帳號:guest(13.59.197.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王為甫
作者(外文):Wang, Wei-Fu
論文名稱(中文):利用氣相砷化鍺擴散誘發混和製程製做背脊-隱埋式波導混合結構之808奈米雷射二極體
論文名稱(外文):808-nm Laser Diodes in Ridge/Buried-Waveguide Hybrid Structures Fabricated with Intermixing Processing through Vapor-Phase GeAs Diffusion
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):蘇炎坤
翁炳國
孫台平
許渭州
湯相峰
劉文超
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063703
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:153
中文關鍵詞:鍺擴散漏電流雷射二極體
外文關鍵詞:germanium diffusionleakage currentlaser diode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:953
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們利用砷化鍺粉末再加上額外的砷放置於石英安瓿中,在p型及semi-insulating砷化鎵基板上進行n型參雜的氣相鍺擴散;並透過光致發頻譜發現一寬頻訊號(0.86 電子伏特~1.38電子伏特),推測其來源為GeGa-VGa自我激發中心(self-activated center, SA center)與鄰近的鍺-氧缺陷複合體。其中,氧主要來自表面帶有氧化鍺的砷化鍺粉末與氧化砷蒸氣分子反應的副產物。因為共同參雜了氧和鍺,我們透過變溫光致發頻譜觀察到與文獻已知的自我激發中心頻譜訊號產生位移(從1.2電子伏特到1.1電子伏特),也增加了其振動能,而其熱活化能約為150電子毫伏-180電子毫伏。除了基本的材料分析之外,接著利用上述的氣相鍺擴散造成在外圍波導及鏡面區域的量子井混合方式,本實驗製做出砷化鎵系統的808-奈米雷射二極體,其結構為背脊式波導與埋隱式量子井異質結構的綜合體。透過對電流-電壓的一次及二次微分計算(DIV technique),可以定量地計算串聯電阻、並聯漏電及導通電壓,並得到如下結果:810 oC, 10小時的鍺擴散可以有效降低螺紋狀差排網絡造成的並聯漏電;然而另一方面,熱處理也降低量子井效率並使得試片中做為參雜的鋅及碳原子重新分佈,造成接面的位移,進而降低了內部量子效益、提升了閾值電流及降低斜率效率(從1.046 瓦/安培到0.382 瓦/安培)。然而鍺誘發形成的背脊式波導與埋隱式量子井異質結構綜合體結構,提升了斜率效益(0.833 瓦/安培);並更重要地,由於非吸收鏡面而提升了光學災難性損傷功率,從未做任何退火的3.4 瓦提升至4.6 瓦,改進幅度約34 %。
The germanium diffusion of n-type doping in both p-type and semi-insulating bulk GaAs with GeAs powders plus extra arsenic as the vapor source in quartz ampoules has been demonstrated, and a broad peak (0.86-1.38 eV) in photoluminescence has been observed. The broad band is attributed to GeGa-VGa self-activated (SA) centers associated with nearby Ge-O defect complex. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides and as the oxidation byproducts due to reactions between GeAs and As2O3 vapor molecules. Due to the un-intentional co-incorporation of oxygen, shift in emission peak of the well-documented SA center from 1.2 eV to 1.1 eV with a thermal activation energy of 150-180 meV and increase in the vibrational energy of the defect complex are observed. In addition to basic materials study, GaAs-based 808-nm laser diodes have been fabricated with a hybrid structure of ridge-waveguide/buried quantum well heterostructure (QWH) by employing vapor phase GeAs diffusion to induce quantum well intermixing (QWI) both in the waveguide region and near the facet area. Quantitative assessment of series resistance, shunt leakage and turn-on voltage has been made through evaluating first and second derivatives of I-V characteristics (DIV technique). Results indicate that shunt leakage attributed to the existence of threading dislocation networks can be greatly suppressed in Ge-diffused samples (810 oC for 10 hours). On the other hand, heat treatment causes thermal degradation of QW and dopant redistribution of Zn and carbon leading to loss of internal quantum efficiency and deterioration of laser threshold current and slope efficiency from 1.046 W/A to 0.382 W/A due to junction migration. Formation of the ridge/buried-heterostructure with Ge-induced intermixing helps recover the slope efficiency, 0.833W/A, and more importantly improves the catastrophic-optical damage (COD) power by 34% from 3.4 W for as-grown samples to 4.6 W, which is attributed to non-absorbing mirror effect.
Acknowledgement i
中文摘要 ii
Abstract iii
Contents v
List of figures viii
List of tables xvii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 Impurity-induced disordering in GaAs-based semiconductor 5
2.1.1 Point defect and Self-diffusion 6
2.1.2 Impurity-induced layer disordering (IILD) 18
2.1.3 PL spectra of Oxygen-doped GaAs 32
2.2 Derivative of current-voltage characteristics 36
2.2.1 Negligible leakage Gp=1/Rp=0 and negligible substrate/contact resistance (Rsub=0) 38
2.2.2 Neither negligible substrate/contact resistance (Rsub≠0) nor negligible leakage current (Gp≠0) 39
2.2.3 Degenerate case of 2.2.2 when non-negligible leakage Gp=1/Rp≠0 but negligible substrate/contact resistance (Rsub=0) 43
2.2.4 Degenerate case of 2.2.2 when shunt leakage is non-negligible (Gp≠0) but Rs is negligible as compared to Rsub and Rp 45
Chapter 3 Experimental Setup 49
3.1 Vapor phase germanium diffusion 49
3.2 Derivative of current-voltage characteristics 52
3.3 Device fabrication (Laser diode and PIN diode) 52
3.3.1 Epitaxy layer information 52
3.3.2 Process flow of laser diode 54
3.3.3 I-V and L-I measurement 59
Chapter 4 Experiment results and discussions 60
4.1 Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs 60
4.1.1 Structural analysis 60
4.1.2 Optical Characterization 75
4.2 Analyses of current-voltage characteristics using derivative methodology 86
4.2.1 Comparison of turn-on voltage 86
4.2.2 Comparison with Norde model and resistance effect 89
4.2.3 Effect of shunt leakage and substrate resistance 93
4.2.4 Voltage-dependent resistance 96
4.3 Comparison of 808-nm laser diodes in Ridge-/Buried-Waveguide Hybrid Structures Fabricated with/without Intermixing Processing through Vapor-Phase GeAs 98
4.3.1 Germanium diffusion and masking 98
4.3.2 Effect of annealing on structural stability and impurity/defect distribution 100
4.3.3 Effect of annealing on current-voltage characteristics 113
4.3.4 Light-current characteristics 124
Chapter 5 Conclusion 129
Reference 133
[1] R. J. Pawlak, “Recent developments and near term directions for Navy laser weapons system (LaWS) testbed,” Int. Soc. Opt. Photonics, vol. 8547, no. November 2012, p. 854705, 2012.
[2] K. Ludewigt, T. Riesbeck, A. Graf, and M. Jung, “50 kW laser weapon demonstrator of Rheinmetall Waffe munition,” in SPIE, 2013, p. 88980N.
[3] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tunnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express, vol. 16, no. 12, pp. 8958–8968, 2008.
[4] C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science, vol. 204, no. 4392, pp. 461–468, 1979.
[5] K. L. Moskalenko, A. I. Nadezhdinskii, and I. A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique,” Infrared Phys. Technol. , vol. 37, no. 1, pp. 181–192, 1996.
[6] D. E. Cooper, R. U. Martinelli, C. B. Carlisle, H. Riris, D. B. Bour, and R. J. Menna, “Measurement of 12CO2:13CO2 ratios for medical diagnostics with 1. 6-µm distributed-feedback semiconductor diode lasers,” Appl. Opt. , vol. 32, no. 33, p. 6727, 1993.
[7] R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. , vol. 4, no. 3, pp. 50–52, 1964.
[8] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. , vol. 24, no. 6, pp. 895–912, Jun. 1988.
[9] M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE, vol. 56, no. 2, pp. 196–197, 1968.
[10] G. H. B. Thompson, Physics of Semiconductor Laser Devices. 1980.
[11] R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Opto-electronic device structures fabricated by impurity induced disordering,” J. Cryst. Growth, vol. 77, no. 1–3, pp. 621–628, 1986.
[12] H. Yonezu, K. Endo, T. Kamejima, T. Torikai, T. Yuasa, and T. Furuse, “Mirror degradation in AlGaAs double-heterostructure lasers,” Journal of Applied Physics, vol. 50, no. 8. pp. 5150–5157, 1979.
[13] T. Fukuzawa, S. Semura, H. Saito, T. Ohta, Y. Uchida, and H. Nakashima, “GaAlAs buried multiquantum well lasers fabricated by diffusion-induced disordering,” Appl. Phys. Lett. , vol. 45, no. 1, pp. 1–3, 1984.
[14] F. A. Kish, S. J. Caracci, N. Holonyak, J. M. Dallesasse, G. E. Höfler, R. D. Burnham, and S. C. Smith, “Low‐threshold disorder‐defined native‐oxide delineated buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers,” Appl. Phys. Lett. , vol. 58, no. 16, pp. 1765–1767, Apr. 1991.
[15] D. G. Deppe, K. C. Hsieh, N. Holonyak, R. D. Burnham, and R. L. Thornton, “Low‐threshold disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers,” J. Appl. Phys. , vol. 58, no. 12, pp. 4515–4520, Dec. 1985.
[16] W. C. Tang, H. J. Rosen, P. Vettiger, and D. J. Webb, “Time development of AlGaAs single quantum well laser facet temperature on route to catastrophical breakdown,” in SPIE Proceeding, 1991, vol. 1418, pp. 338–342.
[17] C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys. , vol. 50, no. 5, pp. 3721–3732, 1979.
[18] W. D. Laidig, N. Holonyak Jr., M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs‐GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. , vol. 38, no. 10, pp. 776–778, May1981.
[19] N. Holonyak, W. D. Laidig, M. D. Camras, J. J. Coleman, and P. D. Dapkus, “IR-red GaAs-AlAs superlattice laser monolithically integrated in a yellow-gap cavity,” Appl. Phys. Lett. , vol. 39, no. 1, pp. 102–104, 1981.
[20] S. Yu, T. Y. Tan, and U. Gösele, “Diffusion mechanism of zinc and beryllium in gallium arsenide,” J. Appl. Phys. , vol. 69, no. 6, pp. 3547–3565, 1991.
[21] P. Mei, S. A. Schwarz, T. Venkatesan, C. L. Schwartz, and E. Colas, “Study of interdiffusion in a Te-doped AlAs-GaAs superlattice,” J. Appl. Phys. , vol. 65, no. 5, pp. 2165–2167, 1989.
[22] C. H. Wu, K. C. Hsieh, G. E. Höfler, N. El-Zein, and N. Holonyak Jr. , “Diffusion of manganese in GaAs and its effect on layer disordering in AlxGa1-xAs-GaAs superlattices,” Appl. Phys. Lett. , vol. 59, no. 10, pp. 1224–1226, 1991.
[23] D. G. Deppe, W. E. Plano, J. M. Dallesasse, D. C. Hall, and L. J. Guido, “Buried heterostructure AlxGa1-xAs-GaAs quantum well lasers by Ge diffusion from the vapor,” Applied Physics Letters, vol. 52, no. 10. pp. 825–827, 1988.
[24] D. G. Deppe, N. Holonyak, K. C. Hsieh, P. Gavrilovic, W. Stutius, and J. Williams, “Layer interdiffusion in Se‐doped Al x Ga 1 − x As‐GaAs superlattices,” Appl. Phys. Lett. , vol. 51, no. 8, pp. 581–583, Aug. 1987.
[25] K. Nakashima, Y. Kawaguchi, K. Yuichi, Y. Imamura, and H. Asahi, “Zn-diffusion-induced intermixing of InGaAs/InP multiple quantum well structures,” Appl. Phys. Lett. , vol. 52, p. 1383, 1988.
[26] T. A. Richard, J. S. Major, F. A. Kish, N. Holonyak, S. C. Smith, and R. D. Burnham, “Low‐threshold disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum well lasers by open‐tube rapid thermal annealing,” Appl. Phys. Lett. , vol. 57, no. 27, pp. 2904–2906, Dec. 1990.
[27] D. G. Deppe, D. W. Nam, N. Holonyak, K. C. Hsieh, J. E. Baker, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, and M. G. Craford, “Impurity‐induced layer disordering of high gap Iny(AlxGa1− x)1−yP heterostructures,” Appl. Phys. Lett. , vol. 52, no. 17, pp. 1413–1415, Apr. 1988.
[28] J. S. Major, L. J. Guido, K. C. Hsieh, N. Holonyak, W. Stutius, P. Gavrilovic, and J. E. Williams, “Low-threshold disorder-defined buried heterostructure strained-layer AlyGa1-yAs-GaAs-InxGa1-xAs quantum well lasers (λ∼910 nm),” Appl. Phys. Lett. , vol. 54, no. 10, pp. 913–915, 1989.
[29] J. W. Huang, D. F. Gaines, T. F. Kuech, R. M. Potemski, and F. Cardone, “Alkoxide precursors for controlled oxygen incorporation during metalorganic vapor phase epitaxy GaAs and AlxGa1−xAs growth,” J. Electron. Mater. , vol. 23, no. 7, pp. 659–667, Jul. 1994.
[30] J. W. Huang, K. L. Bray, and T. F. Kuech, “Compensation of shallow impurities in oxygen-doped metalorganic vapor phase epitaxy grown GaAs,” J. Appl. Phys. , vol. 80, no. 12, p. 6819, 1996.
[31] Y. Kajikawa, M. Nakanishi, and K. Nagahama, “Effects of the MBE growth temperature on Si-doped Al(x)Ga(1-x)As(x=0,0. 26) and HEMT,” Semicond. Sci. Technol. , vol. 7, pp. 1170–1177, 1992.
[32] J. Maguire, R. Murray, R. C. Newman, R. B. Beall, and J. J. Harris, “Mechanism of compensation in heavily silicon-doped gallium arsenide grown by molecular beam epitaxy,” Appl. Phys. Lett. , vol. 50, no. 9, pp. 516–518, 1987.
[33] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effect of surface encapsulation and As4 overpressure on Si diffusion and impurity-induced layer disordering in GaAs, AlxGa1-xAs, and AlxGa1-xAs-GaAs quantum well heterostructures,” J. Electron. Mater. , vol. 17, no. 1, pp. 53–56, Jan. 1988.
[34] K. Meehan, P. Gavrilovic, J. E. Epler, K. C. Hsieh, N. Holonyak, R. D. Burnham, R. L. Thornton, and W. Streifer, “Donor‐induced disorder‐defined buried‐heterostructure Al x Ga 1− x As‐GaAs quantum‐well lasers,” J. Appl. Phys. , vol. 57, no. 12, pp. 5345–5348, Jun. 1985.
[35] K. Meehan, J. M. Brown, N. Holonyak, R. D. Burnham, T. L. Paoli, and W. Streifer, “Stripe‐geometry AlGaAs‐GaAs quantum‐well heterostructure lasers defined by impurity‐induced layer disordering,” Appl. Phys. Lett. , vol. 44, no. 7, pp. 700–702, Apr. 1984.
[36] P. Mei, S. A. Schwarz, N. G. Stoffel, J. P. Harbison, D. L. Hart, and L. A. Florez , “Comparative studies of ion‐induced mixing of GaAs‐AlAs superlattices,” Appl. Phys. Lett. , vol. 52, no. 18, pp. 1487–1489, 1988.
[37] W. X. Zou, S. Corzine, G. A. Vawter, J. L. Merz, L. A. Coldren, and E. L. Hu, “Self‐aligned Si‐Zn diffusion into GaAs and AlGaAs,” J. Appl. Phys. , vol. 64, no. 4, pp. 1855–1858, Aug. 1988.
[38] Z. L. Akkerman, L. A. Borisova, and A. F. Kravchenko, “Infrared absorption spectra of oxygen-doped gallium arsenide,” Sov. Physics-Semiconductors, vol. 10, no. 5, pp. 590–591, 1976.
[39] Y. Park, M. Skowronski, T. S. Rosseel, and M. O. Manasreh, “Oxygen Doping of GaAs During Omvpe Controlled Introduction of Impurity Complexes,” Mater. Res. Soc. Symp. Proc. , vol. 325, p. 293, Jan. 1993.
[40] P. W. Yu, Y. Park, M. Skowronski, and M. L. Timmons, “Deep‐center oxygen‐related photoluminescence in GaAs doped with dimethylaluminum methoxide during organometallic vapor phase epitaxy,” J. Appl. Phys. , vol. 78, no. 3, pp. 2015–2021, Aug. 1995.
[41] X. Zhong, D. Jiang, W. Ge, and C. Song, “Model study of the local vibration center related to EL2 levels in GaAs,” Appl. Phys. Lett. , vol. 52, no. 8, pp. 628–630, 1988.
[42] M. Skowronski, S. T. Neild, and R. E. Kremer, “Location of energy levels of oxygen-vacancy complex in GaAs,” Applied Physics Letters, vol. 57, no. 9. pp. 902–904, 1990.
[43] J. M. Ryan, J. W. Huang, T. F. Kuech, and K. L. Bray, “The effects of temperature and oxygen concentration on the photoluminescence of epitaxial metalorganic vapor‐phase epitaxy GaAs:O,” J. Appl. Phys. , vol. 76, no. 2, pp. 1175–1179, Jul. 1994.
[44] A. D. John, Lange’s hand book of chemistry. 1979.
[45] E. W. Williams, “Evidence for Self-Activated Luminescence in GaAs: The Gallium Vacancy-Donor Center,” Phys. Rev. , vol. 168, no. 3, pp. 922–928, 1968.
[46] E. W. Williams and H. B. Bebb, “Chapter 5 Photoluminescence II: Gallium Arsenide,” in Semiconductors and Semimetals, vol. 8, 1972, pp. 321–392.
[47] C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics,” Proc. IRE, vol. 45, no. 9, pp. 1228–1243, 1957.
[48] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid State Electron. , vol. 14, no. 12, pp. 1209–1218, 1971.
[49] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys. , vol. 50, no. 7, pp. 5052–5053, 1979.
[50] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys. , vol. 60, no. 3, pp. 1223–1224, 1986.
[51] C. D. Lien, F. C. T. So, and M. A. Nicolet, “An Improved Forward I-V Method For Nonideal Schottky Diodes With High Series Resistance,” IEEE Trans. Electron Devices, vol. 31, no. 10, pp. 1502–1503, 1984.
[52] R. M. Cibils and R. H. Buitrago, “Forward I-V plot for nonideal Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 58, no. 2. pp. 1075–1077, 1985.
[53] J. H. Werner, “Schottky barrier and pn-junctionI/V plots - Small signal evaluation,” Appl. Phys. A Solids Surfaces, vol. 47, no. 3, pp. 291–300, Nov. 1988.
[54] W. F. Wang, K. Y. Cheng, and K. C. Hsieh, “Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs,” AIP Adv. , vol. 8, no. 1, p. 015230, Jan. 2018.
[55] L. L. Chang and A. Koma, “Interdiffusion between GaAs and AlAs,” Appl. Phys. Lett. , vol. 29, no. 3, pp. 138–141, 1976.
[56] M. D. McCluskey, L. T. Romano, B. S. Krusor, N. M. Johnson, T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett. , vol. 73, no. 9, pp. 1281–1283, 1998.
[57] J. J. Coleman, P. D. Dapkus, C. G. Kirkpatrick, M. D. Camras, and N. Holonyak, “Disorder of an AlAs‐GaAs superlattice by silicon implantation,” Appl. Phys. Lett. , vol. 40, no. 10, pp. 904–906, May1982.
[58] D. G. Deppe, L. J. Guido, N. Holonyak, and K. C. Hsieh, “Stripe‐geometry quantum well heterostructure AlxGa1-xAs‐GaAs lasers defined by defect diffusion,” Appl. Phys. Lett. , vol. 49, pp. 510–512, 1986.
[59] Ai-Qing Jiang, Chang-Zheng Sun, Zhi-Biao Hao, and Jian-Hua Wang, “Novel laser structures based on MQW interdiffusion using rapid thermal annealing technique,” IEEE J. Sel. Top. Quantum Electron. , vol. 4, no. 4, pp. 736–740, 1998.
[60] C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photonics Technol. Lett. , vol. 14, no. 10, pp. 1394–1396, 2002.
[61] D. Hofstetter, B. Maisenhölder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. , vol. 4, no. 4, pp. 794–802, 1998.
[62] K. Meehan, N. Holonyak, J. M. Brown, M. A. Nixon, P. Gavrilovic, and R. D. Burnham, “Meehan-Disorder of an AlxGa1−xAs‐GaAs superlattice by donor diffusion,” Appl. Phys. Lett. , vol. 45, p. 549, 1984.
[63] M. S. Seltzer, “Diffusion of manganese into gallium arsenide,” J. Phys. Chem. Solids, vol. 26, pp. 243–250, 1965.
[64] R. L. S. Devine, C. T. Foxon, B. A. Joyce, J. B. Clegg, and J. P. Gowers, “Beryllium diffusion across GaAs/(Al, Ga)As heterojunctions and GaAs/AlAs superlattices during MBE growth,” Appl. Phys. A Solids Surfaces, vol. 44, no. 2, pp. 195–200, 1987.
[65] R. W. Kaliski, D. W. Nam, D. G. Deppe, N. Holonyak, K. C. Hsieh, and R. D. Burnham, “Thermal annealing and photoluminescence measurements on Al xGa1-xAs-GaAs quantum-well heterostructures with Se and Mg sheet doping,” J. Appl. Phys. , vol. 62, no. 3, pp. 998–1005, 1987.
[66] R. W. Kaliski, P. Gavrilovic, K. Meehan, J. Gavrilovic, K. C. Hsieh, G. S. Jackson, N. Holonyak Jr., J. J. Coleman, R. D. Burnham, R. L. Thornton, and T. L. Paoli “Photoluminescence and stimulated emission in Si- and Ge-disordered Al xGa1-xAs-GaAs superlattices,” Journal of Applied Physics, vol. 58, no. 1. pp. 101–107, 1985.
[67] E. V. K. Rao, P. Ossart, F. Alexand re, and H. Thibierge, “Influence of boron on tin induced interdiffusion in GaAs‐Ga 0. 72 Al 0. 28 As superlattices,” Appl. Phys. Lett. , vol. 50, no. 10, pp. 588–590, Mar. 1987.
[68] E. V. K. Rao, H. Thibierge, F. Brillouet, F. Alexand re, and R. Azoulay, “Disordering of Ga1-x AlxAs‐GaAs quantum well structures by donor sulfur diffusion,” Appl. Phys. Lett. , vol. 46, p. 867, 1985.
[69] E. P. Zucker, A. Hashimoto, T. Fukunaga, and N. Watanabe, “Ion-implanted Zn diffusion and impurity-induced disordering of an AlGaAs superlattice,” Applied Physics Letters, vol. 54, no. 6. pp. 564–566, 1989.
[70] J. E. Epler, R. D. Burnham, R. L. Thornton, and T. L. Paoli, “Low threshold buried heterostructure quantum well diode lasers by laser-assisted disordering,” Applied Physics Letters, vol. 50, no. 23. pp. 1637–1639, 1987.
[71] T. Y. Tan, U. Gösele, and S. Yu, “Point defects, diffusion mechanisms, and superlattice disordering in gallium arsenide-based materials,” Crit. Rev. Solid State Mater. Sci. , vol. 17, no. 1, pp. 47–106, Jan. 1991.
[72] E. H. Li, Semiconductor Quantum Well Intermixing: Material Properties and Optoelectronic Applications. Taylor & Francis, 2000.
[73] T. Y. Tan, S. Yu, and U. Gösele, “Determination of vacancy and self‐interstitial contributions to gallium self‐diffusion in GaAs,” J. Appl. Phys. , vol. 70, no. 9, pp. 4823–4826, Nov. 1991.
[74] H. D. Palfrey, M. Brown, and A. F. W. Willoughby, “Self-Diffusion of Gallium in Gallium Arsenide,” J. Electrochem. Soc. , vol. 128, no. 10, p. 2224, 1981.
[75] P. Mei, H. W. Yoon, T. Venkatesan, S. A. Schwarz, and J. P. Harbison, “Kinetics of silicon‐induced mixing of AlAs‐GaAs superlattices,” Appl. Phys. Lett. , vol. 50, no. 25, pp. 1823–1825, Jun. 1987.
[76] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effects of dielectric encapsulation and As overpressure on Al‐Ga interdiffusion in Al x Ga 1− x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. , vol. 61, no. 4, pp. 1372–1379, Feb. 1987.
[77] Boon Siew Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , vol. 33, no. 10, pp. 1784–1792, 1997.
[78] P. L. Gareso, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Suppression of thermal atomic interdiffusion in C-doped InGaAs/AlGaAs quantum well laser structures using TiO2 dielectric layers,” Appl. Phys. Lett. , vol. 85, no. 23, pp. 5583–5585, 2004.
[79] D. G. Deppe and N. Holonyak, “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures,” J. Appl. Phys. , vol. 64, no. 12, pp. R93–R113, Dec. 1988.
[80] A. Furuya, O. Wada, A. Takamori, and H. Hashimoto, “Arsenic Pressure Dependence of Interdiffusion of AlGaAs/GaAs Interface in Quantum Well,” Jpn. J. Appl. Phys. , vol. 26, no. Part 2, No. 6, pp. L926–L928, Jun. 1987.
[81] D. G. Deppe, L. J. Guido, and N. Holonyak, “Impurity-Induced Layer Disordering in AlxGa1−xAs-GaAs Quantum well Heterostructures -,” MRS Proc. , vol. 126, p. 31, Jan. 1988.
[82] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, “Effects of dielectric encapsulation and As overpressure on Al‐Ga interdiffusion in Al x Ga 1− x As‐GaAs quantum‐well heterostructures,” J. Appl. Phys. , vol. 61, no. 4, pp. 1372–1379, Feb. 1987.
[83] T. Y. Tan and U. Gösele, “Mechanisms of doping-enhanced superlattice disordering and of gallium self-diffusion in GaAs,” Applied Physics Letters, vol. 52, no. 15. pp. 1240–1242, 1988.
[84] T. Y. Tan and U. Gösele, “Diffusion mechanisms and superlattice disordering in GaAs,” Mater. Sci. Eng. B, vol. 1, no. 1, pp. 47–65, 1988.
[85] M. Kawabe, N. Shimizu, F. Hasegawa, and Y. Nannichi, “Effects of Be and Si on disordering of the AlAs/GaAs superlattice,” Appl. Phys. Lett. , vol. 46, no. 9, pp. 849–850, May1985.
[86] T. Y. Tan and U. Gösele, “Destruction mechanism of III‐V compound quantum well structures due to impurity diffusion,” J. Appl. Phys. , vol. 61, no. 5, pp. 1841–1845, Mar. 1987.
[87] D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, and J. E. Baker, “Impurity diffusion and layer interdiffusion in Al x Ga 1− x As‐GaAs heterostructures,” J. Appl. Phys. , vol. 64, no. 4, pp. 1838–1844, Aug. 1988.
[88] R. L. Longini, “Rapid zinc diffusion in gallium arsenide,” Solid. State. Electron. , vol. 5, no. 3, pp. 127–130, 1962.
[89] K. K. Shih, J. W. Allen, and G. L. Pearson, “Diffusion of Zinc in Gallium Arsenide under Excess Arsenic Pressure,” J. Phys. Chem. Solids, vol. 29, no. 2, pp. 379–386, 1968.
[90] U. Gösele and F. Morehead, “Diffusion of zinc in gallium arsenide: A new model,” J. Appl. Phys. , vol. 52, no. 7, pp. 4617–4619, Jul. 1981.
[91] D. G. Deppe and N. Holonyak, “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures,” J. Appl. Phys. , vol. 64, no. 12, pp. R93–R113, Dec. 1988.
[92] K. Nakashima, Y. Kawaguchi, Y. Kawamura, Y. Imamura, and H. Asahi, “Zn‐diffusion‐induced intermixing of InGaAs/InP multiple quantum well structures,” Appl. Phys. Lett. , vol. 52, no. 17, pp. 1383–1385, Apr. 1988.
[93] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “The effect of As on Zn diffusion-induced disordering of AlAs/GaAs superlattices,” Semicond. Sci. Technol. , vol. 5, no. 6, pp. 561–565, Jun. 1990.
[94] L. J. Vieland , “The effect of arsenic pressure on impurity diffusion in gallium arsenide,” J. Phys. Chem. Solids, vol. 21, no. 3–4, pp. 318–320, Dec. 1961.
[95] G. R. Antell, “The diffusion of silicon in gallium arsenide,” Solid. State. Electron. , vol. 8, no. 12, pp. 943–946, Dec. 1965.
[96] K. Ishida, W. Matsui, T. Fukunaga, T. Takamori, J. Kobayashi, H. Nakashima, “Silicon-induced disordering and its application to fabrication of index-guided AlGaAs MQW lasers,” Proc. 13th Int. Symp. GaAs Relat. Compd. , p. 361, 1986.
[97] M. E. Greiner and J. F. Gibbons, “Diffusion of silicon in gallium arsenide using rapid thermal processing: Experiment and model,” Appl. Phys. Lett. , vol. 44, no. 8, pp. 750–752, Apr. 1984.
[98] D. G. Deppe, N. Holonyak, and J. E. Baker, “Sensitivity of Si diffusion in GaAs to column IV and VI donor species,” Appl. Phys. Lett. , vol. 52, no. 2, pp. 129–131, 1988.
[99] D. G. Deppe, N. Holonyak, F. A. Kish, and J. E. Baker, “Background doping dependence of silicon diffusion in p ‐type GaAs,” Appl. Phys. Lett. , vol. 50, no. 15, pp. 998–1000, Apr. 1987.
[100] D. G. Deppe, W. E. Plano, J. E. Baker, N. Holonyak, M. J. Ludowise, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, and M. G. Craford, “Comparison of Si III ‐Si V and Si III ‐V III diffusion models in III‐V heterostructures lattice matched to GaAs,” Appl. Phys. Lett. , vol. 53, no. 22, pp. 2211–2213, Nov. 1988.
[101] C. W. Farley, K. S. Kim, S. D. Lester, and B. G. Streetman, “Complex Compensation of Ge Pulse-Diffused into GaAs,” J. Electrochem. Soc. , vol. 134, no. 11, p. 2888, 1987.
[102] H. C. Gatos and J. Lagowski, “EL2 and Related Defects in GaAs--Challenges and Pitfalls,” Mater. Res. Soc. Symp. Proc. , vol. 46, p. 153, Jan. 1985.
[103] J. Lagowski, M. Bugajski, M. Matsui, and H. C. Gatos, “Optical characterization of semi-insulating GaAs: Determination of the Fermi energy, the concentration of the midgap EL2 level and its occupancy,” Appl. Phys. Lett. , vol. 51, no. 7, pp. 511–513, 1987.
[104] D. C. Look and Z. Q. Fang, “On the energy level of EL2 in GaAs,” Solid. State. Electron. , vol. 43, no. 7, pp. 1317–1319, Jul. 1999.
[105] J. W. Huang and T. F. Kuech, “Multiple deep levels in metalorganic vapor phase epitaxy GaAs grown by controlled oxygen incorporation,” Appl. Phys. Lett. , vol. 65, no. 5, pp. 604–606, 1994.
[106] M. J. Tsai, M. M. Tashima, and R. L. Moon, “The effects of the growth temperature on AlxGal-xAs (0≤ x ≤0. 37) LED materials grown by OM-VPE,” J. Electron. Mater. , vol. 13, no. 2, pp. 437–446, Mar. 1984.
[107] J. W. Huang and T. F. Kuech, “Deep Level Structure of Semi-Insulating MOVPE GaAs Grown by Controlled Oxygen Incorporation,” Mater. Res. Soc. Symp. Proc. , vol. 325, p. 305, Jan. 1993.
[108] A. Lisak and K. Fitzner, “Vapor pressure measurements of arsenic and arsenic trioxide over condensed phases,” J. Phase Equilibria, vol. 15, no. 2, pp. 151–154, 1994.
[109] J. H. Neave, P. J. Dobson, J. J. Harris, P. Dawson, and B. A. Joyce, “Silicon doping of MBE-grown GaAs films,” Appl. Phys. A Solids Surfaces, vol. 32, no. 4, pp. 195–200, 1983.
[110] B. Birkmann, R. Weingartner, P. Wellmann, B. Wiedemann, and G. Muller, “Analysis of silicon incorporation into VGF-grown GaAs,” J. Cryst. Growth, vol. 237–239, no. 1 4 I, pp. 345–349, 2002.
[111] L. Zhang and Z. Xu, “One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation,” Sci. Rep. , vol. 7, no. 1, p. 3641, 2017.
[112] K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D. Appl. Phys. , vol. 5, no. 1, p. 308, 1972.
[113] R. W. Olesinski and G. J. Abbaschian, “The As-Ge (Arsenic-Germanium ) System,” Bull. Alloy Phase Diagrams, vol. 6, no. 3, pp. 250–254, 1985.
[114] Y. Homma and Y. Ishii, “Analysis of carbon and oxygen in GaAs using a secondary ion mass spectrometer equipped with a 20 K-cryopanel pumping system Analysis of carbon and oxygen in GaAs using a secondary ion mass spectrometer equipped with a 20 K-cryopanel pumping system,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. , vol. 3, p. 356, 1985.
[115] B. Temel, M. Charles, J. Serfass, and J. Kipnis, “Scrutinizing VCSELS by SIMS,” Compd. Semicond. , vol. 20, no. 3, p. 45, 2014.
[116] M. K. Hudait, P. Modak, K. S. R. K. Rao, and S. B. Krupanidhi, “Low temperature photoluminescence properties of Zn-doped GaAs,” Mater. Sci. Eng. B, vol. 57, no. 1, pp. 62–70, 1998.
[117] D. T. J. Hurle, “A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide,” J. Appl. Phys. , vol. 85, p. 6957, 1999.
[118] T. Koda and S. Shionoya, “Nature of the Self-Activated Blue Luminescence Center in Cubic ZnS: Cl Single Crystals,” Phys. Rev. , vol. 136, no. 2A, pp. A541–A555, Oct. 1964.
[119] C. C. Klick and J. H. Schulman, “Luminescence in Solids,” in Solid State Physics, 1957, pp. 97–172.
[120] J. Van DeVen, W. J. A. M. Hartmann, and L. J. Giling, “Photoluminescence studies of defects and impurities in annealed GaAs,” J. Appl. Phys. , vol. 60, no. 10, pp. 3735–3745, 1986.
[121] C. Domke, P. Ebert, M. Heinrich, and K. Urban, “Microscopic identification of the compensation mechanisms in Si-doped GaAs,” Phys. Rev. B, vol. 54, no. 15, pp. 10288–10291, Oct. 1996.
[122] P. L. Souza and E. V. K. Rao, “Investigation of different Si-related photoluminescence emissions involved in a deep broadband in Al0. 3Ga0. 7As,” J. Appl. Phys. , vol. 67, no. 11, pp. 7013–7018, 1990.
[123] E. P. Visser, X. Tang, R. W. Wieleman, and L. J. Giling, “Deep‐level photoluminescence studies on Si‐doped, metalorganic chemical vapor deposition grown Al x Ga 1− x As,” J. Appl. Phys. , vol. 69, no. 5, pp. 3266–3277, 1991.
[124] G. Brammertz et al. , “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates,” J. Appl. Phys. , vol. 99, no. 9, p. 093514, May2006.
[125] P. W. Yu and D. C. Walters, “Deep photoluminescence band related to oxygen in gallium arsenide,” Appl. Phys. Lett. , vol. 41, no. 9, pp. 863–865, Nov. 1982.
[126] H. B. Bebb and E. W. Williams, “Chapter 4 Photoluminescence I: Theory,” in Semiconductors and Semimetals, vol. 8, 1972, pp. 181–320.
[127] V. V. Batavin, V. M. Mikhaelyah, and G. V. Popova, “Nature of the 1. 26~1. 30 eV Photoluminescence band of Copper-doped Gallium Arsenide,” Sov. Physics-Semiconductors, vol. 6, no. 10, pp. 1616–1619, 1973.
[128] G. C. Jain, D. K. Sadana, and B. K. Das, “Phosphorous diffusion in GaAs,” Solid State Electron. , vol. 19, no. d, pp. 731–736, 1976.
[129] U. Egger, M. Schultz, P. Werner, O. Breitenstein, T. Y. Tan, U. Gösele, R. Franzheld, M. Uematsu, and H. Ito , “Interdiffusion studies in GaAsP/GaAs and GaAsSb/GaAs superlattices under various arsenic vapor pressures,” J. Appl. Phys. , vol. 81, no. 9, pp. 6056–6061, 1997.
[130] H. D. Palfrey, M. Brown, and A. F. W. Willoughby, “Self-Diffusion in gallium arsenide,” J. Electron. Mater. , vol. 12, no. 5, pp. 863–877, 1983.
[131] Wei-Fu Wang, Kai-Yuan Cheng, Ching-Yi Huang, Wei-Ting Liu, Bao-Hsien Wu, Yu-Chen Chen, Kuang-Chien Hsieh, “Selective and tunable red- or blue-shift emissions of GaAsP quantum well heterostructures,” in SPIE, 2015, p. 93821U.
[132] M. R. Krames, A. D. Minervini, E. I. Chen, N. Holonyak, and J. E. Baker, “Improved thermal stability of AlGaAs–GaAs quantum well heterostructures using a ‘“blocking”’ Zn diffusion to reduce column‐III vacancies,” Appl. Phys. Lett. , vol. 67, no. 13, pp. 1859–1861, 1995.
[133] E. Veuhoff, H. Baumeister, and R. Treichler, “Silicon migration during MOVPE of AlGaAs/GaAs laser structures,” J. Cryst. Growth, vol. 93, no. 1–4, pp. 650–655, 1988.
[134] E. F. Schubert, J. B. Stark, T. H. Chiu, and B. Tell, “Diffusion of atomic silicon in gallium arsenide,” Appl. Phys. Lett. , vol. 53, no. 4, pp. 293–295, 1988.
[135] J. E. Cunningham, T. H. Chiu, W. Jan, and T. Y. Kuo, “Nonlinear dependencies of Si diffusion in δ‐doped GaAs,” Appl. Phys. Lett. , vol. 59, no. 12, pp. 1452–1454, Sep. 1991.
[136] J. J. Harris, J. B. Clegg, R. B. Beall, J. Castagné, K. Woodbridge, and C. Roberts, “Delta-doping of GaAs and Al0. 33Ga0. 67As with Sn, Si and Be: a comparative study,” J. Cryst. Growth, vol. 111, no. 1–4, pp. 239–245, 1991.
[137] H. C. Nutt, R. S. Smith, M. Towers, P. K. Rees, and D. J. James, “An investigation of the diffusion of silicon in delta‐doped gallium arsenide, as determined using high‐resolution secondary ion mass spectrometry,” J. Appl. Phys. , vol. 70, no. 2, pp. 821–826, Jul. 1991.
[138] E. F. Schubert, C. W. Tu, R. F. Kopf, J. M. Kuo, and L. M. Lunardi, “Diffusion and drift of Si dopants in δ‐doped n ‐type Al x Ga 1− x As,” Appl. Phys. Lett. , vol. 54, no. 25, pp. 2592–2594, Jun. 1989.
[139] T. Onuma, T. Hirao, and T. Sugawa, “Study of Encapsulants for Annealing Si-Implanted GaAs,” J. Electrochem. Soc. , vol. 129, no. 4, p. 837, 1982.
[140] J. Kasahara, “The Effect of Stress on the Redistribution of Implanted Impurities in GaAs,” J. Electrochem. Soc. , vol. 130, no. 11, p. 2275, 1983.
[141] M. J. Aziz, “Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms,” Appl. Phys. Lett. , vol. 70, no. 21, pp. 2810–2812, 1997.
[142] G. C. Jain, B. C. Chakravarty, and A. Prasad, “Effect of interfacial stress at the Si/SiO2, interface on the diffusion of Ga in Si through SiO2,” Phys. Status Solidi, vol. 64, no. 2, pp. 485–491, 1981.
[143] A. N. Larsen, N. Zangenberg, and J. Fage-Pedersen, “The effect of biaxial strain on impurity diffusion in Si and SiGe,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. , vol. 124–125, no. SUPPL. , pp. 241–244, 2005.
[144] N. R. Zangenberg, J. Fage-Pedersen, J. L. Hansen, and A. N. Larsen, “Boron and phosphorus diffusion in strained and relaxed Si and SiGe,” J. Appl. Phys. , vol. 94, no. 6, pp. 3883–3890, 2003.
[145] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald,
D. A. Antoniadis, “Strained silicon MOSFET technology,” in Digest. International Electron Devices Meeting, 2002, no. 617, pp. 23–26.
[146] Lei Wang, Leon Hsu, E. E. Haller, Jon W. Erickson, A. Fischer, K. Eberl, and M. Cardona, “Ga self-diffusion in GaAs isotope heterostructures,” Phys. Rev. Lett. , vol. 76, no. 13, pp. 2342–2345, 1996.
[147] T. Y. Tan, H. M. You, S. Yu, U. M. Gösele, W. Jäger, D. W. Boeringer, F. Zypman, R. Tsu, and S.T. Lee, “Disordering in 69 GaAs/ 71 GaAs isotope superlattice structures,” J. Appl. Phys. , vol. 72, no. 11, pp. 5206–5212, 1992.
[148] J. C. Lee and T. E. Schlesinger, “Interdiffusion of Al and Ga in (Al,Ga)As/GaAs superlattices,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. , vol. 5, no. 4, p. 1187, Jul. 1987.
[149] U. M. Gösele, T. Y. Tan, M. Schultz, U. Egger, P. Werner, R. Scholz, and O. Breitenstein, “Diffusion in GaAs and Related Compounds: Recent Developments,” Defect Diffus. Forum, vol. 143–147, pp. 1079–1094, 1997.
[150] B. T. Cunningham, L. J. Guido, J. E. Baker, J. S. Major, N. Holonyak, and G. E. Stillman, “Carbon diffusion in undoped, n-type, and p-type GaAs,” Appl. Phys. Lett. , vol. 55, no. 7, pp. 687–689, 1989.
[151] P. V. Bulaev, A. A. Marmalyuk, A. A. Padalitsa, D. B. Nikitin, I. D. Zalevsky, V.A. Kapitonov, D. N. Nikolaev, N. A. Pikhtin, A.V. Lyutetskiy, and I.S. Tarasov, “Comparison of carbon and zinc p-clad doped LP MOCVD grown InGaAs/AlGaAs low divergence high-power laser heterostructures,” J. Cryst. Growth, vol. 248, no. SUPPL. , pp. 114–118, 2003.
[152] V. Quintana, J. J. Clemencon, and A. K. Chin, “Sealed-ampoule diffusion of zinc into Ga1-xAlxAs at 650 °C,” J. Appl. Phys. , vol. 63, no. 7, pp. 2454–2455, 1988.
[153] S. G. Ayling, A. C. Bryce, I. Gontijo, J. H. Marsh, and J. S. Roberts, “Comparison of carbon and zinc doping in GaAs/AlGaAs lasers band gap-tuned by impurity-free vacancy disordering,” Semicond. Sci. Technol. , vol. 9, no. 11, pp. 2149–2151, 1994.
[154] P. L. Gareso, M. Buda, M. Petravic, H. H. Tan, and C. Jagadish, “Effect of Rapid Thermal Annealing on the Atomic Intermixing of Zn- and C-Doped InGaAs∕AlGaAs Quantum Well Laser Structures,” J. Electrochem. Soc. , vol. 153, no. 9, p. 879, 2006.
[155] P. Enquist, J. A. Hutchby, and T. J. DeLyon, “Growth and diffusion of abrupt zinc profiles in gallium arsenide and heterojunction bipolar transistor structures grown by organometallic vapor phase epitaxy,” J. Appl. Phys. , vol. 63, no. 9, pp. 4485–4493, 1988.
[156] N. Nordell, P. Ojala, W. H. vanBerlo, G. Land gren, and M. K. Linnarsson, “Diffusion of Zn and Mg in AlGaAs/GaAs structures grown by metalorganic vapor‐phase epitaxy,” J. Appl. Phys. , vol. 67, no. 2, pp. 778–786, Jan. 1990.
[157] J. B. Clegg, I. G. Gale, G. Blackmore, M. G. Dowsett, D. S. McPhail, G. D. T. Spiller, and D. E. Sykes, “A SIMS calibration exercise using multi-element (Cr, Fe and Zn) implanted GaAs,” Surf. Interface Anal. , vol. 10, no. 7, pp. 338–342, Sep. 1987.
[158] L. Zhou, X. Gao, L. Xu, Z. Qiao, and B. Bo, “InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering,” Solid. State. Electron. , vol. 89, pp. 81–84, 2013.
[159] T. Nishimura, T. Yajima, and A. Toriumi, “Reexamination of Fermi level pinning for controlling Schottky barrier height at metal/Ge interface,” Appl. Phys. Express, vol. 9, no. 8, 2016.
[160] W. T. Read, “LXXXVII. Theory of dislocations in germanium,” London, Edinburgh, Dublin Philos. Mag. J. Sci. , vol. 45, no. 367, pp. 775–796, Aug. 1954.
[161] R. K. Mueller, “Dislocation acceptor levels in germanium [5],” J. Appl. Phys. , vol. 30, no. 12, pp. 2015–2016, 1959.
[162] M. Moseley, A. Allerman, M. Crawford, J. J. Wierer, M. Smith, and L. Biedermann, “Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes,” J. Appl. Phys. , vol. 116, no. 5, 2014.
[163] E. J. Miller, D. M. Schaadt, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck, “Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope,” J. Appl. Phys. , vol. 91, no. 12, pp. 9821–9826, 2002.
[164] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes,” J. Appl. Phys. , vol. 96, no. 2, pp. 1111–1114, 2004.
[165] P. Maurel, J. Nagle, and J. P. Hirtz, “Influence of Rapid Thermal Annealing on the Properties of Strained GaInAs Quantum Well Lasers,” Jpn. J. Appl. Phys. , vol. 32, no. Part 1, No. 3A, pp. 1056–1059, Mar. 1993.
[166] G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. , vol. 72, no. 8, pp. 3788–3791, 1992.
[167] N. Yamada, G. Roos, and J. S. Harris, “Threshold reduction in strained InGaAs single quantum well lasers by rapid thermal annealing,” Appl. Phys. Lett. , vol. 59, no. 9, pp. 1040–1042, 1991.
[168] K. Xie, C. R. Wie, J. A. Varriano, and G. W. Wicks, “Improvement of GaAs/AlGaAs quantum well laser diodes by rapid thermal annealing,” J. Electron. Mater. , vol. 23, no. 1, pp. 1–6, Jan. 1994.
[169] W. F. Wang, K. Y. Cheng, M. C. Wu, and K. C. Hsieh, “Analyses of current-voltage characteristics using derivative methodology,” Solid. State. Electron. , vol. 149, no. July, pp. 15–22, 2018.
[170] N. M. Ravindra, P. Ganapathy, and J. Choi, “Energy gap–refractive index relations in semiconductors – An overview,” Infrared Phys. Technol. , vol. 50, no. 1, pp. 21–29, Mar. 2007.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *