|
[1] C. S. Peskin. Flow patterns around heart valves: a numerical method. J. Comput. Phys., 10:252{271, 1972. [2] C. S. Peskin. The immersed boundary method. Acta. Numer., pages 459{517, 2002. [3] M. J. Berger and P. Colella. Local adaptive mesh renement for shock hydrodynamics. J. Comp. Phys., 82:64{84, 1989. [4] W. Hackbusch. Parabolic multi-grid methods. Computing methods in applied sciences and engineering, VI:189{197, 1985. [5] P. Y. Huang, H. H. Hu, and D. D. Joseph. Direct simulation of the sedimentation of elliptic particles in oldroyd-b uids. J. Fluid Mech., 362:297{326, 1998. [6] C. C. Tsai. Measurement of 2-d ow eld and force for a biomimetic apping wing. A thesis of the degree of master on Institute of Applied Mechanics, 2007. [7] T. W. Fogh and M. Jensen. Biology and physics of locust ight. i. basic principles in insect ight. a critical review. Philosophical Transaction of the Royal Society of London. Series B, Biological Sciences, 239:415{458, 1956. [8] M. J. Lighthill. On weis-fogh mechanism of lift generation. J. Fluid Mech, 60:1{17, 1973. [9] T. Maxworthy. Experiments on the weis-fogh mechanism of lift generation by insects in hovering ight. part 1. dynamics of the ' ing'. J. Fluid Mech, 93:47{63, 1979. 100 [10] M. H. Dickinson. Solving the mystery of insect ight - insects use a combination of aerodynamic eects to remain aloft. Sci. American, 284:48{57, 2001. [11] M. H. Dickinson, F. O. Lehmann, and S. P. Sane. Wing rotation and the aerodynamic basis of insect ight. Science, 284:1954{1960, 1999. [12] L. Wei. Large eddy simulation of turbulent couette-poiseuille ows inside a square duct. A Thesis of the degree of Doctor of Philosophy on National Tsing Hua University, 2006. [13] H. H. Wei. Investigation of turbulent couette-poiseuille and couette ows inside a square duct. A Thesis of the degree of Doctor of Philosophy on National Tsing Hua University, 2012. [14] A. Gorobets, F. X. Trias, M. Soria, and A. Oliva. A scalable parallel poisson solver for three dimensional problems with one periodic direction. Computers & Fluids, 39:525{538, 2010. [15] R. Borrell, O. Lehmkuhl, F. X. Trias, and A. Oliva. Parallel direct poisson solver for discretisations with one fourier diagonalisable direction. J. Comput Phys., 230:4723{4741, 2011. [16] F. X. Trias, M. Soria, C. D. P. Segarra, and A. Oliva. A direct schur-fourier decomposition for the ecient solution of high-order poisson equations on loosely coupled parallel computers. Numer Linear Algebra Appl., 13:303{326, 2006. [17] A. Soria, C. D. P. Segarra, and A. Oliva. A direct schur-fourier decomposition for the solution of the three-dimensional poisson equation of incompressible ow problems using loosely coupled parallel computers. Numerical Heat Transfer. Part B., 43:467{488, 2003. [18] W. W. Willmarth, N. E. Hawk, and R. L. Harvey. Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids, 7:197{208, 1964. [19] E. M. Smith. Autorotating wings: and experimental investigation. J. Fluid Mech., 50:513{534, 1971. [20] J. Feng, D. D. Joseph, R. Glowinski, and T. W. Pan. A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic uid. J. Fluid Mech., 283:1{16, 1995. [21] S. Field, M. Klaus, M. G. Moore, and F. Nori. Chaotic dynamics of falling disks. Nature, 388:17, 1997. [22] A. Belmonte, H. Eisenber, and E. Moses. From utter to tumble: inertial drag and froude similarity in falling paper. Physical Review Letters, 81:345{348, 1998. [23] L. Mahadevan, W. S. Ryu, and A. D. T. Samuel. Tumbling cards. Phys. Fluids, 11:1, 1999. [24] R. Glowinski, T-W Pan, T. I. Hesla, D. D. Joseph, and J. Periaux. A ctitious domain approach to the direct numerical simulation of incompressible viscos ow past moving rigid bodies: Application to particulate ow. J. Comput. Phys., 169:363{426, 2001. [25] T. W. Pang, R. Glowinski, and G P. Galdi. Direct simulation of the motion of a settling ellipsoid in newtonian uid. Journal of Computational and Applied Mathematics, 149:71{82, 2002. [26] U. Pesavento and Z. J. Wang. Falling paper: Navier-stokes solutions, model of uid forces, and center of mass elevation. Pysical Review Letter, 93:144501, 2004. [27] A. Anderson, U. Pesavento, and Z. J. Wang. Analysis of transitions between
uttering, tumbling and steady descent of falling cards. J. Fluid Mech., 541:91{ 104, 2005. [28] M. Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate ows. J. Fluid Mech., 209:448{476, 2005. [29] C. Q. Jin and K. Xu. Numerical study of the unsteady aerodynamics of freely falling plates. Commun. Comput. Phys., 3:834{851, 2008. [30] D. Kolomenskiy and K. Schneider. Numerical simulations of falling leaves using a pseudo-spectral method with volume penalization. Theor. Comput. Fluid Dyn., 24:169{173, 2010. [31] A. R. Shenoy and C. Kleinstreuer. In uence of aspect ratio on the dynamics of a freely moving circular disk. J. Fluid Mech., 653:463{487, 2010. [32] V. Mathai, X. Zhu, C. Sun, and D. Lohse. Mass and moment of inertia govern the transition in the dynamics and wakes of freely rising and falling cylinders. Physical Review Letters, 119:054501, 2017. [33] A. Anderson, U. Pesavento, and Z. J.Wang. Unsteady aerodynamics of uttering and tumbling plates. J. Fluid Mech., 541:65{90, 2005. [34] Y. Tanabe and K. Kaneko. Behavior of a falling paper. Physical Review Letters, 73:1372{1376, 1994. [35] P. Ern, F. Risso, D. Fabre, and J. Magnaudet. Wake-induced oscillatory paths of bodies freely rising or falling in uids. Annu. Rev. Fluid Mech., 44:97{121, 2012. [36] J. M. Yusof. Combined immersed boundary/b-spline method for simulations of
ows in complex geometries ctr annual research briefs. NASA Ames/Stanford University, 1997. [37] M. C. Lai and C. S. Peskin. An immersed boundary method with formal second- order accuracy and reduced numerical viscocity. J. Comput. Phys., 160:705{719, 2000. [38] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239{261, 2005. [39] S. W. Su, M. C. Lai, and C. A. Lin. A simple immersed boundary technique for simulating complex ows with rigid boundary. Comput. Fluids, 36:313{324, 2007. [40] C. C. Liao, Y. W. Chang, C. A. Lin, and J. M. McDonough. Simulating ows with moving rigid boundary using immersed-boundary method. Computers & Fluids, 39:152{167, 2010. [41] C. C. Liao and C. A. Lin. Simulations of natural and forced convection ows with moving embedded object using immersed boundary method. Comput. Methods Appl. Mech. Eng., 58:213{216, 2012. [42] C. C. Liao and C. A. Lin. In uences of a conned elliptic cylinder at dierent aspect ratios and inclinations on the laminar natural and mixed convection ows. Int. J. Heat Mass Transf., 55:6638{6650, 2012. [43] T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for nite element computations involvingmoving boundaries and interfacesthe deforming-spatial- domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng, 94:339{351, 1992. [44] A. Johnson and T. E. Tezduyar. Simulation of multiple spheres falling in a liquid-lled tube. Comput Methods Appl Mech Eng, 134:351{373, 1996. [45] A. Johnson and T. E. Tezduyar. 3d simulation of uid-particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng, 145:301{321, 1997. [46] T. N. Swaminathan, K. Mukundakrishnan, and H. H. Hu. Sedimentation of an ellipsoid inside an innitely long tube at low and intermediate reynolds numbers. J. Fluid Mech., 551:357{385, 2006. [47] M. Chrust, G. Bouchet, and J. Dusek. Numerical simulations of the dynamics of freely falling discs. Phys. Fluids, 25:044102, 2013. [48] F. Auguste, J. Magnaudet, and D. Fabre. Falling styles of disks. J. Fluid Mech, 719:388{405, 2013. [49] S. W. Hsu, F. N. Hwang, Z. H.Wei, S. H. Lai, and C. A. Lin. A parallel multilevel preconditioned iterative pressure poisson solver for the large-eddy simulation of turbulent ow inside a duct. Comput Fluids, 45:138{146, 2012. [50] J. Yang and F. Stern. A simple and ecient direct forcing immersed boundary framework for uid-strture interactions. J. Comput. Phys., 231:5029{5061, 2012. [51] C. C. Liao and C. A. Lin. In uence of prandtl number on the instability of natural convection ows within a square enclosure containing an embedded heated cylinder at moderate rayleigh number. Phys of Fluids, 27:013603, 2015. [52] S. W. Hsu, J. B. Hsu, W. Lo, and C. A. Lin. Large eddy simulations of turbulent couette-poiseuille and couette ows inside a square duct. J Fluid Mech, 702:89{ 101, 2012. [53] B. E. Owolabi and C. A. Lin. Marginally turbulent couette ow in a spanwise conned passage of square cross section. Phys of Fluids, 30:075102, 2018. [54] J. Kim and P. Moin. Application of a fractional-step method to incompressible navior-stokes equations. J. Comput Phys., 177:133{166, 1985. [55] J. B. Bell and P. Collela. A second-order projection method for the incompressible navier-stokes equations. J. Comput Phys., 85:257{283, 1989. [56] H. Choi and P. Moin. Eects of the computational time step on numerical solutions of turbulent ow. J. Comput Phys., 113:1{4, 1994. [57] Y. Wang, C. Shu, L. M. Yang, and C. J. Teo. An immersed boundary-lattice boltzmann ux solver in a moving frame to study three-dimensional freely falling rigid bodies. Journal of Fluids and Structures, 68:444{465, 2017. [58] W. Lo and C. A. Lin. Mean and turbulence structures of couette-poiseuille ows at dierent mean shear rates in a square duct. Phys. Fluids, 18:068103, 2006. [59] A. Gorobets, F. X. Trias, M. Soria, and A. Oliva. A scalable parallel poisson solver for three-dimensional problems with one periodic direction. Computer Fluids, 39:525{538, 2009. [60] X. C. Cai. Lecture 12. domain decomposition method. Department of Computer Science. [61] R. Borrell, O. Lehmkuhl, F. X. Trias, and A. Oliva. Parallel direct poisson solver for discretisations with one fourier diagonalisable direction. Journal of Computational Physiscs, 230:4723{4741, 2011. [62] H. Luo, H. Diao, J. S. A. Paulo, F. de Sousa, and B. Yin. On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Computers & Fluids, 56:61{76, 2011. [63] Z. J. Wang. Two dimensional mechanism for insect hovering. Physical Review Letters, 85:2216{2219, 2000. [64] J. Eldredge. Numerical simulation of the uid dynamics of 2d rigid body motion with the vortex particle method. J. Comp. Phys., 221:626{648, 2007. [65] S. Xu and Z. J. Wang. An immersed interface method for simulating the interaction of a uid with moving boundaries. J. Comp. Phys., 216:454{493, 2006. [66] A. T. Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. V. den Akker. Particle imaging velocimetry experiments and lattice-boltzmann simulations on a single sphere settling under gravity. Phys of Fluids, 14:4012{4025, 2002. [67] T. A. Johnson and V. C. Patel. Flow past a sphere up to a reynolds number of 300. J. Fluid Mech, 378:19{70, 1999. [68] J. C. R. Hunt, A. A. Wray, P. Moin, and Eddies. Stream, and convergence zones in turbulent ows. proceedings of the 1988 ctr summer program. NASA Ames/Stanford University, Stanford, CA, pages 193{208, 1988. [69] J. Jeong and F. Hussain. On the identication of a vortex. J. Fluid Mech., 285:69{94, 1995. [70] A. R. Shenoy and C. Kleinstreuer. Flow over a thin circular disk at low to moderate reynolds numbers. J. Fluid Mech., 605:253{262, 2008. [71] X. Tian, M. C. Ong, J. Yang, and D. Myrhaug. Large-eddy simulations of ow 105. normal to a circular disk at re=1:5
Computers and Fluids, 140:422{434, 2016. [72] G. E. Stringham, D. B. Simons, and H. P. Guy. The behavior of large particles falling in quiescent liquids. Prof. Pap. US Geol. Surv. 562-C, 1969. |