帳號:guest(52.15.181.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳質穎
作者(外文):Chen, Chih-Ying
論文名稱(中文):基於微擾半導體雷射之混沌調製脈衝及週期一動態之產生與分析
論文名稱(外文):Generation and Analysis of Chaos-Modulated Pulses and Period-One Dynamics Based on Perturbed Semiconductor Lasers
指導教授(中文):林凡異
指導教授(外文):Lin, Fan-Yi
口試委員(中文):馮開明
黃承彬
許晉瑋
阮于珊
口試委員(外文):Feng, Kai-Ming
Huang, Chen-Bin
Shi, Jin-Wei
Juan, Yu-Shan
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066542
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:86
中文關鍵詞:雷射動態半導體雷射光達不穩定態混沌態脈衝
外文關鍵詞:Laser dynamicsSemiconductor lasersLidarInstabilitiesChaosPulse
相關次數:
  • 推薦推薦:0
  • 點閱點閱:148
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本論文旨在藉由運用新穎與複合式微擾半導體雷射系統,推展其在光子微波應用領域之表現。有鑑於微擾半導體雷射特有的多樣化非線性動態,可以產生微波頻段訊號從寬頻非週期性混沌態、涵蓋至單頻週期一震盪態,受益於其高速調製、高效能傳輸及易於集成等優勢,得以作為理想的光子微波光源並廣泛發展於既有的如遙測技術及光纖通訊應用領域。我們將針對這兩種特性差異懸殊的調製訊號,根據不同應用環境的需求,分別提出對應的優化系統並且驗證其效能之提升。
對於寬頻非週期性的混沌態,我們提出一套受光回饋之增益開關半導體雷射系統,產生及分析混沌調製脈衝訊號,得以驅使新穎脈衝式混沌光達之實現。脈衝式混沌光達整合了傳統脈衝式光達與連續波式混沌光達的優點,在符合人眼一級安全標準操作下,能夠大幅提升雷射尖峰功率以實現遠距離偵測,同時保有混沌光達獨特的抗干擾、無混淆距離、及高解析度之能力。藉由全面性的時頻分析與探討脈衝彼此間的相關性,我們發現當雷射操作在高電流調製與適中的回饋強度之弱阻尼震盪情況下,此複合式系統易於產生混沌調製脈衝,並在最佳化操作條件下,以增益開關雷射本質雜訊的0.19互相關係數作為基準,脈衝寬度500 ns的相鄰兩發調製脈衝間,一段長度為218 ns的低互相關性訊號可被有效的使用,驗證其在脈衝式混沌光達之實用可行性。再者,我們亦實際建構一套搭載二維微機電掃描反射鏡之3D脈衝式混沌光達原型機,協同光收發鏡組的設計與調校,成功驗證系統具備達100 m之遠距離測距表現,以及三維影像建構之能力;更進一步與市面上量產產品作比較,脈衝式混沌光達表現更遠的測距能力及更高的精準度。
對於單頻週期一震盪態,基於外部光注入系統可產生具有單邊帶調製及高調頻特性的光子微波訊號,我們藉由引入新穎量子點半導體雷射,產生具有高度單邊帶調製特性之光子微波訊號。實驗結果證明,相較於傳統上使用量子井半導體雷射,量子點雷射的系統能夠大幅提升15 dB的邊帶抑制比。為了深入了解背後物理機制,我們藉由數值模擬分析,顯示本結果受益於量子點雷射所擁有的低線寬增益係數、低光子衰減率及低載子衰減率等雷射本質參數之特性,在光纖微波技術應用上,得以有效提升訊號在長距離光通訊傳輸之效率。此外,由於量子點雷射具有操作在不同能態發光之能力,我們亦延伸探討量子點雷射於不同能態發光下的穩定性分析,透過額外施以外部光回饋作為擾動,實驗結果顯示,相較於較高阻尼速率的基態雷射對於外部回饋光有良好的抵抗與抑制能力,模態競爭激烈的激發態雷射則容易被激發出更豐富與複雜的非線性行為。
The dissertation is aimed at improving the performance in photonic microwave applications with the novel and hybrid perturbed semiconductor laser systems. Due to a rich variety of nonlinear dynamics that perturbed semiconductor lasers possess, photonic microwave signals with diversified characteristics from the broadband aperiodic chaos states to the narrowband period-one (P1) states can be generated. Benefited from the properties of high-speed modulation, low power consumption in transmission, and easy integration, photonic microwave generation based on nonlinear dynamics of perturbed semiconductor lasers has been widely used in existing applications such as remote sensing and fiber-optic communication. For the different dynamical properties of generated signals, the novel and hybrid perturbation schemes for optimizing its performance according to application scenarios are proposed and demonstrated.
As for the broadband aperiodic chaos, we experimentally generate and analyze chaos-modulated pulses for pulsed chaos lidar applications based on gain-switched semiconductor lasers subject to optical feedback. Compared to the conventional pulsed lidar and the CW chaos lidar, the pulsed chaos lidars can have significantly higher peak power under the class-1 eye-safe regulation that is essential for long-range low-reflectivity target detection, while it still possess the advantages of no range ambiguity and immune to interference and jamming benefited by the aperiodic and uncorrelated chaos waveforms. Under a weakly damped condition with large modulation current and moderate feedback strength, we successfully generate the uncorrelated chaos-modulated pulses suitable for the pulsed chaos lidar applications by comprehensively investigating the temporal, spectral, and cross-correlation characteristics of the modulated pulses experimentally obtained. With the current configuration, for cross-correlations comparable to the benchmark of 0.19 set by the cross-correlation of the intensity fluctuation on the sole gain-switched pulses without feedback, uncorrelated waveforms with durations up to 218 ns in a 500 ns modulated pulse can be effectively utilized. Furthermore, through appropriate transceiver design and a 2-axis micro-electro-mechanical-system (MEMS) scanning mirror employed, we develop a 3D pulsed chaos lidar system and successfully demonstrate its long-range detection and 3D imaging capabilities. Compared with two commercial lidars tested side-by-side, the pulsed chaos lidar shows significantly better precision and a much longer detection range up to 100 m.
As for the narrowband P1 dynamics, we study single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the P1 states of an optically injected quantum-dot (QD) semiconductor laser and demonstrate that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well (QW) semiconductor laser under conditions of optimal microwave power. To better understand the physical mechanisms behind, the performance of SRR under various laser-intrinsic parameters was further numerically investigated using optically injected QD and QW laser models. The enhancement of SRR in the QD laser, which is important in mitigating the power fading effect in applications such as radio-over-fiber optical communications, can be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate. Moreover, since the QD lasers are able to operate in different lasing states, where we further experimentally investigate and compare the laser stability of QD lasers by applying optical feedback as the perturbation. The ground-state (GS) laser is shown to be relatively stable and more immune to external perturbations attributed to its large damping rate, especially at higher bias levels, and is of importance for the development of isolator-free transmitters. In contrast, having a strong modal competition, the excited-state (ES) laser can be easily driven into instabilities and is favorable for applications taking advantages of chaos.
Chapter 1: Introduction..........1
1.1 Introduction..........1
1.2 Outline of Dissertation..........4

Chapter 2: Fundamental Aspects of Perturbed Semiconductor Lasers..........6
2.1 Optical Feedback for Complex Dynamics of Chaos..........6
2.2 Hybrid Perturbation System of Gain-Switched Laser with Optical Feedback..........10
2.3 Optical Injection for Photonic Microwave Generation of Period-One Dynamics..........12

Chapter 3: Experimental Generations and Analyses of Chaos-Modulated Pulses for Pulsed Chaos Lidar Applications Based on Gain-Switched Semiconductor Lasers Subject to Optical Feedback..........16
3.1 Introduction..........16
3.2 Experimental Setup..........18
3.3 Temporal Characteristics of Modulated Waveforms..........20
3.4 Spectral Characteristics and Correlation Properties of Modulated Waveforms..........22
3.5 Dynamical Behaviors of the Modulated Pulses..........26
3.6 3D Pulsed Chaos Lidar..........29
3.6.1 Overview of the 3D Pulsed Chaos Lidar System..........29
3.6.2 Estimation of Geometrical Compression Form-Factor for Transceiver Design of the Lidar System..........30
3.6.3 Demonstration of Long Range Detection and 3D Imaging..........36
3.7 Conclusions..........39

Chapter 4: Single-Sideband Photonic Microwave Generation with an Optically Injected Quantum-Dot Semiconductor Laser..........41
4.1 Introduction..........41
4.2 Experimental Results..........43
4.2.1 Damping Factor Measurement..........43
4.2.2 Experimental Setup for Photonic Microwave Generation..........47
4.2.3 Characteristics of Single-Sideband Optical Spectrum under Period-One States..........48
4.2.4 Comprehensive Comparison on Microwave Frequency and Sideband Rejection Ratio of the QD and QW Lasers..........50
4.3 Theoretical Investigation..........53
4.3.1 Rate Equation Model of the Optically Injected QD and QW Lasers..........53
4.3.2 Four-Wave Mixing Analysis for Intrinsic Parameters Extraction of the QD and QW Lasers..........54
4.3.3 Influence of Laser Intrinsic Parameters on the Sideband Rejection Ratio under Period-One States of the QD and QW Lasers..........57
4.4 Discussion on Stability of the Ground- and Excited-State QD Lasers..........60
4.5 Conclusions..........65

Chapter 5: Conclusion..........67
5.1 Summary..........67
5.2 Future Research..........69
[1] J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Springer, 2006.
[2] A. Uchida, Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. Wiley-VCH, 2012.
[3] A. Baranov and E. Tournie, Semiconductor Lasers: Fundamentals and Applications. Woodhead, 1st ed., 2013.
[4] T. Steiner, Semiconductor Nanostructures for Optoelectronic Applications. Artech House, 2004.
[5] J. Ohtsubo, “Feedback induced instability and chaos in semiconductor lasers and their applications,” Opt. Rev., vol. 6, pp. 1–15, 1999.
[6] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B: Quantum Semi- classical Opt., vol. 9, pp. 765–784, 1997.
[7] J. Mork, J. Mark, and B. Tromborg, “Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback,” Phys. Rev. Lett., vol. 65, pp. 1999–2002, 1990.
[8] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. 16, pp. 347–355, 1980.
[9] F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. of Sel. Top. Quantum Electron., vol. 40, pp. 682–689, 2004.
[10] M. C. Soriano, J. Garcia-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photon- ics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys., vol. 85, pp. 421–470, 2013.
[11] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic mi- crowave transmission using an optically injected semiconductor laser,” Opt. Express, vol. 15, pp. 14921–14935, 2007.
[12] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, pp. 195–205, 2000.
[13] Y. H. Liao, J. M. Liu, and F. Y. Lin, “Dynamical characteristics of a dual-beam optically injected semiconductor laser,” IEEE J. of Sel. Top. Quantum Electron., vol. 19, p. 1500606, 2013.
[14] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 30, pp. 957–965, 1994.
[15] T. Heil, I. Fischer, W. Elsaber, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett., vol. 87, p. 243901, 2001.
[16] T. Heil, I. Fischer, W. Elsaber, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E, vol. 67, p. 066214, 2003.
[17] A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E, vol. 70, p. 036211, 2004.
[18] M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B, vol. 22, pp. 777–785, 2005.
[19] X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 1198–1211, 2011.
[20] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron., vol. 46, pp. 421–428, 2010.
[21] T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett., vol. 11, pp. 1476–1478, 1999.
[22] S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generatio using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 1025–1032, 2004.
[23] Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J., vol. 3, pp. 644–650, 2011.
[24] A. Uchida, R. McAllister, and R. Roy, “Consistency of nonlinear system response to complex drive signals,” Phys. Rev. Lett., vol. 93, p. 244102, 2004.
[25] N. Oliver, T. Jungling, and I. Fischer, “Consistency properties of a chaotic semiconductor laser driven by optical feedback,” Phys. Rev. Lett., vol. 114, p. 123902, 2015.
[26] N. Oliver, L. Larger, and I. Fischer, “Consistency in experiments on multistable driven delay systems,” Chaos, vol. 26, p. 103115, 2016.
[27] J. Nakayama, K. Kanno, and A. Uchida, “Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal,” Opt. Express, vol. 24, pp. 8680–8692, 2016.
[28] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics, vol. 2, pp. 728–732, 2008.
[29] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature, vol. 438, pp. 343–346, 2005.
[30] J. M. Liu, H. F. Chen, and S. Tang, “Optical-cummunication systems based on chaos in semiconductor lasers,” IEEE Trans. Circuits syst., vol. 48, pp. 1475–1483, 2001.
[31] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. of Sel. Top. Quantum Electron., vol. 10, pp. 991–997, 2004.
[32] F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. of Sel. Top. Quantum Electron., vol. 40, pp. 815–820, 2004.
[33] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multichannel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar application,” IEEE Photonics J., vol. 8, p. 7800209, 2016.
[34] C. H. Cheng, Y. C. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin, “3D pulsed chaos lidar system,” Opt. Express, vol. 26, pp. 12230–12241, 2018.
[35] D. Lenstra, B. H. Verbeek, and A. J. D. Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. 21, pp. 674–679, 1985.
[36] R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback laser,” J. Lightwave Technol., vol. 4, pp. 1655–1661, 1986.
[37] T. Heil, I. Fischer, and W. Elsaber, “Influence of amplitude-phase coupling on the dynamics of semiconductor lasers subject to optical feedback,” Phys. Rev. Appl, vol. 60, pp. 634–641, 1999.
[38] Y. Fujita and J. Ohtsuboa, “Optical-feedback-induced stability and instability in broad-area semiconductor lasers,” Appl. Phys. Lett., vol. 87, p. 031112, 2005.
[39] S. Jiang, Z. Pan, M. Dagenais, A. Morgan, and K. Kojima, “Influence of external optical feedback on threshold and spectral characteristics of vertical-cavity surface-emitting lasers,” IEEE Photonics Technol. Lett., vol. 6, pp. 34–36, 1994.
[40] R. Ju and P. S. Spencer, “Dynamic regimes in semiconductor lasers subject to incoherent optical feedback,” J. Lightwave Technol., vol. 23, pp. 2513–2523, 2005.
[41] J. Sigg, “Effects of optical feedback on the light-current characteristics of semiconductor lasers,” IEEE J. Quantum Electron., vol. 29, pp. 1262–1270, 1993.
[42] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron., vol. 19, p. 1500807, 2013.
[43] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett., vol. 31, pp. 2254–2256, 2006.
[44] S. C. Chan, R. Diaz, and J. M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron., vol. 40, pp. 83–95, 2008.
[45] R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett., vol. 31, pp. 3600–3602, 2006.
[46] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express, vol. 20, pp. 20255–20265, 2012.
[47] C. H. Cheng, L. C. Lin, and F. Y. Lin, “Self-mixing dual-frequency laser Doppler velocimeter,” Opt. Express, vol. 22, pp. 3600–3610, 2014.
[48] J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett., vol. 38, pp. 344–346, 2013.
[49] Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express, vol. 23, pp. 6520–6532, 2015.
[50] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett., vol. 35, pp. 1163–1165, 1999.
[51] H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett., vol. 12, pp. 1298–1300, 2000.
[52] Z. Mi, P. Bhattacharya, and S. Fathpour, “High-speed 1.3 µm tunnel injection quantum-dot lasers,” Appl. Phys. Lett., vol. 86, p. 153109, 2005.
[53] D. O’Brien, S. P. Hegaty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett., vol. 29, pp. 1072–1074, 2004.
[54] B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., vol. 83, p. 026207, 2011.
[55] S. K. Hwang and J. M. Liu, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 974–981, 2004.
[56] A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and band- width enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron., vol. 39, pp. 1196–1204, 2013.
[57] S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period- one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 89, pp. 061120, 2006.
[58] B. Schwarz, “LIDAR: mapping the world in 3D,” Nat. Photonics, vol. 4, pp. 429–430, 2010.
[59] R. Horaud, M. Hansard, G. Evangelidis, and C. Menier, “An overview of depth cameras and range scanners based on time-of-flight technologies,” Mach. Vis. Appl., vol. 27, pp. 1005–1020, 2016.
[60] J. Levinson and S. Thrun, “Robust vehicle localization in urban environments using probabilistic maps,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 4372–4378, 2010.
[61] F. Moosmann and C. Stiller, “Velodyne SLAM,” in Proceedings of IEEE Interna- tional Conference on Intelligent Vehicles Symposium, pp. 393–398, 2011.
[62] M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng., vol. 40, pp. 10–19, 2001.
[63] J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens., vol. 31, pp. 48–55, 1993.
[64] G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual in- terference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE International Conference on Intelligent Vehicles Symposium, pp. 437–442, 2015.
[65] X. Ai, R. Nock, J. G. Rarity, and N. Dahnoun, “High-resolution random-modulation cw lidar,” Appl. Opt., vol. 50, pp. 4478–4488, 2011.
[66] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, 2015.
[67] F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. of Sel. Top. Quantum Electron., vol. 40, pp. 1732–1738, 2004.
[68] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express, vol. 18, pp. 26155–26162, 2010.
[69] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J., vol. 8, pp. 7800209, 2016.
[70] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron., vol. 28, pp. 93–108, 1992.
[71] I. E. C. (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user’s guide,” Tech. Rep. Standard IEC 60825-1:2001, International Electrotechnical Commission (IEC), 2001.
[72] R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B:, vol. 85, pp. 149–162, 2006.
[73] M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express, vol. 18, pp. 7184–7189, 2010.
[74] S. P. O. Duill, P. M. Anandarajah, R. Zhou, and L. P. Barry, “Numerical inves- tigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation,” Appl. Phys. Lett., vol. 106, p. 211105, 2015.
[75] J. Dellunde, M. C. Torrent, C. R. Mirasso, E. Hernandez-Garcia, and J. M. Sancho, “Analytical calculations of switch-on time and timing jitter in diode lasers subjected to optical feedback and external light injection,” Opt. Commun., vol. 115, pp. 523–527, 1995.
[76] J. Dellunde, M. C. Torrent, J. M. Sancho, and M. S. Miguel, “Frequency dynamics of gain-switched injection-locked semiconductor lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1537–1542, 1997.
[77] C. Guignard, P. M. Anandarajah, A. Clarke, L. P. Barry, O. Vaudel, and P. Besnard, “Experimental investigation of the impact of optical injection on vital parameters of a gain-switched pulse source,” Opt. Commun., vol. 277, pp. 150–155, 2007.
[78] M. Zhang, M. Liu, A. Wang, Y. Ji, Z. Ma, J. Jiang, and T. Liu, “Photonic generation of ultrawideband signals based on a gain-switched semiconductor laser with optical feedback,” Appl. Opt., vol. 52, pp. 7512–7516, 2013.
[79] J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express, vol. 18, pp. 16955–16972, 2010.
[80] S. Fukuchi, S. Y. Ye, and J. Ohtsubo, “Relaxation oscillation enhancement and coherence collapse in semiconductor lasers with optical feedback,” Opt. Rev., vol. 6, pp. 365–371, 1999.
[81] G. G. Gimmestad and D. W. Roberts, “1.5 microns: the future of unattended aerosol lidar?,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium, pp. 1944–1946, 2004.
[82] K. Stelmaszczyk, M. Dell’Aglio, S. Chudzynski, T. Stacewicz, and L. Woste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt., vol. 44, pp. 1323–1331, 2005.
[83] S. D. Mayor and S. M. Spuler, “Raman-shifted eye-safe aerosol lidar,” Appl. Opt., vol. 43, pp. 3915–3924, 2004.
[84] S. M. Spuler and S. D. Mayor, “Scanning eye-safe elastic backscatter lidar at 1.54 µm, ” J. Atmos. Oceanic Technol., vol. 22, pp. 696–703, 2005.
[85] W. Gonga, T. H. Chybab, and D. A. Templec, “Eye-safe compact scanning LIDAR technology,” Opt. Lasers Eng., vol. 45, pp. 898–906, 2007.
[86] E. Gregorio, F. Rocadenbosch, R. Sanz, and J. R. Rosell-Polo, “Eye-Safe lidar system for pesticide spray drift measurement,” Sensors, vol. 15, pp. 3650–3670, 2015.
[87] T. Halldorsson and J. Langerhoic, “Geometrical form factors for the lidar function,” Appl. Opt., vol. 17, pp. 240–244, 1978.
[88] G. Chourdakis, A. Papayannis, and J. Porteneuve, “Analysis of the receiver response for a noncoaxial lidar system with fiber-optic output,” Appl. Opt., vol. 41, pp. 2715–2723, 2002.
[89] D. W. Roberts and G. G. Gimmestad, “Optimizing lidar dynamic range by engineering the crossover region,” in Proceedings of Laser Radar Technology and Appli- cations VII, vol. 4723, pp. 120–129, 2002.
[90] G. Biavati, G. D. Donfrancesco, F. Cairo, and D. G. Feist, “Correction scheme for close-range lidar returns,” Appl. Opt., vol. 50, pp. 5872–5882, 2011.
[91] Spectrolab, http://www.spectrolab.com/sensors/index.html, SpectroScan 3D MEMS lidar system.
[92] Pulsedlight, https://www.pulsedlight3d.com/, LIDAR-Lite.
[93] Velodyne LiDAR, http://velodynelidar.com/hdl-64e.html, Velodyne HDL-64E
[94] J. P. Toomey, D. M. Kane, C. McMahon, A. Argyris, and D. Syvridis, “Integrated semiconductor laser with optical feedback: transition from short to long cavity regime,” Opt. Express, vol. 23, pp. 18754–18762, 2015.
[95] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett., vol. 31, pp. 2254–2256, 2006.
[96] C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor laser for radio-over-fiber uplinks,” IEEE J. Quantum Electron., vol. 48, pp. 1482–1484, 2012.
[97] Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett., vol. 38, pp. 1482–1484, 2013.
[98] K. L. Hsieh, Y. H. Hung, S. K. Hwang, and C. C. Lin, “Radio-over-fiber DSB-to-SSB conversion using semiconductor lasers at stable locking dynamics,” Opt. Express, vol. 24, pp. 9854–9868, 2016.
[99] H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett., vol. 16, pp. 1942–1944, 2004.
[100] A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett., vol. 16, pp. 605–607, 2004.
[101] J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett., vol. 33, pp. 512–513, 1997.
[102] G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett., vol. 33, pp. 74–75, 1997.
[103] G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 1410–1415, 1997.
[104] R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett., vol. 28, pp. 82–83, 1992.
[105] D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2270–2276, 1995.
[106] S. C. Chan and J. M. Liu, “Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 42, pp. 699–705, 2006.
[107] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett., vol. 112, p. 023901, 2014.
[108] M. AlMulla and J. M. Liu, “Effects of the gain saturation factor on the nonlinear dynamics of optically injected semiconductor lasers,” IEEE J. Quantum Electron., vol. 50, pp. 158–165, 2014.
[109] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett., vol. 98, p. 153903, 2007.
[110] A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett., vol. 102, pp. 201117, 2013.
[111] A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express, vol. 21, pp. 10772–10778, 2013.
[112] A. Hurtado, R. Raghunathan, I. D. Henning, M. J. Adams, and L. F. Lester, “Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser,” IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 1801207, 2015.
[113] C. Wang, R. Raghunathan, K. Schires, S. C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett., vol. 41, pp. 1153–1156, 2016.
[114] P. A. Morton, T. TanbunEk, R. A. Logan, A. M. Sergent, P. F. Sciortino, Jr., and D. L. Coblentz, “Frequency response subtraction for simple measurement of intrinsic laser dynamic properties,” IEEE Photonics Technol. Lett., vol. 4, pp. 133–136, 1992.
[115] M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Y. M. Shemyakov, “Spectrotemporal response of 1.3 µm quantum-dot lasers,” Appl. Phys. Lett., vol. 81, pp. 3846–3848, 2002.
[116] H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D: Appl. Phys., vol. 38, pp. 2112–2118, 2005.
[117] M. H. Mao, T. Y. Wu, D. C. Wu, F. Y. Chang, and H. H. Lin, “Relaxation oscil- lations and damping factors of 1.3 µm In(Ga)As/GaAs quantum-dot lasers,” Opt. Quantum Electron., vol. 36, pp. 927–933, 2004.
[118] M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Photon lifetime dependence of modulation efficiency and K factor in 1.3 µm self-assembled InAs/GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth,” Appl. Phys. Lett., vol. 85, pp. 4145–4147, 2004.
[119] A. Fiore and A. Markus, “Differential gain and gain Compression in quantum-dot lasers,” IEEE J. Quantum Electron., vol. 43, pp. 287–294, 2007.
[120] S. Fathpour, Z. Mi, and P. Bhattacharya, “High-speed quantum dot lasers,” J. Phys. D: Appl. Phys., vol. 38, pp. 2103–2111, 2005.
[121] T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett., vol. 35, pp. 937–939, 2010.
[122] C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction,” Opt. Express, vol. 20, pp. 101–110, 2012.
[123] C. H. Lin and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers,” Opt. Express, vol. 21, pp. 21242–21253, 2013.
[124] H. Huang, L. C. Lin, C. Y. Chen, D. Arsenijevic, D. Bimberg, F. Y. Lin, and F. Grillot, “Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes,” Opt. Express, vol. 26, pp. 1743–1751, 2018.
[125] L. C. Lin, C. Y. Chen, H. Huang, D. Arsenijevic, D. Bimberg, F. Grillot, and F. Y. Lin, “Comparison of optical feedback dynamics of InAs/GaAs quantum dot lasers emitting solely on ground or excited states,” Opt. Lett., vol. 43, pp. 210–213, 2018.
[126] A. Kovsh, N. Maleev, A. Zhukov, S. Mikhrin, A. Vasil’ev, E. Semenova, Y. Sh- ernyakov, M. Maximov, D. Livshits, V. Ustinov, N. Ledentsov, D. Bimberg, and Z. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 µm range with enhanced optical gain,” J. Cryst. Growth, vol. 251, pp. 729–736, 2003.
[127] H. Huang, D. Arsenijevic, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, “Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states,” AIP Adv., vol. 6, p. 125114, 2016.
[128] O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,” Phys. Rev. B, vol. 59, p. 5688, 1999.
[129] A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Few-particle energies versus geometry and composition of InxGa1xAs/GaAs self-organized quantum dots,” Phys. Rev. B, vol. 79, p. 075443, 2009.
[130] N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, pp. 49–51, 1989.
[131] F. Y. Lin and J. M. Liu, “Harmonic frequency locking in a semiconductor laser with delayed negative optoelectronic feedback,” Appl. Phys. Lett., vol. 81, pp. 3128, 2002.
[132] C. Wang, B. Lingnau, K. Ludge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron., vol. 50, pp. 723–731, 2014.
[133] D. Arsenijevic, A. Schliwa, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg, D. Bimberg, V. Mikhelashvili, , and G. Eisenstein, “Comparison of dynamic prop- erties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett., vol. 104, p. 181101, 2014.
[134] D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bim- berg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of1.3 µm InAs/GaAs quantum dot lasers,” Electron. Lett., vol. 39, pp. 1819–1820, 2003.
[135] B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett., vol. 95, p. 061101, 2009.
[136] B. L. Stanna, J. F. Dammanna, J. A. Enkec, P. S. Jianb, M. M. Gizaa, W. B. Lawlera, and M. A. Powersc, “Brassboard development of a MEMS scanned ladar sensor for small ground robots,” in Proceedings of Laser Radar Technology and Applications XVI, vol. 8037, p. 80371G, 2011.
[137] H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng., vol. 56, p. 031216, 2016.
[138] X. Lee, X. Wang, T. Cui, C. Wang, Y. Li, H. Li, and Q. Wang, “Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting,” Opt. Express, vol. 24, pp. 15222–15231, 2016.
[139] A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photonics Res., vol. 3, pp. B1, 2015.
[140] S. Chen, W. Li, J.Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics, vol. 10, pp. 307–311, 2016.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *