帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡秉桓
作者(外文):Tsai, Ping-Huan
論文名稱(中文):奈米碳系複合材料製作與場發射特性研究
論文名稱(外文):Fabrication and Field Emission Characteristics of Carbon-Based Nano Composite Materials
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):林仁輝
馬劍清
張立
黃柏仁
林啟瑞
口試委員(外文):Lin, Jen-Fin
Ma, Chien-Ching
Chang, Li
Huang, Bohr-Ran
Lin, Chii-Ruey
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:101033556
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:111
中文關鍵詞:奈米碳管奈米碳片球奈米結構碳材料微米鑽石/奈米碳管雙層材料奈米碳片球/奈米碳管複合材料場發射
外文關鍵詞:carbon nanotubecarbon nano-flake ballnanostructured carbon materialmicrocrystalline diamond/carbon nanotube double-layeredcarbon nano-flake ball/carbon nanotube hybridfield emission
相關次數:
  • 推薦推薦:0
  • 點閱點閱:230
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究成功地利用含有鐵原子的溶膠凝膠作為觸媒,並以微波電漿化學氣相沉積系統成長奈米碳管。此方法相較於利用蒸鍍或濺鍍法,能夠更簡便地將觸媒鍍上試片。利用此方法,也能夠在立體結構上均勻地成長出奈米碳管。在本研究中,利用溶膠凝膠溶液法在具有金字塔型凹槽結構的微米鑽石薄膜上成長奈米碳管,並製成微米鑽石/奈米碳管雙層材料金字塔角錐陣列場發射元件,有效降低鑽石薄膜的起始電場與場遮蔽效應,並提高奈米碳管的場發射壽命。微米鑽石/奈米碳管雙層材料金字塔角錐陣列的起始電場為2.84 V/μm,且運作壽命超過100小時。
此外,本研究更利用微波電漿化學氣相沈積系統成長出一新穎的三維奈米結構碳材料,並命名為奈米碳片球( carbon nano-flake ball)。利用不同的前處理方法控制其生成密度,藉由降低或提高生成密度以提升場發射特性,並且也能在限定區域成長奈米碳管。前處理的方式包含塗布溶膠凝膠觸媒、刮痕法與超音波震盪法。其最低的起始電場為2.13 V/μm,並可在2.98 V/μm時達到1 mA/cm2的電流密度,且最高電流可達6.61 mA/cm2。其操作壽命可長達70小時。同時本研究也提出奈米碳片球的成長機制。
更進一步製作出奈米碳片球與奈米碳管複合材料,該複合材料顯現了優異的場發射特性,其最高電流密度可達到57 mA/cm2,並且可在1與0.1 mA/cm2的電流密度下操作超過300小時。此為已知利用碳系材料作為場發射陰極材料中壽命最久的研究成果。
In this thesis, the sol-gel which contains iron atoms is used as the catalyst to grow carbon nanotube (CNT) by microwave plasma chemical vapor deposition system. Compare to the evaporation vapor deposition or sputter deposition, this method is more convenient and inexpensive to coat catalyst onto substrates. In addition, coating the sol-gel solution onto the microcrystalline diamond (MCD) film with the three-dimensional structure, such as the pyramid cave structure, shows the capability to grow the carbon nanotube onto the three-dimensional structure uniformly. A field emission device of the MCD/CNT double-layered pyramid array has been fabricated. The double-layered material and pyramid array structure successfully decrease the turn-on field and the screening effect, respectively. The turn-on field of MCD/CNT double-layered pyramid array is 2.84 V/μm and the lifetime is more than 100 hours.
In addition, a novel three-dimensional nanostructured carbon material, named carbon nano-flake ball (CNFB), is grown by microwave plasma chemical vapor deposition system. The coverage of the CNFBs can be controlled by the different pretreatment methods in order to improve the characteristics of field emission. Furthermore, CNFB can be grown in a certain region. The pretreatment methods include coating sol-gel, scratching, and ultrasonication. The lowest turn-on field is 2.13 V/μm, and the current density can reach 1 mA/cm2 at 2.98 V/μm. The maximum current density is 6.61 mA/cm2. The lifetime is more than 70 hours. The growth mechanism of CNFB is also proposed.
The carbon nano-flake ball and carbon nanotube hybrid material shows excellent field emission properties. The maximum current density reaches 57 mA/cm2 and it can operate at 1 and 0.1 mA/cm2 for more than 300 hours. As far as we know, this could be the longest lifetime using carbon material as field emission cathode.
摘要 I
Abstract II
誌謝 III
Index IV
Figures Caption VII
Tables Caption XIII
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 Electron field emission 3
2.1.1 Electron field emission theory 3
2.1.2 Fowler–Nordheim-type equations 4
2.1.3 Electron field emission with non-planar emitters 5
2.1.4 Field emission enhancement factor 7
2.1.5 Screening effect 8
2.2 Diamond 14
2.2.1 Diamond film growth by chemical vapor deposition 15
2.2.2 Nucleation of diamond films 16
2.2.3 Classification and field emission characteristics of CVD diamond film 18
2.3 Carbon nanotube 25
2.3.1 Structure and electronic characteristics of carbon nanotube 26
2.3.2 Carbon nanotube growth by chemical vapor deposition 28
2.3.3 Growth mechanism 29
2.3.4 Field emission characteristics of carbon nanotube 31
2.4 Raman spectrum 34
Chapter 3 Equipment 36
3.1 Microwave plasma chemical vapor deposition 36
3.2 Scanning electron microscopy, SEM 37
3.3 Raman spectrometer 38
3.4 Field emission measurement system 39
Chapter 4 Growth of Carbon Nanotube 41
4.1 Experimental procedure 41
4.1.1 Sol-gel catalyst 41
4.1.2 Pretreatment of substrate 41
4.1.3 Growth procedure 42
4.2 Results and discussions 44
Chapter 5 Microcrystalline Diamond/Carbon Nanotube Double-layered Pyramid Array 48
5.1 Experimental procedure 48
5.1.1 Fabrication of pyramidal cavities 49
5.1.2 Growth of microcrystalline diamond and carbon nanotube film 50
5.1.3 Transfer and etching 51
5.2 Results and discussions 52
Chapter 6 Carbon Nano-Flake Balls 60
6.1 Experimental procedure 61
6.1.1 Pretreatments 61
6.1.2 Synthesis of carbon nano-flake balls 62
6.2 Results and discussions 63
6.2.1Synthesis of carbon nano-flake balls with different pretreatment methods 64
6.2.2 Structure of carbon nano-flake 72
6.2.3 Raman spectrum of carbon nano-flake balls 74
6.2.4 Field emission properties of carbon nano-flake balls 75
6.2.5 Growth mechanism 80
Chapter 7 Carbon Nano-Flake Ball and Carbon Nanotube Hybrid Material 90
7.1 Experimental procedure 90
7.2 Results and discussions 91
Chapter 8 Conclusions and Future Prospects 101
References 103
Publication List 110
[1] R.H. Fowler, L. Nordheim, Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 119 (1928) 173-181.
[2] R.G. Forbes, Field Emission: New Theory for the Derivation of Emission Area from a Fowler-Nordheim Plot. Journal of Vacuum Science and Technology B, 17 (1999) 526-533.
[3] J. He, P.H. Cutler, N.M. Miskovsky, Generalization of Fowler-Nordheim Field-Emission Theory for Nonplanar Metal Emitters. Applied Physics Letters, 59 (1991) 1644-1646.
[4] K.L. Jensen, E.G. Zaidman, Field-Emission from an Elliptic Boss - Exact Versus Approximate Treatments. Applied Physics Letters, 63 (1993) 702-704.
[5] K.L. Jensen, E.G. Zaidman, Field-Emission from an Elliptic Boss - Exact and Approximate Forms for Area Factors and Currents. Journal of Vacuum Science and Technology B, 12 (1994) 776-780.
[6] K.L. Jensen, E.G. Zaidman, Analytic Expressions for Emission in Sharp Field Emitter Diodes. Journal of Applied Physics, 77 (1995) 3569-3571.
[7] A. Malesevic, R. Kemps, A. Vanhulsel, M.P. Chowdhury, A. Volodin, C. Van Haesendonck, Field Emission from Vertically Aligned Few-Layer Graphene. Journal of Applied Physics, 104 (2008) 084301.
[8] L. Yang, Q. Yang, C. Zhang, Y.S. Li, Vertically Aligned Carbon Nanotubes/Diamond Double-Layered Structure for Improved Field Electron Emission Stability. Thin Solid Films, 549 (2013) 42-45.
[9] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern, Scanning Field Emission from Patterned Carbon Nanotube Films. Applied Physics Letters, 76 (2000) 2071-2073.
[10] J.S. Suh, K.S. Jeong, J.S. Lee, I.T. Han, Study of The Field-Screening Effect of Highly Ordered Carbon Nanotube Arrays. Applied Physics Letters, 80 (2002) 2392-2394.
[11] R.C. Smith, S.R.P. Silva, Maximizing the Electron Field Emission Performance of Carbon Nanotube Arrays. Applied Physics Letters, 94 (2009) 133104.
[12] J.C. Angus, H.A. Will, W.S. Stanko, Growth of Diamond Seed Crystals by Vapor Deposition. Journal of Applied Physics, 39 (1968) 2915-2922.
[13] R.F. Davis, Diamond Films and Coatings: Development, Properties and Applications William Andrew, Norwich, New York, 1993.
[14] E. Anger, A. Gicquel, Z.Z. Wang, M.F. Ravet, Chemical and Morphological Modifications of Silicon-Wafers Treated by Ultrasonic Impacts of Powders - Consequences on Diamond Nucleation. Diamond and Related Materials, 4 (1995) 759-764.
[15] S. Iijima, Y. Aikawa, K. Baba, Early Formation of Chemical Vapor-Deposition Diamond Films. Applied Physics Letters, 57 (1990) 2646-2648.
[16] J.H. Je, G.Y. Lee, Microstructures of Diamond Films Deposited on (100) Silicon-Wafer by Microwave Plasma-Enhanced Chemical Vapor-Deposition. Journal of Materials Science, 27 (1992) 6324-6330.
[17] Y. Chakk, R. Brener, A. Hoffman, Enhancement of Diamond Nucleation by Ultrasonic Substrate Abrasion with a Mixture of Metal and Diamond Particles. Applied Physics Letters, 66 (1995) 2819-2821.
[18] Y. Chakk, M. Folman, A. Hoffman, Kinetics of the Initial Stages of CVD Diamond Growth on Non-Diamond Substrates: Surface Catalytic Effects and Homoepitaxy. Diamond and Related Materials, 6 (1997) 681-686.
[19] Y. Chakk, R. Brener, A. Hoffman, Mechanism of Diamond Formation on Substrates Abraded with a Mixture of Diamond and Metal Powders. Diamond and Related Materials, 5 (1996) 286-291.
[20] F.G. Celii, J.E. Butler, Direct Monitoring of CH3 in a Filament-Assisted Diamond Chemical Vapor-Deposition Reactor. Journal of Applied Physics, 71 (1992) 2877-2883.
[21] S.J. Harris, Mechanism for Diamond Growth from Methyl Radicals. Applied Physics Letters, 56 (1990) 2298-2300.
[22] Q.H. Fan, A. Fernandes, E. Pereira, J. Gracio, Adherent Diamond Coating on Copper using an Interlayer. Vacuum, 52 (1999) 193-198.
[23] S. Arora, V.D. Vankar, Field Emission Characteristics of Microcrystalline Diamond Films: Effect of Surface Coverage and Thickness. Thin Solid Films, 515 (2006) 1963-1969.
[24] V.I. Konov, A.A. Smolin, V.G. Ralchenko, S.M. Pimenov, E.D. Obraztsova, E.N. Loubnin, S.M. Metev, G. Sepold, Dc-Arc Plasma Deposition of Smooth Nanocrystalline Diamond Films. Diamond and Related Materials, 4 (1995) 1073-1078.
[25] T.S. Yang, J.Y. Lai, C.L. Cheng, M.S. Wong, Growth of Faceted, Ballas-Like and Nanocrystalline Diamond Films Deposited in CH4/H2/Ar MPCVD. Diamond and Related Materials, 10 (2001) 2161-2166.
[26] D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Gruen, T.D. Corrigan, R.P.H. Chang, H. Gnaser, Synthesis and Electron Field Emission of Nanocrystalline Diamond Thin Films Grown from N2/CH4 Microwave Plasmas. Journal of Applied Physics, 82 (1997) 4546-4550.
[27] D. Pradhan, Y.C. Lee, C.W. Pao, W.F. Pong, I.N. Lin, Low Temperature Growth of Ultrananocrystalline Diamond film and its Field Emission Properties. Diamond and Related Materials, 15 (2006) 2001-2005.
[28] H.L.R. R. Iley, The Deposition of Carbon on Vitreous Silica. Journal of the Chemical Society, (1948) 1362-1366.
[29] S. Iijima, Helical Microtubules of Graphitic Carbon. Nature, 354 (1991) 56-58.
[30] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of Carbon Nanotubes. Carbon, 33 (1995) 883-891.
[31] H.J. Dai, E.W. Wong, C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science, 272 (1996) 523-526.
[32] M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Growth of Carbon Nanotubes by Chemical Vapor Deposition. Diamond and Related Materials, 10 (2001) 1235-1240.
[33] N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, The Effect of Copper on the Structural Characteristics of Carbon Filaments Produced from Iron Catalyzed Decomposition of Ethylene. Catalysis Today, 37 (1997) 295-307.
[34] K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of Nanotubes by the Catalytic Decomposition of Different Carbon-Containing Compounds. Applied Catalysis A, 199 (2000) 245-255.
[35] M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 10 (2010) 3739-3758.
[36] M. Kumar, Carbon Nanotube Synthesis and Growth Mechanism
in: S. Yellampalli (Ed.) Carbon Nanotubes - Synthesis, Characterization, Applications, InTech, 2011.
[37] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science, 269 (1995) 1550-1553.
[38] W.A. Deheer, A. Chatelain, D. Ugarte, A Carbon Nanotube Field-Emission Electron Source. Science, 270 (1995) 1179-1180.
[39] K.-Y. Wang, C.-Y. Liao, H.-C. Cheng, Field-Emission Characteristics of the Densified Carbon Nanotube Pillars Array. ECS Journal of Solid State Science and Technology, 5 (2016) M99-M103.
[40] Synthetic Diamond: Emerging CVD Science and Technology, Wiley, 1994.
[41] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143 (2007) 47-57.
[42] A.C. Ferrari, J. Robertson, Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond. Physical Review B, 63 (2001) 121405.
[43] Retrieved from http://www.cyrannus.com/applications.html (accessed November, 2016).
[44] G.-T. Liau, Patterned Growth of Carbon Nanotubes and Diamond Films by a Novel Microwave Plasma Jet CVD System, National Taipei University of Technology, Taipei.
[45] J.G. Buijnsters, L. Vazquez, J.J. ter Meulen, Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diamond and Related Materials, 18 (2009) 1239-1246.
[46] A. Kumar, P. Ann Lin, A. Xue, B. Hao, Y. Khin Yap, R.M. Sankaran, Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nature Communications, 4 (2013) 2618.
[47] S. Raina, W.P. Kang, J.L. Davidson, Nanodiamond film with ‘ridge’ surface profile for chemical sensing. Diamond and Related Materials, 17 (2008) 896-899.
[48] N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, H. Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 18 (2008) 3506-3514.
[49] K. Teii, S. Shimada, M. Nakashima, A.T.H. Chuang, Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106 (2009) 084303.
[50] K.J. Sankaran, J. Kurian, H.C. Chen, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. Journal of Physics D: Applied Physics, 45 (2012) 365303.
[51] S.A. Rakha, G.J. Yu, J.Q. Cao, S.X. He, X.T. Zhou, Influence of CH4 on the morphology of nanocrystalline diamond films deposited by Ar rich microwave plasma. Journal of Applied Physics, 107 (2010) 114324.
[52] N.G. Shang, T. Staedler, X. Jiang, Radial textured carbon nanoflake spherules. Applied Physics Letters, 89 (2006) 103112.
[53] N.G. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-Assembled Growth, Microstructure, and Field-Emission High-Performance of Ultrathin Diamond Nanorods. ACS Nano, 3 (2009) 1032-1038.
[54] I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials, in: J.I. Jang (Ed.) Developments in Photon and Materials Research, Nova Science Publishers, New York, USA, 2013.
[55] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Physical Review Letters, 97 (2006) 187401.
[56] J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Letters, 8 (2008) 2773-2778.
[57] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 362 (2004) 2477-2512.
[58] E.J. Corat, D.G. Goodwin, Temperature-Dependence of Species Concentrations near the Substrate during Diamond Chemical-Vapor-Deposition. Journal of Applied Physics, 74 (1993) 2021-2029.
[59] S.K. Srivastava, V.D. Vankar, V. Kumar, Growth and microstructures of carbon nanotube films prepared by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films, 515 (2006) 1552-1560.
[60] S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond and Related Materials, 13 (2004) 1171-1176.
[61] S.H. Lim, H.S. Yoon, J.H. Moon, K.C. Park, J. Jang, Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition. Applied Physics Letters, 88 (2006) 033114.
[62] E.G. Wang, Z.G. Guo, J. Ma, M.M. Zhou, Y.K. Pu, S. Liu, G.Y. Zhang, D.Y. Zhong, Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon, 41 (2003) 1827-1831.
[63] T.Y. Lee, J.H. Han, S.H. Choi, J.B. Yoo, C.Y. Park, T. Jung, S. Yu, W.K. Yi, I.T. Han, J.M. Kim, Effects of source gases on the growth of carbon nanotubes. Diamond and Related Materials, 12 (2003) 851-855.
[64] T. Vandevelde, T.D. Wu, C. Quaeyhaegens, J. Vlekken, M. D'Olieslaeger, L. Stals, Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films, 340 (1999) 159-163.
[65] A. Gohel, K.C. Chin, Y.W. Zhu, C.H. Sow, A.T.S. Wee, Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon, 43 (2005) 2530-2535.
[66] V. Krivchenko, P. Shevnin, A. Pilevsky, A. Egorov, N. Suetin, V. Sen, S. Evlashin, A. Rakhimov, Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD. Journal of Materials Chemistry, 22 (2012) 16458-16464.
[67] C.J. Tang, G. Jose, A.J. Neves, C. Hugo, A.J.S. Fernandes, L.S. Fu, P. Sergio, L.P. Gu, C. Gil, M.C. Carmo, Role of Nitrogen Additive and Temperature on Growth of Diamond Films from Nanocrystalline to Polycrystalline. Journal of Nanoscience and Nanotechnology, 10 (2010) 2722-2730.
[68] C.S. Yan, Y.K. Vohra, Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. Diamond and Related Materials, 8 (1999) 2022-2031.
[69] W. MullerSebert, E. Worner, F. Fuchs, C. Wild, P. Koidl, Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Applied Physics Letters, 68 (1996) 759-760.
[70] G.Z. Cao, J.J. Schermer, W.J.P. vanEnckevort, W.A.L.M. Elst, L.J. Giling, Growth of {100} textured diamond films by the addition of nitrogen. Journal of Applied Physics, 79 (1996) 1357-1364.
[71] Z. Yiming, F. Larsson, K. Larsson, Effect of CVD diamond growth by doping with nitrogen. Theoretical Chemistry Accounts, 133 (2013) 1432.
[72] M. Sternberg, P. Zapol, T. Frauenheim, J. Carlisle, D.M. Gruen, L.A. Curtiss, Density Functional Based Tight Binding Study of C2 and CN Deposition On (100) Diamond Surface. MRS Proceedings, 675 (2011).
[73] T. Frauenheim, G. Jungnickel, P. Sitch, M. Kaukonen, F. Weich, J. Widany, D. Porezag, A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation. Diamond and Related Materials, 7 (1998) 348-355.
[74] J.M. Bonard, C. Klinke, K.A. Dean, B.F. Coll, Degradation and failure of carbon nanotube field emitters. Physical Review B, 67 (2003).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *