帳號:guest(3.147.71.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉致峻
作者(外文):Liu, Chih-Chun
論文名稱(中文):三篇能源經濟實證研究:價格、需求與脆弱度
論文名稱(外文):Three Essays on Energy Economics: Price, Demand, and Vulnerability
指導教授(中文):廖肇寧
梁啟源
指導教授(外文):Liao, Chao-Ning
Liang, Chi-Yuan
口試委員(中文):張四立
廖惠珠
吳再益
口試委員(外文):Chang, Ssu-Li
Liao, Huei-Chu
Wu, Tsai-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:經濟學系
學號:101072803
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:122
中文關鍵詞:投機油價能源脆弱度不對稱電力需求
外文關鍵詞:SpeculationOil PriceEnergy VulnerabilityAsymmetric ResponseElectricity Demand
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文包含了三篇與能源經濟相關的實證研究,其主旨分別探討原油期貨市場的投機行為對原油價格的影響,台灣能源系統的脆弱度指標系統的建構,與台灣住宅部門電力需求函數的非線性關係,分述如下:

第一章出於對近年原油越為金融化的同時,原油價格亦出現大幅波動的現象,其背後原因的好奇心。回顧現有文獻,大體以原油市場的供需平衡與期貨市場的投機行為的兩種解釋最為可信,但也尚未形成共識。為提供更多證據以供進一步討論,本文以非交易商的淨多頭部位做為代理變數來捕捉期貨市場的投機行為,這個代理變數相較文獻中常以原油存貨作為投機行為的代理變數更為符合一般大眾的認知。另外,本文建立一個符號限制的因素擴充向量自我回歸模型(Structural Factor Augmented Vector Autoregression Model with Sign Restriction)模型,透過該模型的實證結果發現,儘管原油的供給與需求面因素確實對於油價造成影響,但期貨市場的投機行為亦對油價波動造成了立即且持續長達半年的顯著影響,更是2004~2007年、2011~2013年與2015~2016年間原油價格出現巨幅波動的主要原因。

在2011年福島核能電廠事故之後,台灣的能源政策方向大幅調整,後在2016年後訂定出一套高度依賴再生能源與天然氣,並逐步淘汰核能發電的能源轉型政策。考量能源設施多屬鄰避設施,且其建設往往耗時長久,故能源政策大幅度的轉向可能會導致台灣本已不夠完善的能源系統更為脆弱,故本文第二章以台灣為例,建立一套可全面評估能源系統脆弱程度的模型框架。這套脆弱度指標分成三個主要構面與十五個次指標,分別考量初級能源供應面、能源基礎設施面與最終能源消費面。而實證結果表明,台灣目前處於1990-2017年最脆弱的時期之一,另外提出(1)重新務實的評估當前的能源轉型政策的進程與配套方案;(2)完善現有能源基礎設施;(3)設計相關誘使能源用戶改變行為等建議。

承襲前一章的建議,本文第三章嘗試估計台灣住宅部門的電力需求函數,以提供可靠資訊,讓政府得以建立適當的能源政策工具。然而,現有文獻中對能源需求的估計和政策含義歧異頗大,並常常相互矛盾。舉例來說,文獻中常假設能源需求與其影響變數間的關係唯一常數,亦即線性關係。第三章應用一追蹤資料平滑轉換回歸(Panel Smooth Transition Regression Model)模型,來估計台灣住宅部門電力需求函數的非線性關係。其結果拒絕了電力需求為線性的假設,而該假設往往是目前許多政策工具的理論根據。此外,模型的實證結果也表明電力用戶對價格和收入變化的反應往往是不對稱的。換句話說,價格和收入彈性的數值大小係取決於先前的電價水平的高低。當前一年電價處於較高水平時,電力用戶對價格調漲更為敏感,電力消費量減少更多;當前一年電價處於較低水平時,電力用戶對價格調低的敏感度降低,電力消費量增加較少。這個發現也剛好能夠解釋為什麼近年隨著實質電價的走低,台灣住宅部門單位電力消費量沒有大幅增加的現象。
This doctoral dissertation comprises three empirical studies on energy economics aiming to explore the nature of issues related to “the speculation’s effect on international oil price,” “the vulnerability of Taiwan’s energy system,” and “the asymmetric residential electricity demand in Taiwan,” which are summarized as follows:

In the first chapter, an empirical analysis, motivated by the curiosity of the reasons behind the considerable oil price fluctuation since the oil market’s financialization, is conducted. Reviewing the existing literature, market fundamentals and speculation are the two most popular explanations, but no consensus has been reached on both fronts. To provide more evidence for further discussion, a more convincing proxy variable, the non-commercial traders’ position rather than oil inventory, to mimic actual speculators’ behavior in the oil futures market is suggested, and the Sign Restricted Structural Factor Augmented Vector Autoregression (SFAVAR) model, which includes information as much as possible, is applied. The empirical results suggest that while supply-side and demand-side determinants play their roles in oil price fluctuation, the futures market’s speculation not only did exhibit significantly positive non-accumulated and accumulated effects on the crude oil price change but also dominated the oil price fluctuation during the periods of 2004-07, 2011-13, and 2015-16, respectively.

After the nuclear accident in Fukushima on 11th March 2011, Taiwan entered the energy transition era, featuring a high dependency on renewable energy and natural gas, and a nuclear power phase-out progress. In chapter 2, a framework to evaluate energy vulnerability is established. Taking Taiwan’s unique energy situation into account, the scope of this energy vulnerability indicator, initially proposed by Frondel, Ritter & Schmidt (2009), Frondel & Schimdt (2014), and WEC (2010), is divided into three categories, including primary energy supply, energy-related infrastructure, and final energy consumption, and consists of 15 sub-indicators. The empirical results indicate that Taiwan is now in one of the most vulnerable times during 1990-2017. The suggestion to Taiwan’s government, (1) pragmatically reassess the current energy transition policy, (2) improve energy-related infrastructure, and (3) induce energy users to change their behavior, is made at the end of the chapter.

Following the previous chapter’s suggestion, the third chapter attempts to estimate electricity demand appropriately to provide the government with reliable information to set up proper policy tools. However, the estimation and policy implication of energy demand in existing literature varies widely and often contradict one another. One common drawback is the assumption that the estimated relation between energy demand and its determinants is a constant, i.e., a linear relation. To relax this constraint, a generalized estimation method, the Panel Smooth Transition Regression (PSTR) model recommended by González, Teräsvirta & van Dijk (2005), is employed in this study to analyze the nonlinearity in Taiwan’s residential electricity demand. The results reject the electricity demand’s linearity hypothesis, on which many current policies are based. There does exist evidence that electricity consumers’ response to price and income changes is asymmetric. In other words, the price and income elasticities vary depending on the previous price levels. The electricity consumers respond stronger to a price increase when the previous year’s price is high than to a price decrease when the price is low in the previous year. This finding also explains why the average householder’s electricity consumption in Taiwan’s residential sector has not increased with the decline in real electricity price as much as expected with the assumption of constant price elasticity in recent years.
Preface----------------------------------------------------------1
Chapter 1. The Effect of Speculation in Futures Market on Oil Price------------------------------------------------------------3
1.1 Introduction----------------------------------------------3
1.2 Literature Review-----------------------------------------5
1.3 Modeling--------------------------------------------------8
1.3.1 Theoretical Model---------------------------------------8
1.3.2 Estimation---------------------------------------------10
1.4 Data-----------------------------------------------------12
1.5 Empirical Results----------------------------------------16
1.5.1 Sign Restriction Setting-------------------------------17
1.5.2 Impulse Response---------------------------------------18
1.5.3 Historical Decomposition of the Oil Price--------------21
1.6 Findings-------------------------------------------------24
1.7 References-----------------------------------------------25
Appendix 1.1 Dynamic Factor Analysis-------------------------28
Appendix 1.2 The Dataset for Structural Factors--------------30
Appendix 1.3 Accumulative Impulse Response of Main Variables-34
Chapter 2. The Energy Vulnerability: a Taiwan’s Case---------35
2.1 Introduction---------------------------------------------35
2.2 Literature Review----------------------------------------38
2.2.1 Definition of Energy Security--------------------------38
2.2.2 Energy Security Indicators-----------------------------40
2.3 Methodology----------------------------------------------42
2.3.1 Primary Energy Supply Vulnerability (PEV)--------------44
2.3.2 Infrastructure Vulnerability (IV)----------------------47
2.3.3 End-use Energy Consumption Vulnerability (EEV)---------52
2.3.4 Energy Vulnerability Indicators (EV)-------------------53
2.3.5 Standardization, Weight Setting, and Data--------------53
2.4 Empirical Results----------------------------------------57
2.4.1 PEV Results--------------------------------------------57
2.4.2 IV Results---------------------------------------------61
2.4.3 EEV Results--------------------------------------------66
2.4.4 EV Results---------------------------------------------68
2.5 Findings-------------------------------------------------69
2.6 Reference------------------------------------------------71
Chapter 3. The Asymmetric Residential Electricity Demand in Taiwan: a PSTR Approach-----------------------------------------75
3.1 Introduction---------------------------------------------75
3.2 Literature Review----------------------------------------79
3.3 Modeling-------------------------------------------------82
3.3.1 Theoretical Model--------------------------------------83
3.3.2 Linearity Test-----------------------------------------87
3.3.3 Estimation---------------------------------------------89
3.4 Data-----------------------------------------------------93
3.5 Empirical Results----------------------------------------97
3.6 Findings------------------------------------------------110
3.7 Reference-----------------------------------------------112
Appendix 3.1 Lagrange Multiplier Statistics for Linearity Test-117
Conclusion-----------------------------------------------------119
Chapter 1
[1]. Beidas-Strom, S., and Pescatori, A. (2014): “Oil Price Volatility and the Role of Speculation,” IMF Working Paper, No. 14/218.
[2]. Belviso, F., and Milani, F. (2006): “Structural Factor-Augmented VARs (SFAVARs) and the Effects of Monetary Policy,” The B.E. Journal of Macroeconomics, 6 (3), Pages 1-46.
[3]. Bernanke, B., Boivin, J., and Eliasz, P. S. (2005): “Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach,” The Quarterly Journal of Economics, 120 (1), Pages 387-422.
[4]. Canova, F., and De Nicoló, G., (2002): “Monetary Disturbances Matter for Business Fluctuations in the G-7,” Journal of Monetary Economics, 49(6), Pages 1131-1159.
[5]. Cifarelli, G., and Paladino, G. (2010): “Oil Price Dynamics and Speculation: A Multivariate Financial Approach,” Energy Economics, 32(2), Pages 363-372
[6]. Du, X., Yu, C. L., and Hayes, D. J. (2011): “Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis,” Energy Economics, 33(3), Pages 497-503.
[7]. Fattouh, B., Kilian, L., and Mahadeva, L. (2012): “The Role of Speculation in Oil Markets: What Have We Learned So Far?” Energy Journal, 34(3), Pages 7-33.
[8]. Fry, R., and Pagan, A. (2007): “Some Issues in Using Sign Restrictions for Identifying Structural VARs,” NCER Working Paper Series, No. 14.
[9]. Hall, P. (1992): The Bootstrap and Edgeworth Expansion, Springer, New York.
[10]. Hamilton, J. (2009): “Causes and Consequences of the Oil Shock of 2007–08,” Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, 40(1), Pages 215-261.
[11]. Harris, J., and Büyükşahin, B. (2009): “The Role of Speculators in the Crude Oil Futures Market,” International Journal of Business and Globalization, 10(1), Pages 56-71.
[12]. Inoue, A., and Kilian, L. (2013): “Inference on Impulse Response Functions in Structural VAR Models,” Journal of Econometrics, 177(1), Pages 1-13.
[13]. Juvenal, L., and Petrella, I. (2014): “Speculation in the Oil Market,” Journal of Applied Econometrics, 30(4), Pages 621-649.
[14]. Kaufmann, R. K., Dees, S., Karadeloglou, P., and Sánchez, M. (2004): “Does OPEC matter? An econometric analysis of oil prices,” Energy Journal, 25(4), Pages 67-90.
[15]. Kaufmann, R. K., Bradford, A., Belanger, L., Mclaughlin, J., and Miki, Y. (2008): “Determinants of OPEC Production: Implications for OPEC Behavior,” Energy Economics, 30(2), Pages 333-351.
[16]. Kaufmann, R. K., and Ullman, B. (2009): “Oil Prices, Speculation, and Fundamentals: Interpreting Causal Relations among Spot and Futures Prices,” Energy Economics, 31(4), Pages 550-558.
[17]. Kaufmann, R. K. (2011): “The Role of Market Fundamentals and Speculation in Recent Price Changes for Crude Oil,” Energy Policy, 39(1), Pages 105-115.
[18]. Kolodziej, M., and Kaufmann, R. K.(2013): “The Role of Trader Positions in Spot and Futures Prices for WTI,” Energy Economics, 40, Pages 176-182.
[19]. Kilian, L. (2009): “Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,” American Economic Review, 99(3), Pages 1053-1069.
[20]. Kilian, L., and Murphy, D. (2014): “The Role of Inventories and Speculative Trading in the Global Market for Crude Oil,” Journal of Applied Econometrics, 29(3), Pages 454-478.
[21]. Ripple, R. (2008): “Futures trading: What is Excessive?” Oil and Gas Journal, 106(22).
[22]. Stock, J., and Watson, M. (2005): “Implications of Dynamic Factor Models for VAR Analysis,” NBER Working Papers, No.11467.
[23]. Uhlig, H. (2005): “What Are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure,” Journal of Monetary Economics, 52(2), Pages 381-419.
[24]. Working, H. (1960): “Speculation on Hedging Markets,” Food Research Institute Studies, 1(2), Pages 185-220.
[25]. Yamamoto, Y. (2012): “Bootstrap Inference for Impulse Response Functions in Factor-Augmented Vector Autoregressions,” Global COE Hi-Stat Discussion Paper Series, 249.

Chapter 2

[1]. American Chamber of Commerce in Taipei (2017, 2018, and 2019), Taiwan White Paper, available at https://amcham.com.tw/
[2]. Bohi, D. R., and Toman, M. A. (1996): The Economics of Energy Security, Boston: Kluwer Academic Publishers.
[3]. Chuang, M. C., and Ma, H. W. (2013a): “An Assessment of Taiwan’s Energy Policy Using multi-dimension Energy Security Indicators,” Renewable and Sustainable Reviews, 17, Pages 301-311.
[4]. Chuang, M. C., and Ma, H. W. (2013b): “Energy Security and Improvements in the Function of Diversity Indices - Taiwan Energy Supply Structure Case Study,” Renewable and Sustainable Reviews, 24, Pages 9-20.
[5]. FEPCJ (2015): “Electricity Review Japan,” The Federation of Electric Power Companies of Japan.
[6]. Frondel, M., Ritter, N., and Schmidt, C. M. (2009): “Measuring Energy Supply Risks: A G7 Ranking,” Ruhr Economic Papers, No. 104.
[7]. Frondel, M., and Schmidt, C. M. (2014): “A Measure of a Nation’s Physical Energy Supply Risk,” The Quarterly Review of Economics and Finance, 54(2), Pages 208-215.
[8]. Haluzan, N. (2013): “Energy Security- Meaning, Definition and Importance,” Last updated in January 2013, available at: http://renewablestalk.blogspot.tw/2013/01/energy-security-meaning-definition-and.html
[9]. Herfindahl, O. C. (1950): Concentration in the Steel Industry, Unpublished Doctoral Dissertation, Columbia University.
[10]. IEA (2016): “Global Gas Security Review: How Flexible are LNG Markets in Practice?” International Energy Agency, available at: https://www.iea.org/publications/freepublications/publication/GlobalGasSecurityReview2016.pdf
[11]. IEA-ETSAP and IRENA (2015): Renewable Energy Integration in Power Grids: Technology Brief, The Energy Technology Systems Analysis Program of IEA and International Renewable Energy Agency, available at: http://iea-etsap.org/web/Supply.asp & https://www.irena.org/Publications.
[12]. Intharak, N., Julay, J. H., Nakanishi, S., Matsumoto, T., Sahid, E. J. M., Aquino, A. G. O., and Aponte, A. A. (2007): “A Quest for Energy Security in the 21st Century,” Asia Pacific Energy Research Centre Report, available at: http://www.ieej.or.jp/aperc/2007pdf/2007_Reports/APERC_2007_A_Quest_for_Energy_Security.pdf.
[13]. Kao, C. W., and Wan, J. Y. (2017): “Energy Consumption and Economic Growth: Further Evidence from Taiwan,” International Journal of Economics and Finance, 9(7), Pages 1916-9728.
[14]. Lee, C. C., and Chang, C. P. (2007): “The Impact of Energy Consumption on Economic Growth: Evidence from Linear and Nonlinear Models in Taiwan,” Energy, 32(12), Pages 2282-2294.
[15]. Li, T. (2010): “Japan, Korea and China’s Energy Security Strategy of the Enlightenment,” The Conference on Web-Based Business Management.
[16]. Markowitz, H. (1952): “Portfolio Selection,” The Journal of Finance, 7(1), Pages 77-91.
[17]. Mezősi, A., Pató, Z., and Szabó, L. (2016): “Assessment of the EU 10% Interconnection Target in the context of CO2 Mitigation,” Climate Policy, 16(5), Pages 658-672.
[18]. Noel, P., and Findlater, S. (2010): “Gas Supply Security in the Baltic States: A Qualitative Assessment,” EPRG Working Paper, Cambridge.
[19]. OECD (2016): “Country Risk Classifications of the Participants to the Arrangement on Officially Supported Export Credits,” OECD, and historical data is available at: http://www.oecd.org/trade/topics/export-credits/arrangement-and-sector-understandings/financing-terms-and-conditions/country-risk-classification/
[20]. Patterson, W. (2008): “Managing Energy Wrong,” Working Paper, Managing Energy: for Climate and Security, the University of Sussex, available at: http://www.waltpatterson.org/mewfinal.pdf
[21]. Rutherford, J. P., Scharpf, E. W., and Carrington, C. G. (2007): “Linking Consumer Energy Efficiency with Security of Supply,” Energy Policy, 35(5), Pages 3025-3035.
[22]. USCC (2015a): “Index of U.S. Energy Security Risk,” United States Chamber of Commerce.
[23]. USCC (2015b): “International Index of Energy Security Risk: Assessing Risk in a Global Energy Market,” United States Chamber of Commerce.
[24]. Von Hirschhausen, C., and Neumann, A. (2003): “Security of (Gas) Supply: Conceptual Issues, Contractual Arrangements, and the Current EU Situation,” INDES Workshop on Insuring against Disruptions of Energy Supply, Amsterdam, the Netherlands.
[25]. WEC (2010): “Sicherheit unserer Energieversorgung – Indikatoren zur Messung von Verletzbarkeit und Risiken,” Untersuchung im Auftrag des Weltenergierat - Deutschland, Endbericht, Münster, Berlin, EEFA-Energy Environmenat Forecast Analysis GmbH & Co. KG.
[26]. WEC (2015): “2015 Energy Trilemma Index: Benchmarking the sustainability of national energy systems,” World Energy Council.
[27]. WEF (2013, 2014, 2015, 2016, 2017, and 2018): “The Global Energy Architecture Performance Index Report 2013,” World Economic Forum.
[28]. Winzer, C. (2012): “Conceptualizing Energy Security,” Energy Policy, 46, Pages 36-48.
[29]. Yueh, L. (2010): “An International Approach to Energy Security,” Global Policy, 1(2), Pages 216-217.
<中文文獻>
[1]. 中華民國106年能源統計手冊,經濟部能源局,107年7月,頁15-16。
[2]. 能源轉型白皮書(行政院核訂本),109年11月。
[3]. 黃柏誠、吳啟瑞、傅鏸漩、林欣弘,2013,「2013年1月澳洲水災事件分析」,災害防救電子報,國家災害防救科技中心。取自 http://www.ncdr.nat.gov.tw/upload/epaper/091_2.pdf(最後瀏覽日期:2017年09月15日)。
[4]. 顏君聿,2012,「國際能源安全管理課題及其趨勢演變」,能源報導,頁9-13。取自 http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201201&Page=9(最後瀏覽日期:2017年07月12日)。

Chapter 3

[1]. Adeyemi, O. I., and Hunt, L. C. (2007): “Modelling OECD Industrial Energy Demand: Asymmetric Price Responses and Energy-saving Technical Change,” Energy Economics, 29, Pages, 693-709.
[2]. Arellano, M. (1987): “Computing Robust Standard Errors for Within-group Estimators,” Oxford Bulletin of Economics and Statistics, 49, Pages 431-434.
[3]. Blázquez, L., Boogen, N., and Filippini, M. (2013): “Residential Electricity Demand in Spain: New Empirical Evidence Using Aggregate Data,” Energy Economics, 36, Pages 648-657.
[4]. Bohi, D. R., and Zimmerman, M. B. (1984): “An Update on Econometric Studies of Energy Demand Behavior,” Annual Review Energy, 9, Pages 105-154.
[5]. Chiu, Y. B. (2009): “The Nonlinear Link between Deforestation and Real Income: A Panel Smooth Transition Regression Approach,” Three Essays on Environmental Quality and International Trade: Applications of Panel Data (Doctoral Dissertation), Chapter 2.
[6]. Choi, I. (2001): “Unit Root Tests for Panel Data,” Journal of International Money and Finance, 20(2), Pages 249-272.
[7]. Colletaz, G., and Hurlin, C. (2006): “Threshold Effects of the Public Capital Productivity : An International Panel Smooth Transition Approach,” Document de Recherche du Laboratoire d'Economie d'Orléans.
[8]. Dargay, J. M. (1992): “The Irreversible Effects of High Oil Prices: Empirical Evidence for the Demand for Motor Fuels in France, Germany and the UK,” Energy Demand: Evidence and Expectations, London, Surrey University Press, Pages 165-182.
[9]. Dargay, J. M., and Gately, D. (1995): “The Imperfect Price-Reversibility of Non-Transport Oil Demand in the OECD,” Energy Economics, 17 (1), Pages 59-71.
[10]. Dargay, J. M., and Gately, D. (1997): “The demand for transportation fuels: Imperfect price-reversibility?” Transportation Research Part B: Methodological, 31(1), Pages 71-82.
[11]. Dargay, J. M., and Gately, D. (2010): “World Oil Demand’s Shift Toward Faster Growing and Less Price-Responsive Products and Regions,” Energy Policy, 38, Pages 6261-6277.
[12]. Davies, R. B. (1977): “Hypothesis Testing When a Nuisance Parameter is Present Only under the Alternative,” Biometrika, 64, Pages 247-254.
[13]. Davies, R. B. (1987): “Hypothesis Testing When a Nuisance Parameter is Present Only under the Alternative,” Biometrika, 74, Pages 33-43.
[14]. Deryugina, T., MacKay, A., and Reif, J. (2020): “The Long-Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation,” American Economic Journal: Applied Economics, 12(1), Pages 86-114.
[15]. Espey, J. A., and Espey, Molly (2004): “Turning on the Lights-A Meta-Analysis of Residential Electricity Demand Elasticities,” Journal of Agricultural and Applied Economics, 36 (1), Pages 65-81
[16]. Ferguson, R., Wilkinson, W., and Hill, R. (2000): “Electricity Use and Economic Development,” Energy Policy, 28, Pages 923-934.
[17]. Fouquau, J., Destais, G., and Hurlin, C. (2009): “Energy Demand Models: A Threshold Panel Specification of The Kuznets Curve,” Applied Economics Letters, 16, Pages 1241-1244.
[18]. Fouquau, J., Hurlin, C., and Rabaud, I. (2008): “The Feldstein-Horioka Puzzle: A Panel Smooth Transition Regression Approach,” Economic Modelling, 25, Pages 284-299.
[19]. Gabreyohannes, E. (2010): “A Nonlinear Approach to Modeling the Residential Electricity Consumption in Ethiopia,” Energy Economics, 32, Pages 515-523.
[20]. Garen, J., Jepsen, C., and Saunoris, J. (2011): “The Relationship between Electricity Prices and Electricity Demand, Economic Growth, and Employment,” Center for Business and Economic Research (CBER), Research Report.
[21]. Gately, D., and Huntington, H. G. (2002): “The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand,” Energy Journal, 23, Pages 19-55.
[22]. González, A., Teräsvirta, T., and van Dijk, D. (2005): “Panel smooth transition regression model,” Working Paper Series in Economics and Finance, 604.
[23]. Haas, R., and Schipper, L. (1998): “Residential Energy Demand in OECD-Countries and the Role of Irreversible Efficiency Improvements,” Energy Economics, 20, Pages 421-442.
[24]. Hansen, B. E. (1999): “Threshold Effects in Non-Dynamic Panels: Estimation, Testing, and Inference,” Journal of Econometrics, 93, Pages 334-368.
[25]. Hansen, C. B. (2007): “Asymptotic Properties of a Robust Variance Matrix Estimator for Panel Data When T Is Large,” Journal of Econometrics, 141(2), Pages 597-620.
[26]. Huntington, H. G. (2010): “Short- And Long-Run Adjustments in U.S. Petroleum Consumption,” Energy Economics, 33, Pages 63-72.
[27]. Huntington, H. G., Barrios, J. J., and Arora, V. (2019): “Review of Key International Demand Elasticities for Major Industrializing Economies,” Energy Policy, 133.
[28]. Im, K. S., Pesaran, M. H., and Shin, Y. (2003): “Testing for Unit Roots in Heterogeneous Panels,” Journal of Econometrics, 115 (1), Pages 53-74.
[29]. Kao, C. W., and Wan, J. Y. (2017): “Energy Consumption and Economic Growth: Further Evidence from Taiwan,” International Journal of Economics and Finance, 9(7), Pages 1916-9728.
[30]. Labandeira, X., Labeaga, J. M., and López-Otero, X. (2017): “A Meta-analysis on The Price Elasticity of Energy Demand,” Energy Policy, 102, Pages 549-568.
[31]. Lee, C. C., and Chang, C. P. (2007): “The Impact of Energy Consumption on Economic Growth: Evidence from Linear and Nonlinear Models in Taiwan,” Energy, 32(12), Pages 2282-2294.
[32]. Lee, C. C., and Chiu, Y. B. (2011): “Electricity Demand Elasticities and Temperature: Evidence from Panel Smooth Transition Regression with Instrumental Variable Approach,” Energy Economics, 33, Pages 896-902.
[33]. Lee, C. C., and Lee, J. D. (2010): “A Panel Data Analysis Of The Demand for Total Energy and Electricity in OECD Countries,” Energy Journal, 31, Pages 1-24.
[34]. Levin, A., Lin, C. F., and Chu, C. S. J. (2002): “Unit Root Test in Panel Data: Asymptotic and Finite Sample Properties,” Journal of Econometrics, 108 (1), Pages 1-24.
[35]. Maddala, G. S., and Wu, S. (1999): “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test,” Oxford Bulletin of Economics and Statistics, 61, Pages 631-652.
[36]. Narayan, P. K., and Smyth, R. (2005): “The Residential Demand for Electricity in Australia: an Application of the Bounds Testing Approach to Cointegration,” Energy Policy, 33(4), Pages 467-474.
[37]. Olatubi, W. O., and Zhang, Y. (2003): “A Dynamic Estimation of Total Energy Demand for the Southern States,” Review of Regional Studies, 33, Pages 206-228.
[38]. Pao, H. T. (2006): “Comparing Linear and Nonlinear Forecasts for Taiwan’s Electricity Consumption,” Energy, 31, Pages 2129-2141.
[39]. Van Dijk, D., Teräsvirta, T., and Franses, P. (2002): “Smooth Transition Autoregressive Models: a Survey of Recent Developments,” Econometric Reviews, 21, Pages 1-47.
[40]. Walker, I. O., and Wirl, F. (1993): “Irreversible Price-Induced Efficiency Improvements: Theory and Empirical Application to Road Transportation,” Energy Journal, 14, Pages 183-205.
[41]. Wirl, F. (1991): “Energy Demand and Consumer Price Expectations: an Empirical Investigation of The Consequences from the Recent Oil Price Collapse,” Resource Energy, 13, Pages 241-262.
[42]. World Bank (2015): World Development Indicators.
[43]. Wu, M. C., Liang, Y. H., Yang, L. T. Y., and Chou, C. M. (2020): “The Nonlinear Impact of Oil Price on the Oil Demand,” Applied Economics, 52(45), Pages 4992-5004.
[44]. Zhu, X., Li, L., Zhou, K., Zhang, X., and Yang, S. (2018): “A Meta-analysis on The Price Elasticity and Income Elasticity of Residential Electricity Demand,” Journal of Cleaner Production, 201, Pages 169-177.
<中文文獻>
[1]. 吳大任、梁啟源、林師模、劉錦龍、王銘正、田佳芬、張博涵,2017,「臺灣人口結構變遷對住宅用電需求之影響」,台灣能源期刊,第四卷,第二期,頁183-198。
[2]. 能源轉型白皮書(行政院核訂本),109年11月。
[3]. 溫室氣體減量與管理法,105年7月公布。


(此全文20260131後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *