帳號:guest(18.223.170.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王釗鴻
作者(外文):Wang, Chao-Hung
論文名稱(中文):比較使用擴增實境裝置對手機維修作業的主客觀績效影響
論文名稱(外文):Comparing the effects of using augmented reality devices on the subjective and objective measures of mobile phone maintenance tasks
指導教授(中文):王茂駿
張堅琦
指導教授(外文):Wang, Mao-Jiun
Chang, Chien-Chi
口試委員(中文):紀佳芬
吳欣潔
邱敏綺
口試委員(外文):Chi, Chia-Fen
Wu, Hsin-Chieh
Chiu, Min-Chi
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:101034811
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:擴增實境頭戴式裝置桌上型裝置手機維修使用性評估
外文關鍵詞:augmented realityhead-mounted displaydesktop displaymobile phone maintenanceusability evaluation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:230
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,工業擴增實境的概念日漸普及,應用不同裝置於訓練、拆解及組裝皆有許多研究提出。歸因於擴增實境技術能將虛擬資訊疊加在真實畫面中,人員可以直覺地透過虛擬資訊來瞭解真實環境狀況。然而,對於不同裝置所呈現的擴增實境內容,可能會因為裝置及環境的特性而有不同的表現。本研究以手機維修為例,應用兩種廣泛使用的裝置(頭戴式及桌上型裝置)呈現擴增實境手機維修指引系統,並透過與其他維修指引方式之比較,評估是否擴增實境方式能夠具有更好的使用性。基於性別對科技接受度存在差異,男性及女性受試者均受邀操作擴增實境及其他維修指引。本研究探討兩個實驗不同裝置之擴增實境差異,主要的評估指標為客觀的績效表現(完成時間與錯誤數)及視覺疲勞(臨界融合頻率及近點調節值變化量),及主觀的工作負荷及系統滿意度量表。
實驗一包含30名受試者,需操作三種指引(Google Glass呈現擴增實境、Google Glass呈現維修影片、及紙本)及不同步驟數之任務。結果顯示,紙本的完成時間最短,表現優於應用Google Glass呈現擴增實境,且紙本的使用性及工作負荷分數表現也最佳。然而,應用Google Glass呈現擴增實境則能最有效地減少錯誤數,且在步驟數較低的任務中完成時間表現與紙本相當。應用Google Glass或其他類似的頭戴式裝置於手機維修任務上仍具有潛力,但使用性仍需進一步地優化。
實驗二包含30名受試者,需操作三種維修指引方式(應用桌上型裝置呈現擴增實境維修指引、簡報、及紙本)及不同步驟數之任務。結果顯示,應用桌上型裝置呈現擴增實境維修指引得到最短的完成時間及最少的錯誤數,在步驟數較低的情況之下簡報指引方式的主觀滿意度也與擴增實境維修指引的表現相當。而此實驗所使用的紙本則在主客觀結果的表現皆不佳。
本研究討論應用不同裝置呈現擴增實境於手機維修指引在客觀績效表現與主觀感受是否有差異,並與其他指引方式進行比較。根據研究結果,應用桌上型裝置呈現擴增實境手機維修指引較為適合,桌上型裝置較能呈現較多元化的視覺化資訊,且受試者表示對桌上型裝置較為熟悉。而應用Google Glass呈現擴增實境維修指引則受限於該裝置的限制,呈現的資訊量有限且操作較為繁瑣,反而使得維修複雜化。從結果也發現兩個實驗的紙本具有差異,故不同紙本的設計(例如排版、文字說明、或圖片)也會造成不同的結果。本研究所提出之研究方法與發現,可供相關工作場域或商品化之擴增實境系統參考。
In recent years, the concept of industrial augmented reality has become popular. In previous studies, the related applications using different devices in training, disassembly, and assembly have been proposed. It is attributed to the fact that augmented reality technology can superimpose virtual information on the real scenes, so that users can intuitively understand the situation through the virtual information. However, the augmented reality content presented by different devices may perform differently due to the characteristics of the devices and the environment. This study used mobile phone maintenance task as an example. Two devices (i.e. head-mounted and desktop devices) were used to present the augmented reality mobile phone maintenance instructions. To evaluate whether the augmented reality methods have better usability, other instructional methods were also compared. Based on the gender effect on technology acceptance, both male and female participants were recruited to perform the augmented reality and other instructional methods. Two experiments were used to explore the differences between the augmented reality instructional methods. The main evaluation indicators were objective maintenance performance (task completion time and error counts) and visual fatigue (variabilities of critical fusion frequency and near point of accommodation), and subjective task load and system satisfaction scores.
Experiment 1 included 30 participants, and they operated three types of instructional methods (Google Glass-based augmented reality, Google Glass-based video, and a paper manual) in three types of tasks. The findings indicated that the paper manual method had a shorter task completion time than the Google Glass-based augmented reality method, and the paper manual also received better scores in task load and system satisfaction. However, the Google Glass-based augmented reality method reduced errors the most effectively. The use of Google Glass or similar head-mounted displays to display augmented reality information is believed to be a potential alternative to traditional methods in mobile disassembly tasks, but the usability needs to be further considered.
Experiment 2 included 30 participants, and they operated three types of instructional methods (desktop-based augmented reality, instructional slides, and a paper manual) in three types of tasks. The results showed that the desktop-based augmented reality method received the shortest task completion time and minimized error counts, but the instructional slides also had positive subjective feedback when the task steps were little. And the paper manual used in this experiment had poor performances in subjective and objective measures.
This study discussed the differences in using different devices to present augmented reality mobile phone maintenance instructions by comparing with other traditional instructional methods. The results showed that the desktop-based augmented reality instructional method was more suitable for mobile phone maintenance tasks, since the desktop device provided multiple visualizations, and the participants were more familiar with. However, the Google Glass-based augmented reality instructional method was limited by the device itself. The amount of information displayed was limited, and the operation was cumbersome, which made the maintenance process more complicated. And the results also showed that the designs of the paper manuals (such as layouts, text descriptions, or pictures) caused different outcomes. The findings of this study can provide a useful reference for the application of relevant augmented reality systems in work fields and consumer products.
摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究架構 5
第二章 文獻探討 6
2.1 工業擴增實境概述 6
2.2 應用不同裝置呈現擴增實境 8
2.3 視覺化資訊設計 11
2.4 工業擴增實境應用之比較研究 14
2.4.1 單一擴增實境系統與傳統方式比較 14
2.4.2 不同裝置之擴增實境系統與傳統方式比較 16
2.4.3不同裝置之擴增實境系統比較 17
2.5 主客觀評估指標 21
2.5.1 近點調節值及臨界融合頻率 21
2.5.2 工作負荷量表(NASA task load index, NASA-TLX) 22
2.5.3 系統使用性量表(system usability scale, SUS) 23
2.6 小結 25
第三章 應用頭戴式裝置呈現擴增實境維修指引 26
3.1 研究方法 26
3.1.1 受試者 26
3.1.2 實驗儀器與材料 27
3.1.3 實驗設計 30
3.1.4 實驗流程 32
3.1.5 統計分析 33
3.2 結果 34
3.2.1 性別 37
3.2.2 維修指引方式 37
3.2.3 任務步驟數 39
3.2.4 交互作用項 41
3.2.5 相關分析 46
3.3 討論 47
3.3.1 性別 47
3.3.2 右眼近點調節差值之變化 48
3.3.3績效表現 49
3.3.4 主觀量表分數 50
3.4 小結 51
第四章 應用桌上型裝置呈現擴增實境維修指引 52
4.1 研究方法 52
4.1.1受試者 52
4.1.2 實驗儀器與材料 53
4.1.3 實驗設計 59
4.1.4 實驗流程 60
4.1.5 統計分析 61
4.2 結果 62
4.2.1 性別 64
4.2.2 維修指引方式 64
4.2.3 任務步驟數 66
4.2.4 交互作用項 68
4.2.5 相關分析 73
4.3 討論 74
4.3.1 性別 74
4.3.2 維修指引方式 74
4.3.3 任務步驟數 76
4.3.4 維修指引方式與任務步驟數之交互作用 76
4.4 小結 79
第五章 討論與結論 80
5.1 綜合討論 80
5.2 限制 85
5.3 結論 86
參考文獻 88
附錄一、NASA task load index (NASA-TLX)—工作負荷量表 99
附錄二、System usability scale (SUS)—系統使用性量表 100

1. Akyeampong, J., Udoka, S., Caruso, G., Bordegoni, M., 2014. Evaluation of hydraulic excavator Human-Machine Interface concepts using NASA TLX. International Journal of Industrial Ergonomics, 44, 374-382. https://doi.org/10.1016/j.ergon.2013.12.002
2. Alves, J., Marques, B., Oliveira, M., Araújo, T., Dias, P., Santos, B.S., 2019. Comparing Spatial and Mobile Augmented Reality for Guiding Assembling Procedures with Task Validation, In 19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019, 1-6. https://doi.org/10.1109/ICARSC.2019.8733642
3. Ariansyah, D., Erkoyuncu, J.A., Eimontaite, I., Johnson, T., Oostveen, A.M., Fletcher, S., Sharples, S., 2022. A head mounted augmented reality design practice for maintenance assembly: Toward meeting perceptual and cognitive needs of AR users. Applied Ergonomics, 98, 103597. https://doi.org/10.1016/J.APERGO.2021.103597
4. Aschenbrenner, D., Leutert, F., Çençen, A., Verlinden, J., Schilling, K., Latoschik, M., Lukosch, S., 2019. Comparing human factors for augmented reality supported single-user and collaborative repair operations of industrial robots. Frontiers in Robotics and AI, 6, 37. https://doi.org/10.3389/FROBT.2019.00037/BIBTEX
5. Ayres, P., Marcus, N., Chan, C., Qian, N., 2009. Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, https://doi.org/10.1016/j.chb.2008.12.013
6. Azar, T., Barretta, R., Mystakidis, S., 2022. Metaverse. Encyclopedia, 2022, 2, 486-497. https://doi.org/10.3390/encyclopedia2010031
7. Azuma, R., 1997. A survey of augmented reality. Presence: Teleoperators & Virtual Environments. 6, 355-385.
8. Baird, K.M., Barfield, W., 1999. Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality, 4, 250-259. https://doi.org/10.1007/BF01421808
9. Bangor, A., Kortum, P., Miller, J., 2009. Determining what individual SUS scores mean. Journal of Usability Studies, 4(3), 114-123.
10. Bangor, A., Kortum, P.T., Miller, J.T., 2008. An Empirical Evaluation of the System Usability Scale. International Journal of Human–Computer Interaction, 24, 574-594. https://doi.org/10.1080/10447310802205776
11. Barbieri, L., Marino, E., 2019. An augmented reality tool to detect design discrepancies: a comparison test with traditional methods. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics, 99-110. Springer, Cham.
12. Baumeister, J., Ssin, S.Y., Elsayed, N.A.M., Dorrian, J., Webb, D.P., Walsh, J.A., Simon, T.M., Irlitti, A., Smith, R.T., Kohler, M., Thomas, B.H., 2017. Cognitive Cost of Using Augmented Reality Displays. IEEE Transactions on Visualization and Computer Graphics, 23, 2378-2388. https://doi.org/10.1109/TVCG.2017.2735098
13. Benbow, C.P., Stanley, J.C., 1980. Sex differences in mathematical ability: fact or artifact? Science, 210, 1262 LP-1264.
14. Bimber, O., Raskar, R., 2005. Spatial augmented reality: Merging real and virtual worlds. Spatial Augmented Reality: Merging Real and Virtual Worlds. CRC Press. https://doi.org/10.1201/b10624
15. Blattgerste, J., Renner, P., Strenge, B., Pfeiffer, T., 2018. In-situ instructions exceed side-by-side instructions in augmented reality assisted assembly. In Proceedings of the 11th PErvasive technologies related to assistive environments conference, 133-140. https://doi.org/10.1145/3197768.3197778
16. Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., Essig, K., 2017. Comparing conventional and augmented reality instructions for manual assembly tasks. In Proceedings of the 10th international conference on pervasive technologies related to assistive environments, Part F128530, 75-82. https://doi.org/10.1145/3056540.3056547
17. Bottani, E., Longo, F., Nicoletti, L., Padovano, A., Paolo, G., Tancredi, C., Tebaldi, L., Vetrano, M., Vignali, G., 2021. Wearable and interactive mixed reality solutions for fault diagnosis and assistance in manufacturing systems: Implementation and testing in an aseptic bottling line. Computers in Industry, 128, 103429. https://doi.org/10.1016/j.compind.2021.103429
18. Brooke, J., 1996. SUS-A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7.
19. Buchner, J., Buntins, K., Kerres, M., 2022. The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38, 285-303. https://doi.org/10.1111/JCAL.12617
20. Campos, J., Jantunen, E., Prakash, O., 2009. A web and mobile device architecture for mobile e-maintenance. The International Journal of Advanced Manufacturing Technology, 45, 71-80. https://doi.org/10.1007/s00170-009-1942-x
21. Caria, M., Todde, G., Sara, G., Piras, M., Pazzona, A., 2020. Performance and usability of smartglasses for augmented reality in precision livestock farming operations. Applied Sciences, 10, 2318. https://doi.org/10.3390/app10072318
22. Castro-Alonso, J.C., Ayres, P., Paas, F., 2015. Animations showing Lego manipulative tasks: Three potential moderators of effectiveness. Computers & Education, 85, 1-13. https://doi.org/10.1016/j.compedu.2014.12.022
23. Chi, C.F., Cai, D., You, M., 2003. Applying image descriptors to the assessment of legibility in Chinese characters. Ergonomics, 46(8), 825-841. https://doi.org/10.1080/0014013031000109214
24. Chi, C.F., Lin, F.T., 1998. A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors, 40(4), 577-590. https://doi.org/10.1518/001872098779649247
25. Chu, C.H., Liao, C.J., Lin, S.C., 2020. Comparing Augmented Reality-Assisted Assembly Functions—A Case Study on Dougong Structure. Applied Sciences, 10(10), 3383. https://doi.org/10.3390/APP10103383
26. Cohen, J., Cohen, P., 1983. Applied multiple regression/correlation for the behavioral sciences. Hillsdale, NJ Lawrence Earlbaum.
27. Cutmore, T.R.H., Hine, T.J., Maberly, K.J., Langford, N.M., Hawgood, G., 2000. Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53(2), 223-249. https://doi.org/10.1006/ijhc.2000.0389
28. DeCrescenzio, F., Fantini, M., Persiani, F., DiStefano, L., Azzari, P., Salti, S., 2011. Augmented reality for aircraft maintenance training and operations support. IEEE Computer Graphics and Applications, 31(1), 96-101. https://doi.org/10.1109/MCG.2011.4
29. deSouza Cardoso, L.F., Mariano, F.C.M.Q., Zorzal, E.R., 2020. A survey of industrial augmented reality. Computers & Industrial Engineering, 139, 106159. https://doi.org/10.1016/j.cie.2019.106159
30. Deshpande, A., Kim, I., 2018. The effects of augmented reality on improving spatial problem solving for object assembly. Advanced Engineering Informatics, 38, 760-775. https://doi.org/10.1016/j.aei.2018.10.004
31. Didier, J.-Y., Roussel, D., Mallem, M., Otmane, S., Naudet, S., Pham, Q.-C., Bourgeois, S., Mégard, C., Leroux, C., Hocquard, A., 2005. AMRA : Augmented Reality Assistance in Train Maintenance Tasks. The 4th ACM. In IEEE International Symposium on Mixed and Augmented Reality, Vienna.
32. Fargnoli, M., Costantino, F., DiGravio, G., Tronci, M., 2018. Product service-systems implementation: A customized framework to enhance sustainability and customer satisfaction. Journal of Cleaner Production, 188, 387-401. https://doi.org/10.1016/j.jclepro.2018.03.315
33. Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G., 2014. Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 65(2), 270-278. https://doi.org/10.1016/j.compind.2013.11.004
34. Fite-Georgel, P., 2011. Is there a reality in Industrial Augmented Reality? In 2011 10th IEEE International Symposium on Mixed and Augmented Reality, 201-210. https://doi.org/10.1109/ISMAR.2011.6092387
35. Funk, M., Kosch, T., Schmidt, A., 2016. Interactive worker assistance: Comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 934-939. https://doi.org/10.1145/2971648.2971706
36. Gattullo, M., Evangelista, A., Uva, A. E., Fiorentino, M., & Gabbard, J., 2020. What, How, and Why are Visual Assets used in Industrial Augmented Reality? A Systematic Review and Classification in Maintenance, Assembly, and Training (from 1997 to 2019). IEEE Transactions on Visualization and Computer Graphics, 28(2), 1443-1456.
37. Gattullo, M., Dammacco, L., Ruospo, F., Evangelista, A., Fiorentino, M., Schmitt, J., Uva, A.E., 2020a. Design preferences on Industrial Augmented Reality: A survey with potential technical writers. In 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 172-177. https://doi.org/10.1109/ISMAR-ADJUNCT51615.2020.00054
38. Gattullo, M., Scurati, G.W., Evangelista, A., Ferrise, F., Fiorentino, M., Uva, A.E., 2020b. Informing the Use of Visual Assets in Industrial Augmented Reality, In International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering, 106-117. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_10
39. Greenpeace, 2017. Consumer willingness and experience of repair [WWW Document]. Greenpeace.org. URL https://www.greenpeace.org/static/planet4-taiwan-stateless/2017/06/990720bb-20170627-consumer_willingness_and_experience_of_repair.pdf
40. Gross, B., Bretschneider-Hagemes, M., Stefan, A., Rissler, J., 2018. Monitors vs. Smart Glasses: A Study on Cognitive Workload of Digital Information Systems on Forklift Trucks. In International conference on digital human modeling and applications in health, safety, ergonomics and risk management, 569-578. Springer, Cham.
41. Hart, S.G., 2006. NASA-task load index (NASA-TLX); 20 years later, In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, No. 9), 904-908. Sage CA: Los Angeles, CA: Sage publications.
42. Hart, S.G., Staveland, L.E., 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advances in psychology (52), 139-183. North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9
43. Henderson, S., Feiner, S., 2011. Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE transactions on visualization and computer graphics, 17(10), 1355-1368. https://doi.org/10.1109/TVCG.2010.245
44. Hincapié, M., Caponio, A., Rios, H., González Mendívil, E., 2011. An introduction to Augmented Reality with applications in aeronautical maintenance, In 2011 13th international conference on transparent optical networks, 1-4 https://doi.org/10.1109/ICTON.2011.5970856
45. Hochreiter, J., Daher, S., Bruder, G., Welch, G., 2018. Cognitive and Touch Performance Effects of Mismatched 3D Physical and Visual Perceptions. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), VR 2018 - Proc., 379-386. https://doi.org/10.1109/VR.2018.8446574
46. Horejsi, P., Novikov, K., Simon, M., 2020. A smart factory in a smart city: Virtual and augmented reality in a smart assembly line. IEEE Access 8, 94330-94340. https://doi.org/10.1109/ACCESS.2020.2994650
47. Hou, L., Wang, X., 2013. A study on the benefits of augmented reality in retaining working memory in assembly tasks: A focus on differences in gender. Automation in Construction, 32, 38-45. https://doi.org/10.1016/j.autcon.2012.12.007
48. Hou, L., Wang, X., Bernold, L., Love, P.E.D., 2013. Using animated augmented reality to cognitively guide assembly, Journal of Computing in Civil Engineering, 27(5), 439-451. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000184
49. Hsiao, C.Y., Wang, M.J., Liu, Y.J., Chang, C.C., 2019. Effects of Chinese character size, number of characters per line, and number of menu items on visual search task on tablet computer displays for different age groups. International Journal of Industrial Ergonomics, 72, 61-70. https://doi.org/10.1016/j.ergon.2019.04.006
50. Hsu, B.-W., Wang, M.-J.J., 2013. Evaluating the Effectiveness of Using Electroencephalogram Power Indices To Measure Visual Fatigue. Perceptual and Motor Skills, 116(1), 235-252. https://doi.org/10.2466/29.15.24.PMS.116.1.235-252
51. iFixit, 2019. Smartphone Repairability Scoresitle [WWW Document]. iFixit.com. URL https://www.ifixit.com/smartphone-repairability
52. iFixit, 2012. iPhone 5 Repair [WWW Document]. iFixit.com. URL https://www.ifixit.com/Device/iPhone_5
53. iFixit, 2011. iPhone 4S Repair [WWW Document]. iFixit.com. URL https://www.ifixit.com/Device/iPhone_4S
54. iPhoneRepairMia, 2012. iPhone 5 Teardown - step by step complete disassembly directions. [WWW Document]. YouTube. URL https://www.youtube.com/watch?v=UV8QsM7TTyc.
55. Jasche, F., Ludwig, T., Hofmann, S., Wulf, V. 2021. Comparison of Different Types of Augmented Reality Visualizations for Instructions, In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1-13. https://doi.org/10.1145/3411764
56. Kang, Y.Y., Wang, M.J.J., Lin, R., 2009. Usability evaluation of E-books. Displays 30(2), 49-52. https://doi.org/10.1016/j.displa.2008.12.002
57. Kim, Y.M., 2010. Gender role and the use of university library website resources: A social cognitive theory perspective. Journal of Information Science, 36(5), 603-617. https://doi.org/10.1177/0165551510377709
58. Ko, C.H., 2009. RFID-based building maintenance system. Automation in Construction, 18(3), 275-284. https://doi.org/10.1016/j.autcon.2008.09.001
59. Kozinets, R.V., 2022. Immersive netnography: a novel method for service experience research in virtual reality, augmented reality and metaverse contexts. Journal of Service Management. ahead-of-print. https://doi.org/10.1108/JOSM-12-2021-0481
60. Lampe, M., Strassner, M., Fleisch, E., 2004. A ubiquitous computing environment for aircraft maintenance. In Proceedings of the 2004 ACM symposium on Applied computing, 1586-1592. https://doi.org/10.1145/967900.968217
61. Langley, A., Lawson, G., Hermawati, S., D’Cruz, M., Apold, J., Arlt, F., Mura, K., 2016. Establishing the Usability of a Virtual Training System for Assembly Operations within the Automotive Industry. Human Factors and Ergonomics in Manufacturing & Service Industries, 26(6), 667-679. https://doi.org/10.1002/hfm.20406
62. Li, W., Wang, J., Jiao, S., Wang, M., Li, S., 2019. Research on the visual elements of augmented reality assembly processes. Virtual Reality & Intelligent Hardware, 1(6), 622-634. https://doi.org/10.1016/j.vrih.2019.09.006
63. Lin, C.L., Chen, F.S., Twu, L.J., Wang, M.J.J., 2014. Improving SEM Inspection Performance in Semiconductor Manufacturing Industry. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(1), 124-129. https://doi.org/10.1002/HFM.20360
64. Lin, P.-C., Chen, S.-I., 2013. The effects of gender differences on the usability of automotive on-board navigation systems – A comparison of 2D and 3D display. Transportation Research part F: Traffic Psychology and Behaviour, 19, 40-51. https://doi.org/10.1016/j.trf.2013.03.001
65. Longo, L., 2017. Subjective Usability, Mental Workload Assessments and Their Impact on Objective Human Performance, In IFIP Conference on Human-Computer Interaction, 202–223. https://doi.org/10.1007/978-3-319-67684-5_13
66. MacAllister, A., Hoover, M., Gilbert, S., Oliver, J., Radkowski, R., 2017. Comparing Visual Assembly Aids for Augmented Reality Work Instructions, In Interservice/Industry Training, Simulation and Education Conference (I/ITSEC) 2017, 17208.
67. Masood, T., Egger, J., 2020. Adopting augmented reality in the age of industrial digitalisation. Computers in Industry, 115, 103112. https://doi.org/10.1016/j.compind.2019.07.002
68. Milgram, P., Takemura, H., Utsumi, A., Kishino, F., 1994. Augmented Reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies, Vol. 2351, 282-292. Spie. https://doi.org/10.1.1.83.6861
69. Mizell, D., 2001. Boeing’s wire bundle assembly project. In Fundamentals of Wearable Computers and Augmented Reality, 462-482. CRC Press.
70. Muensterer, O.J., Lacher, M., Zoeller, C., Bronstein, M., Kübler, J., 2014. Google Glass in pediatric surgery: An exploratory study. International Journal of Surgery, 12(4), 281-289. https://doi.org/10.1016/j.ijsu.2014.02.003
71. Muller, A., Crespo Marquez, A., Iung, B., 2008. On the concept of e-maintenance: Review and current research. Reliability Engineering & System Safety, 93(8), 1165-1187. https://doi.org/10.1016/j.ress.2007.08.006
72. Nielsen, J., 1994. Heuristic evaluation. In Usability Inspection Methods, 25-62.
73. Odenthal, B., Mayer, M.P., Kabuß, W., Schlick, C.M., 2014. A comparative study of head-mounted and table-mounted augmented vision systems for assembly error detection. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(1), 105-123. https://doi.org/10.1002/hfm.20364
74. Padilla-Meléndez, A., DelAguila-Obra, A.R., Garrido-Moreno, A., 2013. Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317. https://doi.org/10.1016/J.COMPEDU.2012.12.014
75. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H., 2018. A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49, 215-228. https://doi.org/10.1016/j.rcim.2017.06.002
76. Pölönen, M., Järvenpää, T., Bilcu, B., 2013. Stereoscopic 3D entertainment and its effect on viewing comfort: Comparison of children and adults. Applied Ergonomics, 44(1), 151–160. https://doi.org/10.1016/j.apergo.2012.06.006
77. Radkowski, R., Herrema, J., Oliver, J., 2015. Augmented Reality-Based Manual Assembly Support With Visual Features for Different Degrees of Difficulty. International Journal of Human-Computer Interaction, 31(5), 337-349. https://doi.org/10.1080/10447318.2014.994194
78. Re, G.M., Oliver, J., Bordegoni, M., 2016. Impact of monitor-based augmented reality for on-site industrial manual operations. Cognition, Technology & Work, 18(2), 379-392. https://doi.org/10.1007/s10111-016-0365-3
79. Regenbrecht, H., 2007. Industrial augmented reality applications, In Emerging Technologies of Augmented Reality: Interfaces and Design. IGI Global, 283-304. https://doi.org/10.4018/978-1-59904-066-0.ch014
80. Rehman, U., Cao, S., 2017. Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices Versus Google Glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151. https://doi.org/10.1109/THMS.2016.2620106
81. Renner, P., Pfeiffer, T., 2017. Evaluation of attention guiding techniques for augmented reality-based assistance in picking and assembly tasks, In Proceedings of the 22nd international conference on intelligent user interfaces companion, 89-92. https://doi.org/10.1145/3030024.3040987
82. Ro, Y.K., Brem, A., Rauschnabel, P.A., 2018. Augmented Reality Smart Glasses: Definition, Concepts and Impact on Firm Value Creation. In Augmented reality and virtual reality, 169-181. Springer, Cham. https://doi.org/10.1007/978-3-319-64027-3_12
83. Rodriguez, F.S., Saleem, K., Spilski, J., Lachmann, T., 2021. Performance differences between instructions on paper vs digital glasses for a simple assembly task. Applied Ergonomics, 94, 103423. https://doi.org/10.1016/j.apergo.2021.103423
84. Runji, J.M., Lin, C.Y., 2020a. Markerless cooperative augmented reality-based smart manufacturing double-check system: Case of safe PCBA inspection following automatic optical inspection. Robotics and Computer-Integrated Manufacturing, 64, 101957. https://doi.org/10.1016/j.rcim.2020.101957
85. Runji, J.M., Lin, C.Y., 2020b. Switchable glass enabled contextualization for a cyber-physical safe and interactive spatial augmented reality PCBA manufacturing inspection system. Sensors (Switzerland) 20, 1-25. https://doi.org/10.3390/s20154286
86. Stoelák, D., Škola, F., Liarokapis, F., 2016. Examining user experiences in a mobile augmented reality tourist guide, In Proceedings of the 9th ACM international conference on pervasive technologies related to assistive environments, 1-8. https://doi.org/10.1145/2910674.2935835
87. Syberfeldt, A., Danielsson, O., Gustavsson, P., 2017. Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products. IEEE Access, 5, 9118-9130. https://doi.org/10.1109/ACCESS.2017.2703952
88. Tang, A., Owen, C., Biocca, F., Mou, W., 2003. Comparative effectiveness of augmented reality in object assembly, In Proceedings of the SIGCHI conference on Human factors in computing systems, 73-80. https://doi.org/10.1145/642611.642626
89. VanKrevelen, D. W. F., & Poelman, R., 2010. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1-20.
90. van Lopik, K., Sinclair, M., Sharpe, R., Conway, P., West, A., 2020. Developing augmented reality capabilities for industry 4.0 small enterprises: Lessons learnt from a content authoring case study. Computers in Industry, 117, 103208. https://doi.org/10.1016/J.COMPIND.2020.103208
91. Venkatesh, V., Morris, M., Ackerman, P., 2000. A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision-Making Processes. Organizational Behavior and Human Decision Processes, 83(1), 33-60. https://doi.org/10.1006/obhd.2000.2896
92. Venkatesh, V., Morris, M.G., 2000. Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 115-139. https://doi.org/10.2307/3250981
93. Wang, C.-H., Chiang, Y.-C., Wang, M.-J., 2015. Evaluation of an Augmented Reality Embedded On-line Shopping System. Procedia Manufacturing, 3, 5624-5630. https://doi.org/10.1016/j.promfg.2015.07.766
94. Wang, C.-H., Hsiao, C.-Y., Tai, A.-T., Wang, M.-J.J., 2020. Comparison of Different Information Display Modes for Smart Glasses Assisted Machine Operations. In International Conference on Human-Computer Interaction, 238-243. Springer, Cham. https://doi.org/10.1007/978-3-030-60703-6_30
95. Wang, C.H., Hwang, S.H., Zhang, C., Wang, B., Wang, M.J.J., 2017. A preliminary study of an augmented reality-based solution for composite aircraft inspection aiding. In Transdisciplinary Engineering: A Paradigm Shift, 57-64. IOS Press. https://doi.org/10.3233/978-1-61499-779-5-57
96. Wang, C.H., Lo, W.J., Wang, M.J.J., 2022. Usability evaluation of augmented reality-based maintenance instruction system. Human Factors and Ergonomics in Manufacturing & Service Industries, 32(3), 239-255. https://doi.org/10.1002/HFM.20942
97. Wang, C.H., Tsai, N.H., Lu, J.M., Wang, M.J.J., 2019. Usability evaluation of an instructional application based on Google Glass for mobile phone disassembly tasks. Applied Ergonomics, 77, 58-69. https://doi.org/10.1016/j.apergo.2019.01.007
98. Wang, M.J.J., Huang, C.L., 2004. Evaluating the eye fatigue problem in wafer inspection. IEEE Transactions on Semiconductor Manufacturing, 17(3), 444-447. https://doi.org/10.1109/TSM.2004.831943
99. Wang, W., Tse, P.W., Lee, J., 2007. Remote machine maintenance system through Internet and mobile communication. The International Journal of Advanced Manufacturing Technology, 31(7), 783-789. https://doi.org/10.1007/s00170-005-0236-1
100. Wang, X., Ong, S.K., Nee, A.Y.C., 2016. A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1-22. https://doi.org/10.1007/s40436-015-0131-4
101. Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M., Preusche, C., 2013. An augmented reality training platform for assembly and maintenance skills. Robotics and Autonomous Systems, 61(4), 398-403. https://doi.org/10.1016/j.robot.2012.09.013
102. Wee, S.W., Moon, N.J., 2014. Clinical evaluation of accommodation and ocular surface stability relevant to visual asthenopia with 3D displays. BMC Ophthalmology, 14(1), 1-6. https://doi.org/10.1186/1471-2415-14-29
103. Wiedenmaier, S., Oehme, O., Schmidt, L., Luczak, H., 2003. Augmented Reality (AR) for Assembly Processes Design and Experimental Evaluation. International Journal of Human-Computer Interaction, 16(3), 497-514. https://doi.org/10.1207/S15327590IJHC1603_7
104. Wong, A., Leahy, W., Marcus, N., Sweller, J., 2012. Cognitive load theory, the transient information effect and e-learning. Learning and Instruction, 22(6), 449-457. https://doi.org/10.1016/j.learninstruc.2012.05.004
105. Wu, H.C., Chiu, M.C., Peng, C.W., 2016. Visual fatigue occurrence time when using hand-held intelligent devices. Journal of Ambient Intelligence and Humanized Computing, 7(6), 829-835. https://doi.org/10.1007/S12652-016-0356-5
106. Xi, N., Chen, J., Gama, F., Riar, M., Hamari, J., 2022. The challenges of entering the metaverse: An experiment on the effect of extended reality on workload. Information Systems Frontiers, 1-22. https://doi.org/10.1007/S10796-022-10244-X
107. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A., 2015. State of science: mental workload in ergonomics. Ergonomics, 58(1), 1-17. https://doi.org/10.1080/00140139.2014.956151
108. Young, M.S., Stanton., N.A., 2005. Mental workload., in: Stanton, N.A., Hedge, A., Brookhuis, K., Salas, E., Hendrick, H.W. (Eds.), Handbook of Human Factors and Ergonomics Methods. CRC Press. Taylor & Francis, London.
109. Yuan, M.L., Ong, S.K., Nee, A.Y.C., 2008. Augmented reality for assembly guidance using a virtual interactive tool. International Journal of Production Research, 46(7), 1745-1767. https://doi.org/10.1080/00207540600972935
(此全文20270718後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *