport regulation ............................................................................ 82-
1.4 Tubulin post-translational modifications.................................................................. 83-
1.5 RFX-type transcription factor (DAF-19) .................................................................. 84-
1.6 The kinases PKG-1 and GCK-2 ................................................................................. 84-
1.7 Primary aim of the project ......................................................................................... 85-
2. Materials and Methods II................................................................................................. 86-
2.1 Worm maintenance and worm strains ...................................................................... 86-
2.2 Dye filling and Chemotaxis quadrant assay.............................................................. 87-
2.3 RNAi feeding method and rapamycin assay............................................................. 88-
2.4 Cilia Image analysis..................................................................................................... 88-
3. Results II ............................................................................................................................ 90-
3.1 Cilia dye uptake and quadrant chemotaxis assay .................................................... 90-
3.2 Cilia morphology in different IFT components background .................................. 91-
3.3 Affect of PKG-1 and GCK-2 on cilia length ............................................................. 92-
3.4 PKG-1 affects OSM-3 clustering at the distal tips of cilia at various developmental stages……………………………………………………………………………………...92-
3.5 PKG-1 and GCK-2 regulates the transport behavior of IFT machinery components ................................................................................................................................……….93-
3.6 Colocalization of PKG-1 and GCK-2 with different IFT components................... 94-
3.7 Inhibiting upstream effectors of PKG-1 and GCK-2 pathways.............................. 95-
3.8 Inhibiting downstream effectors of PKG-1 and GCK-2 pathways......................... 96-
78
4. Discussion II....................................................................................................................... 98-
4.1 Role of kinases PKG-1 and GCK-2 on IFT regulation ............................................ 98-
4.2 Cilia length regulation and its association to IFT .................................................... 99-
4.3 The role of upstream and downstream regulators involved in cGMP pathways (PKG-1)………………………………………………………………………………… 100-
4.4 The role of upstream and downstream regulators involved in TGFβ signaling pathways (GCK-2)…………………………………………………………………………………………..102
5. References II .................................................................................................................... 104-
6. Figures II.......................................................................................................................... 111-
7. Tables II ........................................................................................................................... 124-
8. Appendix II...................................................................................................................... 128-

Table of Contents (Chapter-3)
1. Introduction III .............................................................................................................- 138-
1.1 The neuronal cytoskeleton at a glance...................................................................- 138-
1.2 Neurofilament structure and function...................................................................- 139-
1.3 Neurofilament transport.........................................................................................- 140-
1.4 Neuron specific kinesin-3 UNC-104.......................................................................- 142-
1.5 Aim of the study.......................................................................................................- 142-
2. Materials and Methods III ...........................................................................................- 144-
2.1 cDNA synthesis ........................................................................................................- 144-
2.2 C. elegans maintenance and used strains ..............................................................- 144-
2.3 Real-time PCR.........................................................................................................- 145-
2.4 RNAi feeding assay..................................................................................................- 145-
2.5 Recombinant protein expression, solubilization and purification ......................- 145-
2.6 TEM analysis ...........................................................................................................- 147-
2.7 Worm imaging and motility analysis.....................................................................- 147-
3. Results III.......................................................................................................................- 149-
3.1 Use of bioinformatics tools for the identification of NF-like protein..................- 149-
3.2 Western blot analysis using anti-NEFH antibody................................................- 150-
3.3 Real-time PCR analysis to study the relative expression of TAG-63 in ok471 mutants .........................................................................................................................................- 151-
137
3.4 Characterization of tag-63 expression in worms .................................................- 151-
3.5 TAG-63 recombinant protein expression, purification and TEM analysis .......- 152-
3.6 Effect of tag-63 on transport velocities of UNC-104 (motor) and SNB-1 (cargo)...............................................................................................................………..- 153-
3.7 Effect of tag-63 on UNC-104 (motor) and SNB-1 (cargo) run lengths ...............- 153-
3.8 Abnormal targeting of synaptic vesicle precursor (SNB-1) in tag-63 (ok471) mutants .........................................................................................................................................- 154-
4. Discussion III .................................................................................................................- 155-
4.1 Neurofilaments and its related diseases.................................................................- 155-
4.2 Bioinformatics and the identification of NF-H ortholog TAG-63………………-155-
4.3 Characterization of Tag-63.....................................................................................- 157-
4.4 Neurofilament and its role in axonal transport ....................................................- 158-
4.5 Affect of charge regulation on NF dynamics ........................................................- 160-
4.6 Summary……………………………………………………………………………-161-
5. References III ................................................................................................................- 162-
6. Figures III ......................................................................................................................- 167-
7. Appendix III ..................................................................................................................- 186-
References I
1. Luo, L. (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity, Annu Rev Cell Dev Biol. 18, 601-35.
2. Barnes, A. P. & Polleux, F. (2009) Establishment of axon-dendrite polarity in developing neurons, Annu Rev Neurosci. 32, 347-81.
3. Kapitein, L. C. & Hoogenraad, C. C. (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons, Mol Cell Neurosci. 46, 9-20.
4. Sainath, R. & Gallo, G. (2015) Cytoskeletal and signaling mechanisms of neurite formation, Cell Tissue Res. 359, 267-78.
5. Brouhard, G. J. (2015) Dynamic instability 30 years later: complexities in microtubule growth and catastrophe, Mol Biol Cell. 26, 1207-10.
6. Mitchison, T. & Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature. 312, 237-42.
7. Niwa, S. (2015) Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis, Anat Sci Int. 90, 1-6.
8. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. (2009) Kinesin superfamily motor proteins and intracellular transport, Nat Rev Mol Cell Biol. 10, 682-96.
9. Perlson, E., Maday, S., Fu, M. M., Moughamian, A. J. & Holzbaur, E. L. (2010) Retrograde axonal transport: pathways to cell death?, Trends Neurosci. 33, 335-44.
10. Hirokawa, N., Niwa, S. & Tanaka, Y. (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease, Neuron. 68, 610-38.
11. Hirokawa, N. & Takemura, R. (2005) Molecular motors and mechanisms of directional transport in neurons, Nat Rev Neurosci. 6, 201-14.
12. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation, Neuron. 84, 292-309.
13. Eschbach, J. & Dupuis, L. (2011) Cytoplasmic dynein in neurodegeneration, Pharmacol Ther. 130, 348-63.
14. Brooks, B. R. (1991) The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis, Can J Neurol Sci. 18, 435-8.
15. Franker, M. A. & Hoogenraad, C. C. (2013) Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis, J Cell Sci. 126, 2319-29.
16. Breuss, M. & Keays, D. A. (2014) Microtubules and neurodevelopmental disease: the movers and the makers, Adv Exp Med Biol. 800, 75-96.
17. Robberecht, W. & Philips, T. (2013) The changing scene of amyotrophic lateral sclerosis, Nat Rev Neurosci. 14, 248-64.
18. Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H. W., Terada, S., Nakata, T., Takei, Y., Saito, M., Tsuji, S., Hayashi, Y. & Hirokawa, N. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta, Cell. 105, 587-97.
19. Hall, D. H. & Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans, Cell. 65, 837-47.
20. Maeder, C. I., San-Miguel, A., Wu, E. Y., Lu, H. & Shen, K. (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking, Traffic. 15, 273-91.
45
21. Zahn, T. R., Angleson, J. K., MacMorris, M. A., Domke, E., Hutton, J. F., Schwartz, C. & Hutton, J. C. (2004) Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104, Traffic. 5, 544-59.
22. Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T. & Hirokawa, N. (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice, J Cell Biol. 141, 431-41.
23. Kern, J. V., Zhang, Y. V., Kramer, S., Brenman, J. E. & Rasse, T. M. (2013) The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila, Genetics. 195, 59-72.
24. Zhang, Y. V., Hannan, S. B., Stapper, Z. A., Kern, J. V., Jahn, T. R. & Rasse, T. M. (2016) The Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation, Front Cell Neurosci. 10, 207.
25. Brady, S. T. & Morfini, G. A. (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases, Neurobiol Dis. 105, 273-282.
26. Millecamps, S. & Julien, J. P. (2013) Axonal transport deficits and neurodegenerative diseases, Nat Rev Neurosci. 14, 161-76.
27. Tien, N. W., Wu, G. H., Hsu, C. C., Chang, C. Y. & Wagner, O. I. (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons, Neurobiol Dis. 43, 495-506.
28. Rashid, D. J., Bononi, J., Tripet, B. P., Hodges, R. S. & Pierce, D. W. (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A, J Pept Res. 65, 538-49.
29. Niwa, S., Lipton, D. M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H. & Shen, K. (2016) Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses, Cell Rep. 16, 2129-2141.
30. Klopfenstein, D. R. & Vale, R. D. (2004) The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans, Mol Biol Cell. 15, 3729-39.
31. Li, L. B., Lei, H., Arey, R. N., Li, P., Liu, J., Murphy, C. T., Xu, X. Z. & Shen, K. (2016) The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory, Curr Biol. 26, 605-15.
32. Sudhof, T. C. (2004) The synaptic vesicle cycle, Annu Rev Neurosci. 27, 509-47.
33. Dresbach, T., Qualmann, B., Kessels, M. M., Garner, C. C. & Gundelfinger, E. D. (2001) The presynaptic cytomatrix of brain synapses, Cell Mol Life Sci. 58, 94-116.
34. Schoch, S. & Gundelfinger, E. D. (2006) Molecular organization of the presynaptic active zone, Cell Tissue Res. 326, 379-91.
35. Gundelfinger, E. D. & tom Dieck, S. (2000) Molecular organization of excitatory chemical synapses in the mammalian brain, Naturwissenschaften. 87, 513-23.
36. Rosenmund, C., Rettig, J. & Brose, N. (2003) Molecular mechanisms of active zone function, Curr Opin Neurobiol. 13, 509-19.
37. Ziv, N. E. & Garner, C. C. (2004) Cellular and molecular mechanisms of presynaptic assembly, Nat Rev Neurosci. 5, 385-99.
38. Wagner, O. I., Esposito, A., Kohler, B., Chen, C. W., Shen, C. P., Wu, G. H., Butkevich, E., Mandalapu, S., Wenzel, D., Wouters, F. S. & Klopfenstein, D. R. (2009) Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans, Proc Natl Acad Sci U S A. 106, 19605-10.
46
39. Nonet, M. L., Staunton, J. E., Kilgard, M. P., Fergestad, T., Hartwieg, E., Horvitz, H. R., Jorgensen, E. M. & Meyer, B. J. (1997) Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles, J Neurosci. 17, 8061-73.
40. Xuan, Z., Manning, L., Nelson, J., Richmond, J. E., Colon-Ramos, D. A., Shen, K. & Kurshan, P. T. (2017) Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release, Elife. 6.
41. Wu, G. H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y. H. & Wagner, O. I. (2016) Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons, Traffic. 17, 891-907.
42. Zhen, M. & Jin, Y. (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans, Nature. 401, 371-5.
43. Yeh, E., Kawano, T., Weimer, R. M., Bessereau, J. L. & Zhen, M. (2005) Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans, J Neurosci. 25, 3833-41.
44. Ko, J., Na, M., Kim, S., Lee, J. R. & Kim, E. (2003) Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins, J Biol Chem. 278, 42377-85.
45. Chia, P. H., Patel, M. R., Wagner, O. I., Klopfenstein, D. R. & Shen, K. (2013) Intramolecular regulation of presynaptic scaffold protein SYD-2/liprin-alpha, Mol Cell Neurosci. 56, 76-84.
46. Stigloher, C., Zhan, H., Zhen, M., Richmond, J. & Bessereau, J. L. (2011) The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions, J Neurosci. 31, 4388-96.
47. Kittelmann, M., Hegermann, J., Goncharov, A., Taru, H., Ellisman, M. H., Richmond, J. E., Jin, Y. & Eimer, S. (2013) Liprin-alpha/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans, J Cell Biol. 203, 849-63.
48. Ackermann, F., Waites, C. L. & Garner, C. C. (2015) Presynaptic active zones in invertebrates and vertebrates, EMBO Rep. 16, 923-38.
49. Shin, H., Wyszynski, M., Huh, K. H., Valtschanoff, J. G., Lee, J. R., Ko, J., Streuli, M., Weinberg, R. J., Sheng, M. & Kim, E. (2003) Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha, J Biol Chem. 278, 11393-401.
50. Spangler, S. A., Schmitz, S. K., Kevenaar, J. T., de Graaff, E., de Wit, H., Demmers, J., Toonen, R. F. & Hoogenraad, C. C. (2013) Liprin-alpha2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission, J Cell Biol. 201, 915-28.
51. Dai, Y., Taru, H., Deken, S. L., Grill, B., Ackley, B., Nonet, M. L. & Jin, Y. (2006) SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS, Nat Neurosci. 9, 1479-87.
52. Ko, J., Kim, S., Valtschanoff, J. G., Shin, H., Lee, J. R., Sheng, M., Premont, R. T., Weinberg, R. J. & Kim, E. (2003) Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting, J Neurosci. 23, 1667-77.
53. Goodwin, P. R. & Juo, P. (2013) The scaffolding protein SYD-2/Liprin-alpha regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons, PLoS One. 8, e54763.
47
54. Wu, Y. E., Huo, L., Maeder, C. I., Feng, W. & Shen, K. (2013) The balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses, Neuron. 78, 994-1011.
55. Edwards, S. L., Yorks, R. M., Morrison, L. M., Hoover, C. M. & Miller, K. G. (2015) Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditis elegans, Genetics. 201, 91-116.
56. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T. C. (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion, Nature. 388, 593-8.
57. Koushika, S. P., Richmond, J. E., Hadwiger, G., Weimer, R. M., Jorgensen, E. M. & Nonet, M. L. (2001) A post-docking role for active zone protein Rim, Nat Neurosci. 4, 997-1005.
58. Wang, Y., Sugita, S. & Sudhof, T. C. (2000) The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins, J Biol Chem. 275, 20033-44.
59. Schoch, S., Castillo, P. E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R. C. & Sudhof, T. C. (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone, Nature. 415, 321-6.
60. Han, Y., Kaeser, P. S., Sudhof, T. C. & Schneggenburger, R. (2011) RIM determines Ca(2)+ channel density and vesicle docking at the presynaptic active zone, Neuron. 69, 304-16.
61. Castillo, P. E., Schoch, S., Schmitz, F., Sudhof, T. C. & Malenka, R. C. (2002) RIM1alpha is required for presynaptic long-term potentiation, Nature. 415, 327-30.
62. Geppert, M., Bolshakov, V. Y., Siegelbaum, S. A., Takei, K., De Camilli, P., Hammer, R. E. & Sudhof, T. C. (1994) The role of Rab3A in neurotransmitter release, Nature. 369, 493-7.
63. Lin, C. G., Lin, Y. C., Liu, H. W. & Kao, L. S. (1997) Characterization of Rab3A, Rab3B and Rab3C: different biochemical properties and intracellular localization in bovine chromaffin cells, Biochem J. 324 ( Pt 1), 85-90.
64. Johnston, P. A., Archer, B. T., 3rd, Robinson, K., Mignery, G. A., Jahn, R. & Sudhof, T. C. (1991) rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence, Neuron. 7, 101-9.
65. Fischer von Mollard, G., Stahl, B., Li, C., Sudhof, T. C. & Jahn, R. (1994) Rab proteins in regulated exocytosis, Trends Biochem Sci. 19, 164-8.
66. Coleman, W. L., Bill, C. A. & Bykhovskaia, M. (2007) Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse, Neuroscience. 148, 1-6.
67. Graf, E. R., Daniels, R. W., Burgess, R. W., Schwarz, T. L. & DiAntonio, A. (2009) Rab3 dynamically controls protein composition at active zones, Neuron. 64, 663-77.
68. Mahoney, T. R., Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z. W., Fukuda, M. & Nonet, M. L. (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans, Mol Biol Cell. 17, 2617-25.
69. Iwasaki, K. & Toyonaga, R. (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission, EMBO J. 19, 4806-16.
70. Li, J. Y., Jahn, R. & Dahlstrom, A. (1995) Rab3a, a small GTP-binding protein, undergoes fast anterograde transport but not retrograde transport in neurons, Eur J Cell Biol. 67, 297-307.
48
71. Niwa, S., Tanaka, Y. & Hirokawa, N. (2008) KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD, Nat Cell Biol. 10, 1269-79.
72. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J Neurosci. 18, 70-80.
73. Sudhof, T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature. 375, 645-53.
74. Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin, Cell. 73, 1291-305.
75. Ward, S., Burke, D. J., Sulston, J. E., Coulson, A. R., Albertson, D. G., Ammons, D., Klass, M. & Hogan, E. (1988) Genomic organization of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans, Journal of molecular biology. 199, 1-13.
76. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis, Nature methods. 9, 671-5.
77. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94.
78. Hsu, C. C., Moncaleano, J. D. & Wagner, O. I. (2011) Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons, Neuroscience. 176, 39-52.
79. Kumar, J., Choudhary, B. C., Metpally, R., Zheng, Q., Nonet, M. L., Ramanathan, S., Klopfenstein, D. R. & Koushika, S. P. (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo, PLoS Genet. 6, e1001200.
80. Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. & Stanley, E. F. (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization, J Neurosci. 24, 4070-81.
81. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. & Tsien, R. Y. (2002) A monomeric red fluorescent protein, Proc Natl Acad Sci U S A. 99, 7877-82.
82. Zhen, M. & Jin, Y. (2004) Presynaptic terminal differentiation: transport and assembly, Curr Opin Neurobiol. 14, 280-7.
83. Taru, H. & Jin, Y. (2011) The Liprin homology domain is essential for the homomeric interaction of SYD-2/Liprin-alpha protein in presynaptic assembly, J Neurosci. 31, 16261-8.
84. Miller, K. E., DeProto, J., Kaufmann, N., Patel, B. N., Duckworth, A. & Van Vactor, D. (2005) Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles, Curr Biol. 15, 684-9.
85. Gracheva, E. O., Hadwiger, G., Nonet, M. L. & Richmond, J. E. (2008) Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density, Neurosci Lett. 444, 137-42.
86. Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. (2016) Microtubule Organization Determines Axonal Transport Dynamics, Neuron. 92, 449-460.
87. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. (2007) Multiple-motor based transport and its regulation by Tau, Proc Natl Acad Sci U S A. 104, 87-92.
88. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor, Cell. 109, 347-58.
49
89. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization, Science. 297, 2263-7.
90. Zheng, Q., Ahlawat, S., Schaefer, A., Mahoney, T., Koushika, S. P. & Nonet, M. L. (2014) The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport, PLoS Genet. 10, e1004644.
91. Tyers, M., Haslam, R. J., Rachubinski, R. A. & Harley, C. B. (1989) Molecular analysis of pleckstrin: the major protein kinase C substrate of platelets, J Cell Biochem. 40, 133-45.
92. Haslam, R. J., Koide, H. B. & Hemmings, B. A. (1993) Pleckstrin domain homology, Nature. 363, 309-10.
93. Shaw, G. (1996) The pleckstrin homology domain: an intriguing multifunctional protein module, Bioessays. 18, 35-46.
94. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. (1993) The PH domain: a common piece in the structural patchwork of signalling proteins, Trends Biochem Sci. 18, 343-8.
95. Gibson, T. J., Hyvonen, M., Musacchio, A., Saraste, M. & Birney, E. (1994) PH domain: the first anniversary, Trends Biochem Sci. 19, 349-53.
96. M, A. L., M, F., J, S. & K, F. (1997) Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains, Trends Cell Biol. 7, 237-42.
97. Kavran, J. M., Klein, D. E., Lee, A., Falasca, M., Isakoff, S. J., Skolnik, E. Y. & Lemmon, M. A. (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains, J Biol Chem. 273, 30497-508.
98. Lemmon, M. A. & Ferguson, K. M. (2001) Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides, Biochem Soc Trans. 29, 377-84.
99. Joanna L.Richens, Jordan S.L, Jonathan P.B, Paul O’Shea (2015) The electrical interplay between proteins and lipids in membranes, Biochimica et Biophysica Acta (BBA) – Biomembranes. 1848, Issue 9.
References II
1. Prevo, B., Scholey, J. M. & Peterman, E. J. G. (2017) Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery, FEBS J. 284, 2905-2931.
2. Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. & Anderson, K. V. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature. 426, 83-7.
3. Huangfu, D. & Anderson, K. V. (2005) Cilia and Hedgehog responsiveness in the mouse, Proceedings of the National Academy of Sciences of the United States of America. 102, 11325-30.
4. Ocbina, P. J. & Anderson, K. V. (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts, Dev Dyn. 237, 2030-8.
5. Ishikawa, H. & Marshall, W. F. (2011) Ciliogenesis: building the cell's antenna, Nat Rev Mol Cell Biol. 12, 222-34.
6. Zaghloul, N. A. & Brugmann, S. A. (2011) The emerging face of primary cilia, Genesis (New York, NY : 2000). 49, 231-46.
7. Mourao, A., Christensen, S. T. & Lorentzen, E. (2016) The intraflagellar transport machinery in ciliary signaling, Current opinion in structural biology. 41, 98-108.
8. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans, Dev Biol. 117, 456-87.
9. Inglis, P., Guangshuo Ou, Michel R. Leroux & Scholey, J. M. (2006) The sensory cilia of Caenorhabditis elegans, WormBook, ed The C elegans research community.
10. Snow, J. J., Ou, G., Gunnarson, A. L., Walker, M. R., Zhou, H. M., Brust-Mascher, I. & Scholey, J. M. (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons, Nature cell biology. 6, 1109-13.
11. Cornella I Bargmann, Erika Hartwieg & Horvitz, H. R. (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans, Cell. 74, 515-527.
12. Pan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O. E., Endres, N. F., Tao, L., Mogilner, A., Leroux, M. R., Vale, R. D. & Scholey, J. M. (2006) Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors, The Journal of cell biology. 174, 1035-45.
13. Han, Y. G., Kwok, B. H. & Kernan, M. J. (2003) Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm, Current biology : CB. 13, 1679-86.
14. Stepanek, L. & Pigino, G. (2016) Microtubule doublets are double-track railways for intraflagellar transport trains, Science (New York, NY). 352, 721-4.
15. Prevo, B., Mangeol, P., Oswald, F., Scholey, J. M. & Peterman, E. J. (2015) Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia, Nature cell biology.
16. Chien, A., Shih, S. M., Bower, R., Tritschler, D., Porter, M. E. & Yildiz, A. (2017) Dynamics of the IFT machinery at the ciliary tip, Elife. 6.
17. Luo, W., Ruba, A., Takao, D., Zweifel, L. P., Lim, R. Y. H., Verhey, K. J. & Yang, W. (2017) Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium, Sci Rep. 7, 15793.
105
18. Wren, K. N., Craft, J. M., Tritschler, D., Schauer, A., Patel, D. K., Smith, E. F., Porter, M. E., Kner, P. & Lechtreck, K. F. (2013) A differential cargo-loading model of ciliary length regulation by IFT, Current biology : CB. 23, 2463-71.
19. Lechtreck, K. F. (2015) IFT-Cargo Interactions and Protein Transport in Cilia, Trends in biochemical sciences. 40, 765-78.
20. Blacque, O. E. & Sanders, A. A. (2014) Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease, Organogenesis. 10, 126-37.
21. Sung, C. H. & Leroux, M. R. (2013) The roles of evolutionarily conserved functional modules in cilia-related trafficking, Nature cell biology. 15, 1387-97.
22. Keeling, J., Tsiokas, L. & Maskey, D. (2016) Cellular Mechanisms of Ciliary Length Control, Cells. 5.
23. Marshall, W. F., Qin, H., Rodrigo Brenni, M. & Rosenbaum, J. L. (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover, Mol Biol Cell. 16, 270-8.
24. Marshall, W. F. & Rosenbaum, J. L. (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, The Journal of cell biology. 155, 405-14.
25. Liang, Y., Meng, D., Zhu, B. & Pan, J. (2016) Mechanism of ciliary disassembly, Cell Mol Life Sci. 73, 1787-802.
26. Canning, P., Park, K., Goncalves, J., Li, C., Howard, C. J., Sharpe, T. D., Holt, L. J., Pelletier, L., Bullock, A. N. & Leroux, M. R. (2018) CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function, Cell Rep. 22, 885-894.
27. Hildebrandt, F., Benzing, T. & Katsanis, N. (2011) Ciliopathies, The New England journal of medicine. 364, 1533-43.
28. Waters, A. M. & Beales, P. L. (2011) Ciliopathies: an expanding disease spectrum, Pediatric nephrology (Berlin, Germany). 26, 1039-56.
29. Brown, J. M. & Witman, G. B. (2014) Cilia and Diseases, Bioscience. 64, 1126-1137.
30. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating, Proceedings of the National Academy of Sciences of the United States of America. 90, 5519-23.
31. Cantagrel, V., Silhavy, J. L., Bielas, S. L., Swistun, D., Marsh, S. E., Bertrand, J. Y., Audollent, S., Attie-Bitach, T., Holden, K. R., Dobyns, W. B., Traver, D., Al-Gazali, L., Ali, B. R., Lindner, T. H., Caspary, T., Otto, E. A., Hildebrandt, F., Glass, I. A., Logan, C. V., Johnson, C. A., Bennett, C., Brancati, F., International Joubert Syndrome Related Disorders Study, G., Valente, E. M., Woods, C. G. & Gleeson, J. G. (2008) Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome, Am J Hum Genet. 83, 170-9.
32. Larkins, C. E., Aviles, G. D., East, M. P., Kahn, R. A. & Caspary, T. (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins, Mol Biol Cell. 22, 4694-703.
33. Cevik, S., Hori, Y., Kaplan, O. I., Kida, K., Toivenon, T., Foley-Fisher, C., Cottell, D., Katada, T., Kontani, K. & Blacque, O. E. (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans, The Journal of cell biology. 188, 953-69.
106
34. Masyukova, S. V., Landis, D. E., Henke, S. J., Williams, C. L., Pieczynski, J. N., Roszczynialski, K. N., Covington, J. E., Malarkey, E. B. & Yoder, B. K. (2016) A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4, PLoS genetics. 12, e1005841.
35. Pan, J. & Snell, W. J. (2003) Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase, J Cell Sci. 116, 2179-86.
36. Bradley, B. A. & Quarmby, L. M. (2005) A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas, J Cell Sci. 118, 3317-26.
37. Meng, D. & Pan, J. (2016) A NIMA-related kinase, CNK4, regulates ciliary stability and length, Mol Biol Cell. 27, 838-47.
38. Liang, Y., Pang, Y., Wu, Q., Hu, Z., Han, X., Xu, Y., Deng, H. & Pan, J. (2014) FLA8/KIF3B Phosphorylation Regulates Kinesin-II Interaction with IFT-B to Control IFT Entry and Turnaround, Developmental cell.
39. Blacque, O. E., Reardon, M. J., Li, C., McCarthy, J., Mahjoub, M. R., Ansley, S. J., Badano, J. L., Mah, A. K., Beales, P. L., Davidson, W. S., Johnsen, R. C., Audeh, M., Plasterk, R. H., Baillie, D. L., Katsanis, N., Quarmby, L. M., Wicks, S. R. & Leroux, M. R. (2004) Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport, Genes Dev. 18, 1630-42.
40. Wei, Q., Zhang, Y., Li, Y., Zhang, Q., Ling, K. & Hu, J. (2012) The BBSome controls IFT assembly and turnaround in cilia, Nature cell biology. 14, 950-7.
41. Ou, G., Koga, M., Blacque, O. E., Murayama, T., Ohshima, Y., Schafer, J. C., Li, C., Yoder, B. K., Leroux, M. R. & Scholey, J. M. (2007) Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles, Mol Biol Cell. 18, 1554-69.
42. Imanishi, M., Endres, N. F., Gennerich, A. & Vale, R. D. (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3, The Journal of cell biology. 174, 931-7.
43. Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. (2005) Functional coordination of intraflagellar transport motors, Nature. 436, 583-7.
44. Burghoorn, J., Dekkers, M. P., Rademakers, S., de Jong, T., Willemsen, R. & Jansen, G. (2007) Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America. 104, 7157-62.
45. Phirke, P., Efimenko, E., Mohan, S., Burghoorn, J., Crona, F., Bakhoum, M. W., Trieb, M., Schuske, K., Jorgensen, E. M., Piasecki, B. P., Leroux, M. R. & Swoboda, P. (2011) Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport, Dev Biol. 357, 235-47.
46. Yi, P., Xie, C. & Ou, G. (2018) The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility in Caenorhabditis elegans neuronal cilia, Traffic. 19, 522-535.
47. Milic, B., Andreasson, J. O. L., Hogan, D. W. & Block, S. M. (2017) Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load, Proceedings of the National Academy of Sciences of the United States of America. 114, E6830-E6838.
107
48. Yi, P., Li, W. J., Dong, M. Q. & Ou, G. (2017) Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C. elegans Sensory Cilia, Current biology : CB. 27, 1448-1461 e7.
49. Janke, C. & Bulinski, J. C. (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat Rev Mol Cell Biol. 12, 773-86.
50. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. (2010) The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation, Proceedings of the National Academy of Sciences of the United States of America. 107, 21517-22.
51. Hammond, J. W., Cai, D. & Verhey, K. J. (2008) Tubulin modifications and their cellular functions, Curr Opin Cell Biol. 20, 71-6.
52. Nakakura, T., Asano-Hoshino, A., Suzuki, T., Arisawa, K., Tanaka, H., Sekino, Y., Kiuchi, Y., Kawai, K. & Hagiwara, H. (2015) The elongation of primary cilia via the acetylation of alpha-tubulin by the treatment with lithium chloride in human fibroblast KD cells, Med Mol Morphol. 48, 44-53.
53. Loktev, A. V., Zhang, Q., Beck, J. S., Searby, C. C., Scheetz, T. E., Bazan, J. F., Slusarski, D. C., Sheffield, V. C., Jackson, P. K. & Nachury, M. V. (2008) A BBSome subunit links ciliogenesis, microtubule stability, and acetylation, Developmental cell. 15, 854-65.
54. Hammond, J. W., Huang, C. F., Kaech, S., Jacobson, C., Banker, G. & Verhey, K. J. (2010) Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons, Mol Biol Cell. 21, 572-83.
55. Reed, N. A., Cai, D., Blasius, T. L., Jih, G. T., Meyhofer, E., Gaertig, J. & Verhey, K. J. (2006) Microtubule acetylation promotes kinesin-1 binding and transport, Current biology : CB. 16, 2166-72.
56. Balabanian, L., Berger, C. L. & Hendricks, A. G. (2017) Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility, Biophys J. 113, 1551-1560.
57. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F. & Yao, T. P. (2002) HDAC6 is a microtubule-associated deacetylase, Nature. 417, 455-8.
58. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase, Mol Cell. 11, 437-44.
59. Burghoorn, J., Piasecki, B. P., Crona, F., Phirke, P., Jeppsson, K. E. & Swoboda, P. (2012) The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box, Dev Biol.
60. Piasecki, B. P., Burghoorn, J. & Swoboda, P. (2010) Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals, Proceedings of the National Academy of Sciences of the United States of America. 107, 12969-74.
61. Swoboda, P., Adler, H. T. & Thomas, J. H. (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans, Mol Cell. 5, 411-21.
62. Chen, N., Mah, A., Blacque, O. E., Chu, J., Phgora, K., Bakhoum, M. W., Newbury, C. R., Khattra, J., Chan, S., Go, A., Efimenko, E., Johnsen, R., Phirke, P., Swoboda, P., Marra, M., Moerman, D. G., Leroux, M. R., Baillie, D. L. & Stein, L. D. (2006) Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics, Genome Biol. 7, R126.
63. Efimenko, E., Bubb, K., Mak, H. Y., Holzman, T., Leroux, M. R., Ruvkun, G., Thomas, J. H. & Swoboda, P. (2005) Analysis of xbx genes in C. elegans, Development. 132, 1923-34.
108
64. Inglis, P. N., Boroevich, K. A. & Leroux, M. R. (2006) Piecing together a ciliome, Trends Genet. 22, 491-500.
65. Hirose, T., Nakano, Y., Nagamatsu, Y., Misumi, T., Ohta, H. & Ohshima, Y. (2003) Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans, Development. 130, 1089-99.
66. Nakano, Y., Nagamatsu, Y. & Ohshima, Y. (2004) cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4, Genes Cells. 9, 773-9.
67. Krzyzanowski, M. C., Brueggemann, C., Ezak, M. J., Wood, J. F., Michaels, K. L., Jackson, C. A., Juang, B. T., Collins, K. D., Yu, M. C., L'Etoile N, D. & Ferkey, D. M. (2013) The C. elegans cGMP-dependent protein kinase EGL-4 regulates nociceptive behavioral sensitivity, PLoS genetics. 9, e1003619.
68. van der Linden, A. M., Wiener, S., You, Y. J., Kim, K., Avery, L. & Sengupta, P. (2008) The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans, Genetics. 180, 1475-91.
69. L'Etoile, N. D., Coburn, C. M., Eastham, J., Kistler, A., Gallegos, G. & Bargmann, C. I. (2002) The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans, Neuron. 36, 1079-89.
70. O'Halloran, D. M., Hamilton, O. S., Lee, J. I., Gallegos, M. & L'Etoile, N. D. (2012) Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans, PLoS One. 7, e31614.
71. Lee, J. I., O'Halloran, D. M., Eastham-Anderson, J., Juang, B. T., Kaye, J. A., Scott Hamilton, O., Lesch, B., Goga, A. & L'Etoile, N. D. (2010) Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation, Proc Natl Acad Sci U S A. 107, 6016-21.
72. Findlay, G. M., Yan, L., Procter, J., Mieulet, V. & Lamb, R. F. (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling, Biochem J. 403, 13-20.
73. Resnik-Docampo, M. & de Celis, J. F. (2011) MAP4K3 is a component of the TORC1 signalling complex that modulates cell growth and viability in Drosophila melanogaster, PLoS One. 6, e14528.
74. Bryk, B., Hahn, K., Cohen, S. M. & Teleman, A. A. (2010) MAP4K3 regulates body size and metabolism in Drosophila, Dev Biol. 344, 150-7.
75. Khan, M. H., Hart, M. J. & Rea, S. L. (2012) The role of MAP4K3 in lifespan regulation of Caenorhabditis elegans, Biochem Biophys Res Commun. 425, 413-8.
76. Burghoorn, J., Piasecki, B. P., Crona, F., Phirke, P., Jeppsson, K. E. & Swoboda, P. (2012) The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box, Dev Biol. 368, 415-26.
77. Wang, J., Schwartz, H. T. & Barr, M. M. (2010) Functional specialization of sensory cilia by an RFX transcription factor isoform, Genetics. 186, 1295-307.
78. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94.
79. Haycraft, C. J., Swoboda, P., Taulman, P. D., Thomas, J. H. & Yoder, B. K. (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms, Development. 128, 1493-505.
109
80. Simon, J. M. & Sternberg, P. W. (2002) Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans, Proceedings of the National Academy of Sciences of the United States of America. 99, 1598-603.
81. Muthaiyan Shanmugam, M., Bhan, P., Huang, H. Y., Hsieh, J., Hua, T. E., Wu, G. H., Punjabi, H., Lee Aplicano, V. D., Chen, C. W. & Wagner, O. I. (2018) Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons, Mol Cell Biol. 38.
82. Tong, Y. G. & Burglin, T. R. (2010) Conditions for dye-filling of sensory neurons in Caenorhabditis elegans, Journal of neuroscience methods. 188, 58-61.
83. Margie, O., Palmer, C. & Chin-Sang, I. (2013) C. elegans chemotaxis assay, Journal of visualized experiments : JoVE, e50069.
84. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans, Genome Biol. 2, RESEARCH0002.
85. McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A. & Burgess, A. (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events, Cell Cycle. 13, 1400-12.
86. Collet, J., Spike, C. A., Lundquist, E. A., Shaw, J. E. & Herman, R. K. (1998) Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans, Genetics. 148, 187-200.
87. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. (1999) Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans, Mol Biol Cell. 10, 345-60.
88. Blacque, O. E., Li, C., Inglis, P. N., Esmail, M. A., Ou, G., Mah, A. K., Baillie, D. L., Scholey, J. M. & Leroux, M. R. (2006) The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport, Mol Biol Cell. 17, 5053-62.
89. Schafer, J. C., Haycraft, C. J., Thomas, J. H., Yoder, B. K. & Swoboda, P. (2003) XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans, Mol Biol Cell. 14, 2057-70.
90. Robida-Stubbs, S., Glover-Cutter, K., Lamming, D. W., Mizunuma, M., Narasimhan, S. D., Neumann-Haefelin, E., Sabatini, D. M. & Blackwell, T. K. (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO, Cell Metab. 15, 713-24.
91. Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C. & Inoki, K. (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation, J Biol Chem. 289, 13132-41.
92. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. (2006) The ciliopathies: an emerging class of human genetic disorders, Annu Rev Genomics Hum Genet. 7, 125-48.
93. John Stanberry, Eric J. Baude, Merritt K. Taylor, Pei-Jiun Chen, Suk-Won Jin, Ronald E. Ellis & Uhler, M. D. (2001) A cGMP -dependent protein kinase is implicated in wild-type motility of C. elegans, Journal of Neurochemistry. 76, 1177-1187.
94. Raizen, D. M., Cullison, K. M., Pack, A. I. & Sundaram, M. V. (2006) A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans, Genetics. 173, 177-87.
110
95. Scholey, J. M. (2013) Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions, Annual review of cell and developmental biology. 29, 443-69.
96. L'Etoile, N. D. & Bargmann, C. I. (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1, Neuron. 25, 575-86.
97. Daniels, S. A., Ailion, M., Thomas, J. H. & Sengupta, P. (2000) egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues, Genetics. 156, 123-41.
98. Verhey, K. J. & Gaertig, J. (2007) The tubulin code, Cell Cycle. 6, 2152-60.
99. Jaulin, F. & Kreitzer, G. (2010) KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC, The Journal of cell biology. 190, 443-60.
100. Laplante, M. & Sabatini, D. M. (2012) mTOR signaling in growth control and disease, Cell. 149, 274-93.
101. Yuan, S., Li, J., Diener, D. R., Choma, M. A., Rosenbaum, J. L. & Sun, Z. (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation, Proceedings of the National Academy of Sciences of the United States of America. 109, 2021-6.
102. Ko, J. Y. (2016) Functional Study of the Primary Cilia in ADPKD, Adv Exp Med Biol. 933, 45-57.
103. Broekhuis, J. R., Verhey, K. J. & Jansen, G. (2014) Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells, PLoS One. 9, e108470.
104. Sun, D. F., Zhang, Y. J., Tian, X. Q., Chen, Y. X. & Fang, J. Y. (2014) Inhibition of mTOR signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation, Cell Biol Int. 38, 50-63.
105. Bamps, S., Wirtz, J., Savory, F. R., Lake, D. & Hope, I. A. (2009) The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction, Mech Ageing Dev. 130, 762-70.
106. Frye, R. A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins, Biochem Biophys Res Commun. 273, 793-8.
107. Zhou, X., Fan, L. X., Sweeney, W. E., Jr., Denu, J. M., Avner, E. D. & Li, X. (2013) Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease, J Clin Invest. 123, 3084-98.
108. Pillai, V. B., Sundaresan, N. R. & Gupta, M. P. (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging, Circ Res. 114, 368-78.
109. Yu, I., Garnham, C. P. & Roll-Mecak, A. (2015) Writing and Reading the Tubulin Code, J Biol Chem. 290, 17163-72.
110. Wloga, D. & Gaertig, J. (2011) Post-translational modifications of microtubules, The journal of cell science. 123, 3447-3455.

References III
1. Lepinoux-Chambaud, C. & Eyer, J. (2013) Review on intermediate filaments of the nervous system and their pathological alterations, Histochemistry and cell biology. 140, 13-22.
2. Gentil, B. J., Tibshirani, M. & Durham, H. D. (2015) Neurofilament dynamics and involvement in neurological disorders, Cell Tissue Res. 360, 609-20.
3. Calahorro, F. & Ruiz-Rubio, M. (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder, Invertebrate neuroscience : IN. 11, 73-83.
4. Therrien, M. & Parker, J. A. (2014) Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans, Frontiers in genetics. 5, 85.
5. Wentzell, J. & Kretzschmar, D. (2010) Alzheimer's disease and tauopathy studies in flies and worms, Neurobiol Dis. 40, 21-8.
6. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation, Neuron. 84, 292-309.
7. Millecamps, S. & Julien, J. P. (2013) Axonal transport deficits and neurodegenerative diseases, Nature reviews Neuroscience. 14, 161-76.
8. Carberry, K., Wiesenfahrt, T., Windoffer, R., Bossinger, O. & Leube, R. E. (2009) Intermediate filaments in Caenorhabditis elegans, Cell Motil Cytoskeleton. 66, 852-64.
9. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. (2012) Neurofilaments at a glance, Journal of cell science. 125, 3257-63.
10. Yuan, A., Sasaki, T., Rao, M. V., Kumar, A., Kanumuri, V., Dunlop, D. S., Liem, R. K. & Nixon, R. A. (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons, J Neurosci. 29, 11316-29.
11. Wagner, O. I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J. F. & Janmey, P. A. (2007) Softness, strength and self-repair in intermediate filament networks, Exp Cell Res. 313, 2228-35.
12. Wagner, O. I., Lifshitz, J., Janmey, P. A., Linden, M., McIntosh, T. K. & Leterrier, J. F. (2003) Mechanisms of mitochondria-neurofilament interactions, J Neurosci. 23, 9046-58.
13. Bocquet, A., Berges, R., Frank, R., Robert, P., Peterson, A. C. & Eyer, J. (2009) Neurofilaments bind tubulin and modulate its polymerization, J Neurosci. 29, 11043-54.
14. Laser-Azogui, A., Kornreich, M., Malka-Gibor, E. & Beck, R. (2015) Neurofilament assembly and function during neuronal development, Current opinion in cell biology. 32, 92-101.
15. Sternberger, L. A. & Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ, Proceedings of the National Academy of Sciences of the United States of America. 80, 6126-30.
16. Julie Carter, Alexander Gragerov, Karel Konvicka, Gregory Elder, Harel Weinstein & Lazzarini, R. A. (1998) Neurofilament (NF) assenbly; Divergent characteristics of human and rodent NF-L subunits, The journal of biological chemistry. 273, 5101-5108.
17. Carden, M. J. & Eagles, P. A. (1986) Chemical cross-linking analyses of ox neurofilaments, Biochem J. 234, 587-91.
18. Krishnan, N., Kaiserman-Abramof, I. R. & Lasek, R. J. (1979) Helical substructure of neurofilaments isolated from Myxicola and squid giant axons, J Cell Biol. 82, 323-35.
163
19. Leterrier, J. F., Liem, R. K. & Shelanski, M. L. (1982) Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intraorganellar bridging, J Cell Biol. 95, 982-6.
20. Hirokawa, N., Hisanaga, S. & Shiomura, Y. (1988) MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies, J Neurosci. 8, 2769-79.
21. Chang, R., Kwak, Y. & Gebremichael, Y. (2009) Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture, J Mol Biol. 391, 648-60.
22. Wagner, O. I., Ascano, J., Tokito, M., Leterrier, J. F., Janmey, P. A. & Holzbaur, E. L. (2004) The interaction of neurofilaments with the microtubule motor cytoplasmic dynein, Mol Biol Cell. 15, 5092-100.
23. Alami, N. H., Jung, P. & Brown, A. (2009) Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses, J Neurosci. 29, 6625-34.
24. Matveeva, E. A., Venkova, L. S., Chernoivanenko, I. S. & Minin, A. A. (2015) Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1, Biology open. 4, 1290-7.
25. Uchida, A., Alami, N. H. & Brown, A. (2009) Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments, Mol Biol Cell. 20, 4997-5006.
26. Trivedi, N., Jung, P. & Brown, A. (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons, J Neurosci. 27, 507-16.
27. Yabe, J. T., Chan, W. K., Chylinski, T. M., Lee, S., Pimenta, A. F. & Shea, T. B. (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation, Cell Motil Cytoskeleton. 48, 61-83.
28. Encalada, S. E. & Goldstein, L. S. (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration, Annual review of biophysics. 43, 141-69.
29. Hancock, W. O. (2014) Bidirectional cargo transport: moving beyond tug of war, Nature reviews Molecular cell biology. 15, 615-28.
30. Kurup, N., Li, Y., Goncharov, A. & Jin, Y. (2018) Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons, Proceedings of the National Academy of Sciences of the United States of America. 115, 3114-3119.
31. Hall, D. H. & Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans, Cell. 65, 837-47.
32. Maeder, C. I., San-Miguel, A., Wu, E. Y., Lu, H. & Shen, K. (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking, Traffic. 15, 273-91.
33. Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Noda, T. & Hirokawa, N. (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice, J Cell Biol. 141, 431-41.
34. Kern, J. V., Zhang, Y. V., Kramer, S., Brenman, J. E. & Rasse, T. M. (2013) The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila, Genetics. 195, 59-72.
35. Brady, S. T. & Morfini, G. A. (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases, Neurobiol Dis. 105, 273-282.
36. Rashid, D. J., Bononi, J., Tripet, B. P., Hodges, R. S. & Pierce, D. W. (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A, J Pept Res. 65, 538-49.
164
37. Niwa, S., Lipton, D. M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H. & Shen, K. (2016) Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses, Cell Rep. 16, 2129-2141.
38. Brenner, S. (1974) The genetics of Caenorhabditis elegans, Genetics. 77, 71-94.
39. Wu, G. H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y. H. & Wagner, O. I. (2016) Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons, Traffic. 17, 891-907.
40. Tien, N. W., Wu, G. H., Hsu, C. C., Chang, C. Y. & Wagner, O. I. (2011) Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons, Neurobiol Dis. 43, 495-506.
41. Kumar, J., Choudhary, B. C., Metpally, R., Zheng, Q., Nonet, M. L., Ramanathan, S., Klopfenstein, D. R. & Koushika, S. P. (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo, PLoS Genet. 6, e1001200.
42. Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. & Stanley, E. F. (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization, J Neurosci. 24, 4070-81.
43. Gruber, M., Soding, J. & Lupas, A. N. (2006) Comparative analysis of coiled-coil prediction methods, J Struct Biol. 155, 140-5.
44. Consortium (2012) Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome, G3 (Bethesda, Md). 2, 1415-25.
45. Carter, J., Gragerov, A., Konvicka, K., Elder, G., Weinstein, H. & Lazzarini, R. A. (1998) Neurofilament (NF) assembly; Divergent characteristics of human and rodent NF-L subunits, J Biol Chem. 273, 5101-5108.
46. Vannucchi, M. G., Midrio, P., Zardo, C. & Faussone-Pellegrini, M. S. (2004) Neurofilament formation and synaptic activity are delayed in the myenteric neurons of the rat fetus with gastroschisis, Neurosci Lett. 364, 81-5.
47. Dubey, M., Chaudhury, P., Kabiru, H. & Shea, T. B. (2008) Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability, Cell Motil Cytoskeleton. 65, 89-99.
48. Soler-Martin, C., Boadas-Vaello, P., Verdu, E., Garcia, N. & Llorens, J. (2014) Chronic proximal axonopathy in rats is associated with long-standing neurofilament depletion in neuromuscular junctions and behavioral deficits, Journal of neuropathology and experimental neurology. 73, 568-79.
49. Conde, C. & Caceres, A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites, Nature reviews Neuroscience. 10, 319-32.
50. Dillon, C. & Goda, Y. (2005) The actin cytoskeleton: integrating form and function at the synapse, Annu Rev Neurosci. 28, 25-55.
51. Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. (2017) Neurofilaments and Neurofilament Proteins in Health and Disease, Cold Spring Harb Perspect Biol. 9.
52. Lee, M. K. & Cleveland, D. W. (1996) Neuronal intermediate filaments, Annu Rev Neurosci. 19, 187-217.
53. Rudrabhatla, P. (2014) Regulation of neuronal cytoskeletal protein phosphorylation in neurodegenerative diseases, Journal of Alzheimer's disease : JAD. 41, 671-84.
54. Yuan, A. & Nixon, R. A. (2016) Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders, Brain Res Bull. 126, 334-346.
165
55. Martin-Jimenez, R., Campanella, M. & Russell, C. (2015) New zebrafish models of neurodegeneration, Current neurology and neuroscience reports. 15, 33.
56. McGurk, L., Berson, A. & Bonini, N. M. (2015) Drosophila as an In Vivo Model for Human Neurodegenerative Disease, Genetics. 201, 377-402.
57. Alexander, A. G., Marfil, V. & Li, C. (2014) Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases, Frontiers in genetics. 5, 279.
58. Li, J. & Le, W. (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans, Experimental neurology. 250, 94-103.
59. Herrmann, H., Haner, M., Brettel, M., Ku, N. O. & Aebi, U. (1999) Characterization of distinct early assembly units of different intermediate filament proteins, J Mol Biol. 286, 1403-20.
60. Shah, J. V. & Cleveland, D. W. (2002) Slow axonal transport: fast motors in the slow lane, Current opinion in cell biology. 14, 58-62.
61. Jung, C., Lee, S., Ortiz, D., Zhu, Q., Julien, J. P. & Shea, T. B. (2005) The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit, Brain research Molecular brain research. 141, 151-5.
62. Tang, H. L., Lung, H. L., Wu, K. C., Le, A. H., Tang, H. M. & Fung, M. C. (2008) Vimentin supports mitochondrial morphology and organization, Biochem J. 410, 141-6.
63. Nekrasova, O. E., Mendez, M. G., Chernoivanenko, I. S., Tyurin-Kuzmin, P. A., Kuczmarski, E. R., Gelfand, V. I., Goldman, R. D. & Minin, A. A. (2011) Vimentin intermediate filaments modulate the motility of mitochondria, Mol Biol Cell. 22, 2282-9.
64. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D. & Minin, A. A. (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments, FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 29, 820-7.
65. Gyoeva, F. K. & Gelfand, V. I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin, Nature. 353, 445-8.
66. Liao, G. & Gundersen, G. G. (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin, J Biol Chem. 273, 9797-803.
67. Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. & Goldman, R. D. (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks, J Cell Biol. 143, 159-70.
68. Shim, S. Y., Samuels, B. A., Wang, J., Neumayer, G., Belzil, C., Ayala, R., Shi, Y., Shi, Y., Tsai, L. H. & Nguyen, M. D. (2008) Ndel1 controls the dynein-mediated transport of vimentin during neurite outgrowth, J Biol Chem. 283, 12232-40.
69. Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R. & Fainzilber, M. (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve, Neuron. 45, 715-26.
70. Gerashchenko, M. V., Chernoivanenko, I. S., Moldaver, M. V. & Minin, A. A. (2009) Dynein is a motor for nuclear rotation while vimentin IFs is a "brake", Cell biology international. 33, 1057-64.
71. Mussel, M., Zeevy, K., Diamant, H. & Nevo, U. (2014) Drag of the cytosol as a transport mechanism in neurons, Biophys J. 106, 2710-9.
166
72. Bass, L. & Moore, W. J. (1966) Electrokinetic mechanism of miniature postsynaptic potentials, Proceedings of the National Academy of Sciences of the United States of America. 55, 1214-7.
73. Remler, M. P. (1973) A semiquantitative theory of synaptic vesicle movements, Biophys J. 13, 104-17.
74. Ohsawa, K., Ohshima, H. & Ohki, S. (1981) Surface potential and surface charge density of the cerebral-cortex synaptic vesicle and stability of vesicle suspension, Biochimica et biophysica acta. 648, 206-14.
75. Aranda-Espinoza, H., Carl, P., Leterrier, J. F., Janmey, P. & Discher, D. E. (2002) Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP, FEBS letters. 531, 397-401.
76. Lund, M. & Jonsson, B. (2013) Charge regulation in biomolecular solution, Quarterly reviews of biophysics. 46, 265-81.
77. Hammond, J. W., Cai, D., Blasius, T. L., Li, Z., Jiang, Y., Jih, G. T., Meyhofer, E. & Verhey, K. J. (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition, PLoS Biol. 7, e72.
78. Soppina, V., Norris, S. R., Dizaji, A. S., Kortus, M., Veatch, S., Peckham, M. & Verhey, K. J. (2014) Dimerization of mammalian kinesin-3 motors results in superprocessive motion, Proceedings of the National Academy of Sciences of the United States of America. 111, 5562-7.
79. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization, Science. 297, 2263-7.
80. Reddy, B. J., Mattson, M., Wynne, C. L., Vadpey, O., Durra, A., Chapman, D., Vallee, R. B. & Gross, S. P. (2016) Load-induced enhancement of Dynein force production by LIS1-NudE in vivo and in vitro, Nature communications. 7, 12259.
81. Andreasson, J. O., Shastry, S., Hancock, W. O. & Block, S. M. (2015) The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load, Current biology : CB. 25, 1166-75.
82. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R. D. (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell. 134, 1030-41.
83. Yuan, A., Rao, M. V., Sasaki, T., Chen, Y., Kumar, A., Veeranna, Liem, R. K., Eyer, J., Peterson, A. C., Julien, J. P. & Nixon, R. A. (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS, J Neurosci. 26, 10006-19.
84. Yuan, A., Sasaki, T., Kumar, A., Peterhoff, C. M., Rao, M. V., Liem, R. K., Julien, J. P. & Nixon, R. A. (2012) Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons, J Neurosci. 32, 8501-8.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *