|
[1] R. J. Pawlak, “Recent developments and near term directions for Navy laser weapons system (LaWS) testbed,” Int. Soc. Opt. Photonics, vol. 8547, no. November 2012, p. 854705, 2012. [2] K. Ludewigt, T. Riesbeck, A. Graf, and M. Jung, “50 kW laser weapon demonstrator of Rheinmetall Waffe munition,” in SPIE, 2013, p. 88980N. [3] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tunnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express, vol. 16, no. 12, pp. 8958–8968, 2008. [4] C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science, vol. 204, no. 4392, pp. 461–468, 1979. [5] K. L. Moskalenko, A. I. Nadezhdinskii, and I. A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique,” Infrared Phys. Technol. , vol. 37, no. 1, pp. 181–192, 1996. [6] D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, and R. J. Menna, “Measurement of 12CO2:13CO2 ratios for medical diagnostics with 1. 6-µm distributed-feedback semiconductor diode lasers,” Appl. Opt. , vol. 32, no. 33, p. 6727, 1993. [7] R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. , vol. 4, no. 3, pp. 50–52, 1964. [8] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. , vol. 24, no. 6, pp. 895–912, Jun. 1988. [9] M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE, vol. 56, no. 2, pp. 196–197, 1968. [10] G. H. B. Thompson, Physics of Semiconductor Laser Devices. 1980. [11] R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Opto-electronic device structures fabricated by impurity induced disordering,” J. Cryst. Growth, vol. 77, no. 1–3, pp. 621–628, 1986. [12] H. Yonezu, K. Endo, T. Kamejima, T. Torikai, T. Yuasa, and T. Furuse, “Mirror degradation in AlGaAs double-heterostructure lasers,” Journal of Applied Physics, vol. 50, no. 8. pp. 5150–5157, 1979. [13] T. Fukuzawa, S. Semura, H. Saito, T. Ohta, Y. Uchida, and H. Nakashima, “GaAlAs buried multiquantum well lasers fabricated by diffusion-induced disordering,” Appl. Phys. Lett. , vol. 45, no. 1, pp. 1–3, 1984. [14] F. A. Kish, S. J. Caracci, N. Holonyak, J. M. Dallesasse, G. E. Höfler, R. D. Burnham, and S. C. Smith, “Low‐threshold disorder‐defined native‐oxide delineated buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers,” Appl. Phys. Lett. , vol. 58, no. 16, pp. 1765–1767, Apr. 1991. [15] D. G. Deppe, K. C. Hsieh, N. Holonyak, R. D. Burnham, and R. L. Thornton, “Low‐threshold disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers,” J. Appl. Phys. , vol. 58, no. 12, pp. 4515–4520, Dec. 1985. [16] W. C. Tang, H. J. Rosen, P. Vettiger, and D. J. Webb, “Time development of AlGaAs single quantum well laser facet temperature on route to catastrophical breakdown,” in SPIE Proceeding, 1991, vol. 1418, pp. 338–342. [17] C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys. , vol. 50, no. 5, pp. 3721–3732, 1979. [18] W. D. Laidig, N. Holonyak Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs‐GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. , vol. 38, no. 10, pp. 776–778, May1981. [19] N. Holonyak, W. D. Laidig, M. D. Camras, J. J. Coleman, and P. D. Dapkus, “IR-red GaAs-AlAs superlattice laser monolithically integrated in a yellow-gap cavity,” Appl. Phys. Lett. , vol. 39, no. 1, pp. 102–104, 1981. [20] S. Yu, T. Y. Tan, and U. Gösele, “Diffusion mechanism of zinc and beryllium in gallium arsenide,” J. Appl. Phys. , vol. 69, no. 6, pp. 3547–3565, 1991. [21] P. Mei, S. A. Schwarz, T. Venkatesan, C. L. Schwartz, and E. Colas, “Study of interdiffusion in a Te-doped AlAs-GaAs superlattice,” J. Appl. Phys. , vol. 65, no. 5, pp. 2165–2167, 1989. [22] C. H. Wu, K. C. Hsieh, G. E. Höfler, N. El-Zein, and N. Holonyak Jr. , “Diffusion of manganese in GaAs and its effect on layer disordering in AlxGa1-xAs-GaAs superlattices,” Appl. Phys. Lett. , vol. 59, no. 10, pp. 1224–1226, 1991. [23] D. G. Deppe, W. E. Plano, J. M. Dallesasse, D. C. Hall, and L. J. Guido, “Buried heterostructure AlxGa1-xAs-GaAs quantum well lasers by Ge diffusion from the vapor,” Applied Physics Letters, vol. 52, no. 10. pp. 825–827, 1988. [24] D. G. Deppe, N. Holonyak, K. C. Hsieh, P. Gavrilovic, W. Stutius, and J. Williams, “Layer interdiffusion in Se‐doped Al x Ga 1 − x As‐GaAs superlattices,” Appl. Phys. Lett. , vol. 51, no. 8, pp. 581–583, Aug. 1987. [25] K. Nakashima, Y. Kawaguchi, K. Yuichi, Y. Imamura, and H. Asahi, “Zn-diffusion-induced intermixing of InGaAs/InP multiple quantum well structures,” Appl. Phys. Lett. , vol. 52, p. 1383, 1988. [26] T. A. Richard, J. S. Major, F. A. Kish, N. Holonyak, S. C. Smith, and R. D. Burnham, “Low‐threshold disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers by open‐tube rapid thermal annealing,” Appl. Phys. Lett. , vol. 57, no. 27, pp. 2904–2906, Dec. 1990. [27] D. G. Deppe, D. W. Nam, N. Holonyak, K. C. Hsieh, J. E. Baker, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, and M. G. Craford, “Impurity‐induced layer disordering of high gap Iny(AlxGa1− x)1−yP heterostructures,” Appl. Phys. Lett. , vol. 52, no. 17, pp. 1413–1415, Apr. 1988. [28] J. S. Major, L. J. Guido, K. C. Hsieh, N. Holonyak, W. Stutius, P. Gavrilovic, and J. E. Williams, “Low-threshold disorder-defined buried heterostructure strained-layer AlyGa1-yAs-GaAs-InxGa1-xAs quantum well lasers (λ∼910 nm),” Appl. Phys. Lett. , vol. 54, no. 10, pp. 913–915, 1989. [29] J. W. Huang, D. F. Gaines, T. F. Kuech, R. M. Potemski, and F. Cardone, “Alkoxide precursors for controlled oxygen incorporation during metalorganic vapor phase epitaxy GaAs and AlxGa1−xAs growth,” J. Electron. Mater. , vol. 23, no. 7, pp. 659–667, Jul. 1994. [30] J. W. Huang, K. L. Bray, and T. F. Kuech, “Compensation of shallow impurities in oxygen-doped metalorganic vapor phase epitaxy grown GaAs,” J. Appl. Phys. , vol. 80, no. 12, p. 6819, 1996. [31] Y. Kajikawa, M. Nakanishi, and K. Nagahama, “Effects of the MBE growth temperature on Si-doped Al(x)Ga(1-x)As(x=0,0. 26) and HEMT,” Semicond. Sci. Technol. , vol. 7, pp. 1170–1177, 1992. [32] J. Maguire, R. Murray, R. C. Newman, R. B. Beall, and J. J. Harris, “Mechanism of compensation in heavily silicon-doped gallium arsenide grown by molecular beam epitaxy,” Appl. Phys. Lett. , vol. 50, no. 9, pp. 516–518, 1987. [33] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effect of surface encapsulation and As4 overpressure on Si diffusion and impurity-induced layer disordering in GaAs, AlxGa1-xAs, and AlxGa1-xAs-GaAs quantum well heterostructures,” J. Electron. Mater. , vol. 17, no. 1, pp. 53–56, Jan. 1988. [34] K. Meehan, P. Gavrilovic, J. E. Epler, K. C. Hsieh, N. Holonyak, R. D. Burnham, R. L. Thornton, and W. Streifer, “Donor‐induced disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum‐well lasers,” J. Appl. Phys. , vol. 57, no. 12, pp. 5345–5348, Jun. 1985. [35] K. Meehan, J. M. Brown, N. Holonyak, R. D. Burnham, T. L. Paoli, and W. Streifer, “Stripe‐geometry AlGaAs‐GaAs quantum‐well heterostructure lasers defined by impurity‐induced layer disordering,” Appl. Phys. Lett. , vol. 44, no. 7, pp. 700–702, Apr. 1984. [36] P. Mei, S. A. Schwarz, N. G. Stoffel, J. P. Harbison, D. L. Hart, and L. A. Florez , “Comparative studies of ion‐induced mixing of GaAs‐AlAs superlattices,” Appl. Phys. Lett. , vol. 52, no. 18, pp. 1487–1489, 1988. [37] W. X. Zou, S. Corzine, G. A. Vawter, J. L. Merz, L. A. Coldren, and E. L. Hu, “Self‐aligned Si‐Zn diffusion into GaAs and AlGaAs,” J. Appl. Phys. , vol. 64, no. 4, pp. 1855–1858, Aug. 1988. [38] Z. L. Akkerman, L. A. Borisova, and A. F. Kravchenko, “Infrared absorption spectra of oxygen-doped gallium arsenide,” Sov. Physics-Semiconductors, vol. 10, no. 5, pp. 590–591, 1976. [39] Y. Park, M. Skowronski, T. S. Rosseel, and M. O. Manasreh, “Oxygen Doping of GaAs During Omvpe Controlled Introduction of Impurity Complexes,” Mater. Res. Soc. Symp. Proc. , vol. 325, p. 293, Jan. 1993. [40] P. W. Yu, Y. Park, M. Skowronski, and M. L. Timmons, “Deep‐center oxygen‐related photoluminescence in GaAs doped with dimethylaluminum methoxide during organometallic vapor phase epitaxy,” J. Appl. Phys. , vol. 78, no. 3, pp. 2015–2021, Aug. 1995. [41] X. Zhong, D. Jiang, W. Ge, and C. Song, “Model study of the local vibration center related to EL2 levels in GaAs,” Appl. Phys. Lett. , vol. 52, no. 8, pp. 628–630, 1988. [42] M. Skowronski, S. T. Neild, and R. E. Kremer, “Location of energy levels of oxygen-vacancy complex in GaAs,” Applied Physics Letters, vol. 57, no. 9. pp. 902–904, 1990. [43] J. M. Ryan, J. W. Huang, T. F. Kuech, and K. L. Bray, “The effects of temperature and oxygen concentration on the photoluminescence of epitaxial metalorganic vapor‐phase epitaxy GaAs:O,” J. Appl. Phys. , vol. 76, no. 2, pp. 1175–1179, Jul. 1994. [44] A. D. John, Lange’s hand book of chemistry. 1979. [45] E. W. Williams, “Evidence for Self-Activated Luminescence in GaAs: The Gallium Vacancy-Donor Center,” Phys. Rev. , vol. 168, no. 3, pp. 922–928, 1968. [46] E. W. Williams and H. B. Bebb, “Chapter 5 Photoluminescence II: Gallium Arsenide,” in Semiconductors and Semimetals, vol. 8, 1972, pp. 321–392. [47] C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics,” Proc. IRE, vol. 45, no. 9, pp. 1228–1243, 1957. [48] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid State Electron. , vol. 14, no. 12, pp. 1209–1218, 1971. [49] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys. , vol. 50, no. 7, pp. 5052–5053, 1979. [50] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys. , vol. 60, no. 3, pp. 1223–1224, 1986. [51] C. D. Lien, F. C. T. So, and M. A. Nicolet, “An Improved Forward I-V Method For Nonideal Schottky Diodes With High Series Resistance,” IEEE Trans. Electron Devices, vol. 31, no. 10, pp. 1502–1503, 1984. [52] R. M. Cibils and R. H. Buitrago, “Forward I-V plot for nonideal Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 58, no. 2. pp. 1075–1077, 1985. [53] J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys. A Solids Surfaces, vol. 47, no. 3, pp. 291–300, Nov. 1988. [54] W. F. Wang, K. Y. Cheng, and K. C. Hsieh, “Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs,” AIP Adv. , vol. 8, no. 1, p. 015230, Jan. 2018. [55] L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. , vol. 29, no. 3, pp. 138–141, 1976. [56] M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. , vol. 73, no. 9, pp. 1281–1283, 1998. [57] J. J. Coleman, P. D. Dapkus, C. G. Kirkpatrick, M. D. Camras, and N. Holonyak, “Disorder of an AlAs‐GaAs superlattice by silicon implantation,” Appl. Phys. Lett. , vol. 40, no. 10, pp. 904–906, May1982. [58] D. G. Deppe, L. J. Guido, N. Holonyak, and K. C. Hsieh, “Stripe‐geometry quantum well heterostructure AlxGa1-xAs‐GaAs lasers defined by defect diffusion,” Appl. Phys. Lett. , vol. 49, pp. 510–512, 1986. [59] Ai-Qing Jiang, Chang-Zheng Sun, Zhi-Biao Hao, and Jian-Hua Wang, “Novel laser structures based on MQW interdiffusion using rapid thermal annealing technique,” IEEE J. Sel. Top. Quantum Electron. , vol. 4, no. 4, pp. 736–740, 1998. [60] C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photonics Technol. Lett. , vol. 14, no. 10, pp. 1394–1396, 2002. [61] D. Hofstetter, B. Maisenhölder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. , vol. 4, no. 4, pp. 794–802, 1998. [62] K. Meehan, N. Holonyak, J. M. Brown, M. A. Nixon, P. Gavrilovic, and R. D. Burnham, “Meehan-Disorder of an AlxGa1−xAs‐GaAs superlattice by donor diffusion,” Appl. Phys. Lett. , vol. 45, p. 549, 1984. [63] M. S. Seltzer, “Diffusion of manganese into gallium arsenide,” J. Phys. Chem. Solids, vol. 26, pp. 243–250, 1965. [64] R. L. S. Devine, C. T. Foxon, B. A. Joyce, J. B. Clegg, and J. P. Gowers, “Beryllium diffusion across GaAs/(Al, Ga)As heterojunctions and GaAs/AlAs superlattices during MBE growth,” Appl. Phys. A Solids Surfaces, vol. 44, no. 2, pp. 195–200, 1987. [65] R. W. Kaliski, D. W. Nam, D. G. Deppe, N. Holonyak, K. C. Hsieh, and R. D. Burnham, “Thermal annealing and photoluminescence measurements on Al xGa1-xAs-GaAs quantum-well heterostructures with Se and Mg sheet doping,” J. Appl. Phys. , vol. 62, no. 3, pp. 998–1005, 1987. [66] R. W. Kaliski, P. Gavrilovic, K. Meehan, J. Gavrilovic, K. C. Hsieh, G. S. Jackson, N. Holonyak Jr., J. J. Coleman, R. D. Burnham, R. L. Thornton, and T. L. Paoli “Photoluminescence and stimulated emission in Si- and Ge-disordered Al xGa1-xAs-GaAs superlattices,” Journal of Applied Physics, vol. 58, no. 1. pp. 101–107, 1985. [67] E. V. K. Rao, P. Ossart, F. Alexand re, and H. Thibierge, “Influence of boron on tin induced interdiffusion in GaAs‐Ga 0. 72 Al 0. 28 As superlattices,” Appl. Phys. Lett. , vol. 50, no. 10, pp. 588–590, Mar. 1987. [68] E. V. K. Rao, H. Thibierge, F. Brillouet, F. Alexand re, and R. Azoulay, “Disordering of Ga1-x AlxAs‐GaAs quantum well structures by donor sulfur diffusion,” Appl. Phys. Lett. , vol. 46, p. 867, 1985. [69] E. P. Zucker, A. Hashimoto, T. Fukunaga, and N. Watanabe, “Ion-implanted Zn diffusion and impurity-induced disordering of an AlGaAs superlattice,” Applied Physics Letters, vol. 54, no. 6. pp. 564–566, 1989. [70] J. E. Epler, R. D. Burnham, R. L. Thornton, and T. L. Paoli, “Low threshold buried heterostructure quantum well diode lasers by laser-assisted disordering,” Applied Physics Letters, vol. 50, no. 23. pp. 1637–1639, 1987. [71] T. Y. Tan, U. Gösele, and S. Yu, “Point defects, diffusion mechanisms, and superlattice disordering in gallium arsenide-based materials,” Crit. Rev. Solid State Mater. Sci. , vol. 17, no. 1, pp. 47–106, Jan. 1991. [72] E. H. Li, Semiconductor Quantum Well Intermixing: Material Properties and Optoelectronic Applications. Taylor & Francis, 2000. [73] T. Y. Tan, S. Yu, and U. Gösele, “Determination of vacancy and self‐interstitial contributions to gallium self‐diffusion in GaAs,” J. Appl. Phys. , vol. 70, no. 9, pp. 4823–4826, Nov. 1991. [74] H. D. Palfrey, M. Brown, and A. F. W. Willoughby, “Self-Diffusion of Gallium in Gallium Arsenide,” J. Electrochem. Soc. , vol. 128, no. 10, p. 2224, 1981. [75] P. Mei, H. W. Yoon, T. Venkatesan, S. A. Schwarz, and J. P. Harbison, “Kinetics of silicon‐induced mixing of AlAs‐GaAs superlattices,” Appl. Phys. Lett. , vol. 50, no. 25, pp. 1823–1825, Jun. 1987. [76] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effects of dielectric encapsulation and As overpressure on Al‐Ga interdiffusion in Al x Ga 1− x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. , vol. 61, no. 4, pp. 1372–1379, Feb. 1987. [77] Boon Siew Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , vol. 33, no. 10, pp. 1784–1792, 1997. [78] P. L. Gareso, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Suppression of thermal atomic interdiffusion in C-doped InGaAs/AlGaAs quantum well laser structures using TiO2 dielectric layers,” Appl. Phys. Lett. , vol. 85, no. 23, pp. 5583–5585, 2004. [79] D. G. Deppe and N. Holonyak, “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures,” J. Appl. Phys. , vol. 64, no. 12, pp. R93–R113, Dec. 1988. [80] A. Furuya, O. Wada, A. Takamori, and H. Hashimoto, “Arsenic Pressure Dependence of Interdiffusion of AlGaAs/GaAs Interface in Quantum Well,” Jpn. J. Appl. Phys. , vol. 26, no. Part 2, No. 6, pp. L926–L928, Jun. 1987. [81] D. G. Deppe, L. J. Guido, and N. Holonyak, “Impurity-Induced Layer Disordering in AlxGa1−xAs-GaAs Quantum well Heterostructures -,” MRS Proc. , vol. 126, p. 31, Jan. 1988. [82] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effects of dielectric encapsulation and As overpressure on Al‐Ga interdiffusion in Al x Ga 1− x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. , vol. 61, no. 4, pp. 1372–1379, Feb. 1987. [83] T. Y. Tan and U. Gösele, “Mechanisms of doping-enhanced superlattice disordering and of gallium self-diffusion in GaAs,” Applied Physics Letters, vol. 52, no. 15. pp. 1240–1242, 1988. [84] T. Y. Tan and U. Gösele, “Diffusion mechanisms and superlattice disordering in GaAs,” Mater. Sci. Eng. B, vol. 1, no. 1, pp. 47–65, 1988. [85] M. Kawabe, N. Shimizu, F. Hasegawa, and Y. Nannichi, “Effects of Be and Si on disordering of the AlAs/GaAs superlattice,” Appl. Phys. Lett. , vol. 46, no. 9, pp. 849–850, May1985. [86] T. Y. Tan and U. Gösele, “Destruction mechanism of III‐V compound quantum well structures due to impurity diffusion,” J. Appl. Phys. , vol. 61, no. 5, pp. 1841–1845, Mar. 1987. [87] D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, and J. E. Baker, “Impurity diffusion and layer interdiffusion in Al x Ga 1− x As‐GaAs heterostructures,” J. Appl. Phys. , vol. 64, no. 4, pp. 1838–1844, Aug. 1988. [88] R. L. Longini, “Rapid zinc diffusion in gallium arsenide,” Solid. State. Electron. , vol. 5, no. 3, pp. 127–130, 1962. [89] K. K. Shih, J. W. Allen, and G. L. Pearson, “Diffusion of Zinc in Gallium Arsenide under Excess Arsenic Pressure,” J. Phys. Chem. Solids, vol. 29, no. 2, pp. 379–386, 1968. [90] U. Gösele and F. Morehead, “Diffusion of zinc in gallium arsenide: A new model,” J. Appl. Phys. , vol. 52, no. 7, pp. 4617–4619, Jul. 1981. [91] D. G. Deppe and N. Holonyak, “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures,” J. Appl. Phys. , vol. 64, no. 12, pp. R93–R113, Dec. 1988. [92] K. Nakashima, Y. Kawaguchi, Y. Kawamura, Y. Imamura, and H. Asahi, “Zn‐diffusion‐induced intermixing of InGaAs/InP multiple quantum well structures,” Appl. Phys. Lett. , vol. 52, no. 17, pp. 1383–1385, Apr. 1988. [93] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “The effect of As on Zn diffusion-induced disordering of AlAs/GaAs superlattices,” Semicond. Sci. Technol. , vol. 5, no. 6, pp. 561–565, Jun. 1990. [94] L. J. Vieland , “The effect of arsenic pressure on impurity diffusion in gallium arsenide,” J. Phys. Chem. Solids, vol. 21, no. 3–4, pp. 318–320, Dec. 1961. [95] G. R. Antell, “The diffusion of silicon in gallium arsenide,” Solid. State. Electron. , vol. 8, no. 12, pp. 943–946, Dec. 1965. [96] K. Ishida, W. Matsui, T. Fukunaga, T. Takamori, J. Kobayashi, H. Nakashima, “Silicon-induced disordering and its application to fabrication of index-guided AlGaAs MQW lasers,” Proc. 13th Int. Symp. GaAs Relat. Compd. , p. 361, 1986. [97] M. E. Greiner and J. F. Gibbons, “Diffusion of silicon in gallium arsenide using rapid thermal processing: Experiment and model,” Appl. Phys. Lett. , vol. 44, no. 8, pp. 750–752, Apr. 1984. [98] D. G. Deppe, N. Holonyak, and J. E. Baker, “Sensitivity of Si diffusion in GaAs to column IV and VI donor species,” Appl. Phys. Lett. , vol. 52, no. 2, pp. 129–131, 1988. [99] D. G. Deppe, N. Holonyak, F. A. Kish, and J. E. Baker, “Background doping dependence of silicon diffusion in p ‐type GaAs,” Appl. Phys. Lett. , vol. 50, no. 15, pp. 998–1000, Apr. 1987. [100] D. G. Deppe, W. E. Plano, J. E. Baker, N. Holonyak, M. J. Ludowise, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, and M. G. Craford, “Comparison of Si III ‐Si V and Si III ‐V III diffusion models in III‐V heterostructures lattice matched to GaAs,” Appl. Phys. Lett. , vol. 53, no. 22, pp. 2211–2213, Nov. 1988. [101] C. W. Farley, K. S. Kim, S. D. Lester, and B. G. Streetman, “Complex Compensation of Ge Pulse-Diffused into GaAs,” J. Electrochem. Soc. , vol. 134, no. 11, p. 2888, 1987. [102] H. C. Gatos and J. Lagowski, “EL2 and Related Defects in GaAs--Challenges and Pitfalls,” Mater. Res. Soc. Symp. Proc. , vol. 46, p. 153, Jan. 1985. [103] J. Lagowski, M. Bugajski, M. Matsui, and H. C. Gatos, “Optical characterization of semi-insulating GaAs: Determination of the Fermi energy, the concentration of the midgap EL2 level and its occupancy,” Appl. Phys. Lett. , vol. 51, no. 7, pp. 511–513, 1987. [104] D. C. Look and Z. Q. Fang, “On the energy level of EL2 in GaAs,” Solid. State. Electron. , vol. 43, no. 7, pp. 1317–1319, Jul. 1999. [105] J. W. Huang and T. F. Kuech, “Multiple deep levels in metalorganic vapor phase epitaxy GaAs grown by controlled oxygen incorporation,” Appl. Phys. Lett. , vol. 65, no. 5, pp. 604–606, 1994. [106] M. J. Tsai, M. M. Tashima, and R. L. Moon, “The effects of the growth temperature on AlxGal-xAs (0≤ x ≤0. 37) LED materials grown by OM-VPE,” J. Electron. Mater. , vol. 13, no. 2, pp. 437–446, Mar. 1984. [107] J. W. Huang and T. F. Kuech, “Deep Level Structure of Semi-Insulating MOVPE GaAs Grown by Controlled Oxygen Incorporation,” Mater. Res. Soc. Symp. Proc. , vol. 325, p. 305, Jan. 1993. [108] A. Lisak and K. Fitzner, “Vapor pressure measurements of arsenic and arsenic trioxide over condensed phases,” J. Phase Equilibria, vol. 15, no. 2, pp. 151–154, 1994. [109] J. H. Neave, P. J. Dobson, J. J. Harris, P. Dawson, and B. A. Joyce, “Silicon doping of MBE-grown GaAs films,” Appl. Phys. A Solids Surfaces, vol. 32, no. 4, pp. 195–200, 1983. [110] B. Birkmann, R. Weingartner, P. Wellmann, B. Wiedemann, and G. Muller, “Analysis of silicon incorporation into VGF-grown GaAs,” J. Cryst. Growth, vol. 237–239, no. 1 4 I, pp. 345–349, 2002. [111] L. Zhang and Z. Xu, “One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation,” Sci. Rep. , vol. 7, no. 1, p. 3641, 2017. [112] K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D. Appl. Phys. , vol. 5, no. 1, p. 308, 1972. [113] R. W. Olesinski and G. J. Abbaschian, “The As-Ge (Arsenic-Germanium ) System,” Bull. Alloy Phase Diagrams, vol. 6, no. 3, pp. 250–254, 1985. [114] Y. Homma and Y. Ishii, “Analysis of carbon and oxygen in GaAs using a secondary ion mass spectrometer equipped with a 20 K-cryopanel pumping system Analysis of carbon and oxygen in GaAs using a secondary ion mass spectrometer equipped with a 20 K-cryopanel pumping system,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. , vol. 3, p. 356, 1985. [115] B. Temel, M. Charles, J. Serfass, and J. Kipnis, “Scrutinizing VCSELS by SIMS,” Compd. Semicond. , vol. 20, no. 3, p. 45, 2014. [116] M. K. Hudait, P. Modak, K. S. R. K. Rao, and S. B. Krupanidhi, “Low temperature photoluminescence properties of Zn-doped GaAs,” Mater. Sci. Eng. B, vol. 57, no. 1, pp. 62–70, 1998. [117] D. T. J. Hurle, “A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide,” J. Appl. Phys. , vol. 85, p. 6957, 1999. [118] T. Koda and S. Shionoya, “Nature of the Self-Activated Blue Luminescence Center in Cubic ZnS: Cl Single Crystals,” Phys. Rev. , vol. 136, no. 2A, pp. A541–A555, Oct. 1964. [119] C. C. Klick and J. H. Schulman, “Luminescence in Solids,” in Solid State Physics, 1957, pp. 97–172. [120] J. Van DeVen, W. J. A. M. Hartmann, and L. J. Giling, “Photoluminescence studies of defects and impurities in annealed GaAs,” J. Appl. Phys. , vol. 60, no. 10, pp. 3735–3745, 1986. [121] C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B, vol. 54, no. 15, pp. 10288–10291, Oct. 1996. [122] P. L. Souza and E. V. K. Rao, “Investigation of different Si-related photoluminescence emissions involved in a deep broadband in Al0. 3Ga0. 7As,” J. Appl. Phys. , vol. 67, no. 11, pp. 7013–7018, 1990. [123] E. P. Visser, X. Tang, R. W. Wieleman, and L. J. Giling, “Deep‐level photoluminescence studies on Si‐doped, metalorganic chemical vapor deposition grown Al x Ga 1− x As,” J. Appl. Phys. , vol. 69, no. 5, pp. 3266–3277, 1991. [124] G. Brammertz et al. , “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. , vol. 99, no. 9, p. 093514, May2006. [125] P. W. Yu and D. C. Walters, “Deep photoluminescence band related to oxygen in gallium arsenide,” Appl. Phys. Lett. , vol. 41, no. 9, pp. 863–865, Nov. 1982. [126] H. B. Bebb and E. W. Williams, “Chapter 4 Photoluminescence I: Theory,” in Semiconductors and Semimetals, vol. 8, 1972, pp. 181–320. [127] V. V. Batavin, V. M. Mikhaelyah, and G. V. Popova, “Nature of the 1. 26~1. 30 eV Photoluminescence band of Copper-doped Gallium Arsenide,” Sov. Physics-Semiconductors, vol. 6, no. 10, pp. 1616–1619, 1973. [128] G. C. Jain, D. K. Sadana, and B. K. Das, “Phosphorous diffusion in GaAs,” Solid State Electron. , vol. 19, no. d, pp. 731–736, 1976. [129] U. Egger, M. Schultz, P. Werner, O. Breitenstein, T. Y. Tan, U. Gösele, R. Franzheld, M. Uematsu, and H. Ito , “Interdiffusion studies in GaAsP/GaAs and GaAsSb/GaAs superlattices under various arsenic vapor pressures,” J. Appl. Phys. , vol. 81, no. 9, pp. 6056–6061, 1997. [130] H. D. Palfrey, M. Brown, and A. F. W. Willoughby, “Self-Diffusion in gallium arsenide,” J. Electron. Mater. , vol. 12, no. 5, pp. 863–877, 1983. [131] Wei-Fu Wang, Kai-Yuan Cheng, Ching-Yi Huang, Wei-Ting Liu, Bao-Hsien Wu, Yu-Chen Chen, Kuang-Chien Hsieh, “Selective and tunable red- or blue-shift emissions of GaAsP quantum well heterostructures,” in SPIE, 2015, p. 93821U. [132] M. R. Krames, A. D. Minervini, E. I. Chen, N. Holonyak, and J. E. Baker, “Improved thermal stability of AlGaAs–GaAs quantum well heterostructures using a ‘“blocking”’ Zn diffusion to reduce column‐III vacancies,” Appl. Phys. Lett. , vol. 67, no. 13, pp. 1859–1861, 1995. [133] E. Veuhoff, H. Baumeister, and R. Treichler, “Silicon migration during MOVPE of AlGaAs/GaAs laser structures,” J. Cryst. Growth, vol. 93, no. 1–4, pp. 650–655, 1988. [134] E. F. Schubert, J. B. Stark, T. H. Chiu, and B. Tell, “Diffusion of atomic silicon in gallium arsenide,” Appl. Phys. Lett. , vol. 53, no. 4, pp. 293–295, 1988. [135] J. E. Cunningham, T. H. Chiu, W. Jan, and T. Y. Kuo, “Nonlinear dependencies of Si diffusion in δ‐doped GaAs,” Appl. Phys. Lett. , vol. 59, no. 12, pp. 1452–1454, Sep. 1991. [136] J. J. Harris, J. B. Clegg, R. B. Beall, J. Castagné, K. Woodbridge, and C. Roberts, “Delta-doping of GaAs and Al0. 33Ga0. 67As with Sn, Si and Be: a comparative study,” J. Cryst. Growth, vol. 111, no. 1–4, pp. 239–245, 1991. [137] H. C. Nutt, R. S. Smith, M. Towers, P. K. Rees, and D. J. James, “An investigation of the diffusion of silicon in delta‐doped gallium arsenide, as determined using high‐resolution secondary ion mass spectrometry,” J. Appl. Phys. , vol. 70, no. 2, pp. 821–826, Jul. 1991. [138] E. F. Schubert, C. W. Tu, R. F. Kopf, J. M. Kuo, and L. M. Lunardi, “Diffusion and drift of Si dopants in δ‐doped n ‐type Al x Ga 1− x As,” Appl. Phys. Lett. , vol. 54, no. 25, pp. 2592–2594, Jun. 1989. [139] T. Onuma, T. Hirao, and T. Sugawa, “Study of Encapsulants for Annealing Si-Implanted GaAs,” J. Electrochem. Soc. , vol. 129, no. 4, p. 837, 1982. [140] J. Kasahara, “The Effect of Stress on the Redistribution of Implanted Impurities in GaAs,” J. Electrochem. Soc. , vol. 130, no. 11, p. 2275, 1983. [141] M. J. Aziz, “Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms,” Appl. Phys. Lett. , vol. 70, no. 21, pp. 2810–2812, 1997. [142] G. C. Jain, B. C. Chakravarty, and A. Prasad, “Effect of interfacial stress at the Si/SiO2, interface on the diffusion of Ga in Si through SiO2,” Phys. Status Solidi, vol. 64, no. 2, pp. 485–491, 1981. [143] A. N. Larsen, N. Zangenberg, and J. Fage-Pedersen, “The effect of biaxial strain on impurity diffusion in Si and SiGe,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. , vol. 124–125, no. SUPPL. , pp. 241–244, 2005. [144] N. R. Zangenberg, J. Fage-Pedersen, J. L. Hansen, and A. N. Larsen, “Boron and phosphorus diffusion in strained and relaxed Si and SiGe,” J. Appl. Phys. , vol. 94, no. 6, pp. 3883–3890, 2003. [145] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, D. A. Antoniadis, “Strained silicon MOSFET technology,” in Digest. International Electron Devices Meeting, 2002, no. 617, pp. 23–26. [146] Lei Wang, Leon Hsu, E. E. Haller, Jon W. Erickson, A. Fischer, K. Eberl, and M. Cardona, “Ga self-diffusion in GaAs isotope heterostructures,” Phys. Rev. Lett. , vol. 76, no. 13, pp. 2342–2345, 1996. [147] T. Y. Tan, H. M. You, S. Yu, U. M. Gösele, W. Jäger, D. W. Boeringer, F. Zypman, R. Tsu, and S.T. Lee, “Disordering in 69 GaAs/ 71 GaAs isotope superlattice structures,” J. Appl. Phys. , vol. 72, no. 11, pp. 5206–5212, 1992. [148] J. C. Lee and T. E. Schlesinger, “Interdiffusion of Al and Ga in (Al,Ga)As/GaAs superlattices,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. , vol. 5, no. 4, p. 1187, Jul. 1987. [149] U. M. Gösele, T. Y. Tan, M. Schultz, U. Egger, P. Werner, R. Scholz, and O. Breitenstein, “Diffusion in GaAs and Related Compounds: Recent Developments,” Defect Diffus. Forum, vol. 143–147, pp. 1079–1094, 1997. [150] B. T. Cunningham, L. J. Guido, J. E. Baker, J. S. Major, N. Holonyak, and G. E. Stillman, “Carbon diffusion in undoped, n-type, and p-type GaAs,” Appl. Phys. Lett. , vol. 55, no. 7, pp. 687–689, 1989. [151] P. V. Bulaev, A. A. Marmalyuk, A. A. Padalitsa, D. B. Nikitin, I. D. Zalevsky, V.A. Kapitonov, D. N. Nikolaev, N. A. Pikhtin, A.V. Lyutetskiy, and I.S. Tarasov, “Comparison of carbon and zinc p-clad doped LP MOCVD grown InGaAs/AlGaAs low divergence high-power laser heterostructures,” J. Cryst. Growth, vol. 248, no. SUPPL. , pp. 114–118, 2003. [152] V. Quintana, J. J. Clemencon, and A. K. Chin, “Sealed-ampoule diffusion of zinc into Ga1-xAlxAs at 650 °C,” J. Appl. Phys. , vol. 63, no. 7, pp. 2454–2455, 1988. [153] S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “Comparison of carbon and zinc doping in GaAs/AlGaAs lasers band gap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. , vol. 9, no. 11, pp. 2149–2151, 1994. [154] P. L. Gareso, M. Buda, M. Petravic, H. H. Tan, and C. Jagadish, “Effect of Rapid Thermal Annealing on the Atomic Intermixing of Zn- and C-Doped InGaAs∕AlGaAs Quantum Well Laser Structures,” J. Electrochem. Soc. , vol. 153, no. 9, p. 879, 2006. [155] P. Enquist, J. A. Hutchby, and T. J. DeLyon, “Growth and diffusion of abrupt zinc profiles in gallium arsenide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy,” J. Appl. Phys. , vol. 63, no. 9, pp. 4485–4493, 1988. [156] N. Nordell, P. Ojala, W. H. vanBerlo, G. Land gren, and M. K. Linnarsson, “Diffusion of Zn and Mg in AlGaAs/GaAs structures grown by metalorganic vapor‐phase epitaxy,” J. Appl. Phys. , vol. 67, no. 2, pp. 778–786, Jan. 1990. [157] J. B. Clegg, I. G. Gale, G. Blackmore, M. G. Dowsett, D. S. McPhail, G. D. T. Spiller, and D. E. Sykes, “A SIMS calibration exercise using multi-element (Cr, Fe and Zn) implanted GaAs,” Surf. Interface Anal. , vol. 10, no. 7, pp. 338–342, Sep. 1987. [158] L. Zhou, X. Gao, L. Xu, Z. Qiao, and B. Bo, “InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering,” Solid. State. Electron. , vol. 89, pp. 81–84, 2013. [159] T. Nishimura, T. Yajima, and A. Toriumi, “Reexamination of Fermi level pinning for controlling Schottky barrier height at metal/Ge interface,” Appl. Phys. Express, vol. 9, no. 8, 2016. [160] W. T. Read, “LXXXVII. Theory of dislocations in germanium,” London, Edinburgh, Dublin Philos. Mag. J. Sci. , vol. 45, no. 367, pp. 775–796, Aug. 1954. [161] R. K. Mueller, “Dislocation acceptor levels in germanium [5],” J. Appl. Phys. , vol. 30, no. 12, pp. 2015–2016, 1959. [162] M. Moseley, A. Allerman, M. Crawford, J. J. Wierer, M. Smith, and L. Biedermann, “Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes,” J. Appl. Phys. , vol. 116, no. 5, 2014. [163] E. J. Miller, D. M. Schaadt, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck, “Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope,” J. Appl. Phys. , vol. 91, no. 12, pp. 9821–9826, 2002. [164] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes,” J. Appl. Phys. , vol. 96, no. 2, pp. 1111–1114, 2004. [165] P. Maurel, J. Nagle, and J. P. Hirtz, “Influence of Rapid Thermal Annealing on the Properties of Strained GaInAs Quantum Well Lasers,” Jpn. J. Appl. Phys. , vol. 32, no. Part 1, No. 3A, pp. 1056–1059, Mar. 1993. [166] G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. , vol. 72, no. 8, pp. 3788–3791, 1992. [167] N. Yamada, G. Roos, and J. S. Harris, “Threshold reduction in strained InGaAs single quantum well lasers by rapid thermal annealing,” Appl. Phys. Lett. , vol. 59, no. 9, pp. 1040–1042, 1991. [168] K. Xie, C. R. Wie, J. A. Varriano, and G. W. Wicks, “Improvement of GaAs/AlGaAs quantum well laser diodes by rapid thermal annealing,” J. Electron. Mater. , vol. 23, no. 1, pp. 1–6, Jan. 1994. [169] W. F. Wang, K. Y. Cheng, M. C. Wu, and K. C. Hsieh, “Analyses of current-voltage characteristics using derivative methodology,” Solid. State. Electron. , vol. 149, no. July, pp. 15–22, 2018. [170] N. M. Ravindra, P. Ganapathy, and J. Choi, “Energy gap–refractive index relations in semiconductors – An overview,” Infrared Phys. Technol. , vol. 50, no. 1, pp. 21–29, Mar. 2007.
|