|
[1] R.H. Fowler, L. Nordheim, Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 119 (1928) 173-181. [2] R.G. Forbes, Field Emission: New Theory for the Derivation of Emission Area from a Fowler-Nordheim Plot. Journal of Vacuum Science and Technology B, 17 (1999) 526-533. [3] J. He, P.H. Cutler, N.M. Miskovsky, Generalization of Fowler-Nordheim Field-Emission Theory for Nonplanar Metal Emitters. Applied Physics Letters, 59 (1991) 1644-1646. [4] K.L. Jensen, E.G. Zaidman, Field-Emission from an Elliptic Boss - Exact Versus Approximate Treatments. Applied Physics Letters, 63 (1993) 702-704. [5] K.L. Jensen, E.G. Zaidman, Field-Emission from an Elliptic Boss - Exact and Approximate Forms for Area Factors and Currents. Journal of Vacuum Science and Technology B, 12 (1994) 776-780. [6] K.L. Jensen, E.G. Zaidman, Analytic Expressions for Emission in Sharp Field Emitter Diodes. Journal of Applied Physics, 77 (1995) 3569-3571. [7] A. Malesevic, R. Kemps, A. Vanhulsel, M.P. Chowdhury, A. Volodin, C. Van Haesendonck, Field Emission from Vertically Aligned Few-Layer Graphene. Journal of Applied Physics, 104 (2008) 084301. [8] L. Yang, Q. Yang, C. Zhang, Y.S. Li, Vertically Aligned Carbon Nanotubes/Diamond Double-Layered Structure for Improved Field Electron Emission Stability. Thin Solid Films, 549 (2013) 42-45. [9] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern, Scanning Field Emission from Patterned Carbon Nanotube Films. Applied Physics Letters, 76 (2000) 2071-2073. [10] J.S. Suh, K.S. Jeong, J.S. Lee, I.T. Han, Study of The Field-Screening Effect of Highly Ordered Carbon Nanotube Arrays. Applied Physics Letters, 80 (2002) 2392-2394. [11] R.C. Smith, S.R.P. Silva, Maximizing the Electron Field Emission Performance of Carbon Nanotube Arrays. Applied Physics Letters, 94 (2009) 133104. [12] J.C. Angus, H.A. Will, W.S. Stanko, Growth of Diamond Seed Crystals by Vapor Deposition. Journal of Applied Physics, 39 (1968) 2915-2922. [13] R.F. Davis, Diamond Films and Coatings: Development, Properties and Applications William Andrew, Norwich, New York, 1993. [14] E. Anger, A. Gicquel, Z.Z. Wang, M.F. Ravet, Chemical and Morphological Modifications of Silicon-Wafers Treated by Ultrasonic Impacts of Powders - Consequences on Diamond Nucleation. Diamond and Related Materials, 4 (1995) 759-764. [15] S. Iijima, Y. Aikawa, K. Baba, Early Formation of Chemical Vapor-Deposition Diamond Films. Applied Physics Letters, 57 (1990) 2646-2648. [16] J.H. Je, G.Y. Lee, Microstructures of Diamond Films Deposited on (100) Silicon-Wafer by Microwave Plasma-Enhanced Chemical Vapor-Deposition. Journal of Materials Science, 27 (1992) 6324-6330. [17] Y. Chakk, R. Brener, A. Hoffman, Enhancement of Diamond Nucleation by Ultrasonic Substrate Abrasion with a Mixture of Metal and Diamond Particles. Applied Physics Letters, 66 (1995) 2819-2821. [18] Y. Chakk, M. Folman, A. Hoffman, Kinetics of the Initial Stages of CVD Diamond Growth on Non-Diamond Substrates: Surface Catalytic Effects and Homoepitaxy. Diamond and Related Materials, 6 (1997) 681-686. [19] Y. Chakk, R. Brener, A. Hoffman, Mechanism of Diamond Formation on Substrates Abraded with a Mixture of Diamond and Metal Powders. Diamond and Related Materials, 5 (1996) 286-291. [20] F.G. Celii, J.E. Butler, Direct Monitoring of CH3 in a Filament-Assisted Diamond Chemical Vapor-Deposition Reactor. Journal of Applied Physics, 71 (1992) 2877-2883. [21] S.J. Harris, Mechanism for Diamond Growth from Methyl Radicals. Applied Physics Letters, 56 (1990) 2298-2300. [22] Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Adherent Diamond Coating on Copper using an Interlayer. Vacuum, 52 (1999) 193-198. [23] S. Arora, V.D. Vankar, Field Emission Characteristics of Microcrystalline Diamond Films: Effect of Surface Coverage and Thickness. Thin Solid Films, 515 (2006) 1963-1969. [24] V.I. Konov, A.A. Smolin, V.G. Ralchenko, S.M. Pimenov, E.D. Obraztsova, E.N. Loubnin, S.M. Metev, G. Sepold, Dc-Arc Plasma Deposition of Smooth Nanocrystalline Diamond Films. Diamond and Related Materials, 4 (1995) 1073-1078. [25] T.S. Yang, J.Y. Lai, C.L. Cheng, M.S. Wong, Growth of Faceted, Ballas-Like and Nanocrystalline Diamond Films Deposited in CH4/H2/Ar MPCVD. Diamond and Related Materials, 10 (2001) 2161-2166. [26] D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Gruen, T.D. Corrigan, R.P.H. Chang, H. Gnaser, Synthesis and Electron Field Emission of Nanocrystalline Diamond Thin Films Grown from N2/CH4 Microwave Plasmas. Journal of Applied Physics, 82 (1997) 4546-4550. [27] D. Pradhan, Y.C. Lee, C.W. Pao, W.F. Pong, I.N. Lin, Low Temperature Growth of Ultrananocrystalline Diamond film and its Field Emission Properties. Diamond and Related Materials, 15 (2006) 2001-2005. [28] H.L.R. R. Iley, The Deposition of Carbon on Vitreous Silica. Journal of the Chemical Society, (1948) 1362-1366. [29] S. Iijima, Helical Microtubules of Graphitic Carbon. Nature, 354 (1991) 56-58. [30] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of Carbon Nanotubes. Carbon, 33 (1995) 883-891. [31] H.J. Dai, E.W. Wong, C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science, 272 (1996) 523-526. [32] M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Growth of Carbon Nanotubes by Chemical Vapor Deposition. Diamond and Related Materials, 10 (2001) 1235-1240. [33] N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, The Effect of Copper on the Structural Characteristics of Carbon Filaments Produced from Iron Catalyzed Decomposition of Ethylene. Catalysis Today, 37 (1997) 295-307. [34] K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of Nanotubes by the Catalytic Decomposition of Different Carbon-Containing Compounds. Applied Catalysis A, 199 (2000) 245-255. [35] M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 10 (2010) 3739-3758. [36] M. Kumar, Carbon Nanotube Synthesis and Growth Mechanism in: S. Yellampalli (Ed.) Carbon Nanotubes - Synthesis, Characterization, Applications, InTech, 2011. [37] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science, 269 (1995) 1550-1553. [38] W.A. Deheer, A. Chatelain, D. Ugarte, A Carbon Nanotube Field-Emission Electron Source. Science, 270 (1995) 1179-1180. [39] K.-Y. Wang, C.-Y. Liao, H.-C. Cheng, Field-Emission Characteristics of the Densified Carbon Nanotube Pillars Array. ECS Journal of Solid State Science and Technology, 5 (2016) M99-M103. [40] Synthetic Diamond: Emerging CVD Science and Technology, Wiley, 1994. [41] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143 (2007) 47-57. [42] A.C. Ferrari, J. Robertson, Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond. Physical Review B, 63 (2001) 121405. [43] Retrieved from http://www.cyrannus.com/applications.html (accessed November, 2016). [44] G.-T. Liau, Patterned Growth of Carbon Nanotubes and Diamond Films by a Novel Microwave Plasma Jet CVD System, National Taipei University of Technology, Taipei. [45] J.G. Buijnsters, L. Vazquez, J.J. ter Meulen, Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diamond and Related Materials, 18 (2009) 1239-1246. [46] A. Kumar, P. Ann Lin, A. Xue, B. Hao, Y. Khin Yap, R.M. Sankaran, Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nature Communications, 4 (2013) 2618. [47] S. Raina, W.P. Kang, J.L. Davidson, Nanodiamond film with ‘ridge’ surface profile for chemical sensing. Diamond and Related Materials, 17 (2008) 896-899. [48] N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, H. Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 18 (2008) 3506-3514. [49] K. Teii, S. Shimada, M. Nakashima, A.T.H. Chuang, Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106 (2009) 084303. [50] K.J. Sankaran, J. Kurian, H.C. Chen, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. Journal of Physics D: Applied Physics, 45 (2012) 365303. [51] S.A. Rakha, G.J. Yu, J.Q. Cao, S.X. He, X.T. Zhou, Influence of CH4 on the morphology of nanocrystalline diamond films deposited by Ar rich microwave plasma. Journal of Applied Physics, 107 (2010) 114324. [52] N.G. Shang, T. Staedler, X. Jiang, Radial textured carbon nanoflake spherules. Applied Physics Letters, 89 (2006) 103112. [53] N.G. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-Assembled Growth, Microstructure, and Field-Emission High-Performance of Ultrathin Diamond Nanorods. ACS Nano, 3 (2009) 1032-1038. [54] I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials, in: J.I. Jang (Ed.) Developments in Photon and Materials Research, Nova Science Publishers, New York, USA, 2013. [55] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (2006) 187401. [56] J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Letters, 8 (2008) 2773-2778. [57] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 362 (2004) 2477-2512. [58] E.J. Corat, D.G. Goodwin, Temperature-Dependence of Species Concentrations near the Substrate during Diamond Chemical-Vapor-Deposition. Journal of Applied Physics, 74 (1993) 2021-2029. [59] S.K. Srivastava, V.D. Vankar, V. Kumar, Growth and microstructures of carbon nanotube films prepared by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films, 515 (2006) 1552-1560. [60] S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond and Related Materials, 13 (2004) 1171-1176. [61] S.H. Lim, H.S. Yoon, J.H. Moon, K.C. Park, J. Jang, Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition. Applied Physics Letters, 88 (2006) 033114. [62] E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y. Zhong, Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon, 41 (2003) 1827-1831. [63] T.Y. Lee, J.H. Han, S.H. Choi, J.B. Yoo, C.Y. Park, T. Jung, S. Yu, W.K. Yi, I.T. Han, J.M. Kim, Effects of source gases on the growth of carbon nanotubes. Diamond and Related Materials, 12 (2003) 851-855. [64] T. Vandevelde, T.D. Wu, C. Quaeyhaegens, J. Vlekken, M. D'Olieslaeger, L. Stals, Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films, 340 (1999) 159-163. [65] A. Gohel, K.C. Chin, Y.W. Zhu, C.H. Sow, A.T.S. Wee, Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon, 43 (2005) 2530-2535. [66] V. Krivchenko, P. Shevnin, A. Pilevsky, A. Egorov, N. Suetin, V. Sen, S. Evlashin, A. Rakhimov, Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD. Journal of Materials Chemistry, 22 (2012) 16458-16464. [67] C.J. Tang, G. Jose, A.J. Neves, C. Hugo, A.J.S. Fernandes, L.S. Fu, P. Sergio, L.P. Gu, C. Gil, M.C. Carmo, Role of Nitrogen Additive and Temperature on Growth of Diamond Films from Nanocrystalline to Polycrystalline. Journal of Nanoscience and Nanotechnology, 10 (2010) 2722-2730. [68] C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. Diamond and Related Materials, 8 (1999) 2022-2031. [69] W. MullerSebert, E. Worner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Applied Physics Letters, 68 (1996) 759-760. [70] G.Z. Cao, J.J. Schermer, W.J.P. vanEnckevort, W.A.L.M. Elst, L.J. Giling, Growth of {100} textured diamond films by the addition of nitrogen. Journal of Applied Physics, 79 (1996) 1357-1364. [71] Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theoretical Chemistry Accounts, 133 (2013) 1432. [72] M. Sternberg, P. Zapol, T. Frauenheim, J. Carlisle, D.M. Gruen, L.A. Curtiss, Density Functional Based Tight Binding Study of C2 and CN Deposition On (100) Diamond Surface. MRS Proceedings, 675 (2011). [73] T. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D. Porezag, A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation. Diamond and Related Materials, 7 (1998) 348-355. [74] J.M. Bonard, C. Klinke, K.A. Dean, B.F. Coll, Degradation and failure of carbon nanotube field emitters. Physical Review B, 67 (2003).
|