|
[1] Wu, D.Y., Meure, S., Solomon, D. Self-healing polymeric materials : a review of recent developments. Progress in Polymer Science. 2008, 33, 479-522. [2] Murphy, E.B., Wudl, F. The world of smart healable materials. Progress in Polymer Science. 2010, 35, 223-251. [3] Mauldin, T.C., Kessler, M.R. Self-healing polymers and composites. International Materials Reviews. 2010, 55, 317-346. [4] Syrett, J.A., Becer, C.R., Haddleton, D.M. Self-healing and self-mendable polymers. Polymer Chemistry. 2010, 1, 978-987. [5] Guimard, N.K., Oehlenschlaeger, K.K., Zhou, J., Hilf, S., Schmidt, F.G., Kowollik, C.B. Current trends in the field of self-healing materials. Macromolecular Chemistry and Physics. 2012, 213, 131-143. [6] Yang, Y., Urban, M.W. Self-healing polymeric materials. Chemical Society Reviews. 2013, 42, 7446-7467. [7] Zhong, N., Post, W. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices : A review. Composites : Part A. 2015, 69, 226-239. [8] Hager, M.D., Zwaag, S.V.D., Schubert, U.S. Self-healing Materials. Advances in Polymer Science. 2016, 273, 1-409. [9] Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M., Zikulnig-Rusch, E. Self-healing of densely crosslinked thermoset polymers—a critical review. Progress in Organic Coatings. 2017, 104, 232-249. [10] Wang, H.P., Yuan, Y.C., Rong, M.Z., Zhang, M.Q. Self-healing of thermoplastics via living polymerization. Macromolecules. 2010, 43, 595-598. [11] Wool, R.P. Self-healing materials : a review. Soft Matter. 2008, 4, 400-418. [12] Jackson, A.C., Bartelt, J.A., Marczewski, K., Sottos, N.R., Braun, P.V. Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. Macromolecular Rapid Communications. 2011, 32, 82-87. [13] Blaiszik, B.J., Caruso, M.M., McIlroy, D.A., Moore, J.S., White, S.R., Sottos, N.R. Microcapsules filled with reactive solutions for self-healing materials. polymer. 2009, 50, 990-997. [14] Yuan, Y.C., Yin, T., Rong, M.Z., Zhang, M.Q. Self healing in polymers and polymer composites. concepts, realization and outlook : A review. eXPRESS Polymer Letters. 2008, 2, 238-250. [15] Sottos, N.R., Toohey, K.S., Lewis, J.A., MooreE, J.S., White, S.R. Self-healing materials with microvascular networks. Nature Materials. 2007, 6, 581-585. [16] Zhang, P., Li, G. Healing-on-demand composites based on polymer artificial muscle. polymer. 2015, 64, 29-38. [17] Kuhl, N., Bode, S., Hager, M.D., Schubert, U.S. Self-healing polymers based on reversible covalent bonds. Advances in Polymer Science. 2016, 273, 1-58. [18] Jeong, B., Kim, S.W., Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews. 2002, 54, 37-51. [19] Schofield, W.C.E., Badyal, J.P.S. Controlled fragrant molecule release from surface-tethered cyclodextrin host-guest inclusion complexes. ACS Applied Materials and Interfaces. 2011, 3, 2051-2056. [20] Cao, Z., Mi, L., Mendiola, J., Menye, J.R.E., Zhang, L., Xue, H., Jiang, S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angewandte Chemie International Edition. 2012, 51, 2602-2605. [21] Fu, Q., Cheng, L., Zhang, Y., Shi, W. Preparation and reversible photo-crosslinking/photo-cleavage behavior of 4-methylcoumarin functionalized hyperbranched polyester. polymer. 2008, 49, 4981-4988. [22] Diels, O., Alder, K. Synthesen in der hydroaromatischen reihe. European Journal of Organic Chemistry. 1928, 460, 98-122. [23] Gandini, A. The furan/maleimide diels–alder reaction : a versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science. 2013, 38, 1-29. [24] Bergman, S.D., Wudl, F. Mendable polymers. Journal of Materials Chemistry. 2008, 18, 41-62. [25] Liu, Y.L., Chuo, T.W. Self-healing polymers based on thermally reversible diels–alder chemistry. Polymer Chemistry. 2013, 4, 2194-2205. [26] Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K., Wudl, F. A thermally re-mendable cross-linked polymeric material. Science. 2002, 295, 1698-1702. [27] Ling, J., Rong, M.Z., Zhang, M.Q. Coumarin imparts repeated photochemical remendability to polyurethane. Journal of Materials Chemistry. 2011, 21, 18373-18380. [28] Hu, L., Cheng, X., Zhang, A. A facile method to prepare UV light-triggered self-healing polyphosphazenes. Journal of Materials Science. 2015, 50, 2239-2246. [29] Froimowicz, P., Frey, H., Landfester, K. Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromolecular Rapid Communications. 2011, 32, 468-473. [30] Yoon, J.A., Kamada, J., Koynov, K., Mohin, J., Nicolay, R., Zhang, Y., Balazs, A.C., Kowalewski, T., Matyjaszewski, K. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules. 2012, 45, 142-149. [31] Cheng, C., Bai, X., Zhang, X., Li, H., Huang, Q., Tu, Y. Self-healing polymers based on a photo-active reversible addition-fragmentation chain transfer (RAFT) agent. Journal of Polymer Research. 2015, 22, 1-8. [32] Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 2011, 44, 2536-2541. [33] Otsuka, H., Nagano, S., Kobashi, Y., Maeda, T., Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chemical Communications. 2010, 46, 1150-1152. [34] Deng, G., Tang, C., Li, F., Jiang, H., Chen, Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules. 2010, 43, 1191-1194. [35] Deng, G., Li, F., Yu, H., Liu, F., Liu, C., Sun, W., Jiang, H., Chen, Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol−gel transitions. ACS Macro Letters. 2012, 1, 275-279. [36] Zhang, Y., Tao, L., Li, S., Wei, Y. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules. 2011, 12, 2894-2901. [37] Ying, H., Zhang, Y., Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications. 2014, 5, 3218-3226. [38] Kennedy, K.G., Miles, D.T. Electrochemistry of ferrocene-modified monolayer-protected gold nanoclusters at reduced temperatures. Journal of Undergraduate Chemistry Research. 2004, 4, 145-150. [39] Manakker, F.V.D., Vermonden, T., Nostrum, C.F.V., Hennink, W.E. Cyclodextrin-based polymeric materials : synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 2009, 10, 3157-3175. [40] Harada, A., Takahashi, S. Preparation and properties of cyclodextrin-ferrocene inclusion complexes. Journal of the Chemical Society, Chemical Communications. 1984, 645-646. [41] Harada, A. Cyclodextrin-based molecular machines. Accounts of Chemical Research. 2001, 34, 456-464. [42] Yan, Q., Yuan, J., Cai, Z., Xin, Y., Kang, Y., Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society. 2010, 132, 9268-9270. [43] Monflier, E., Hapiot, F., Tilloy, S. Cyclodextrins as supramolecular hosts for organometallic complexes. Chemical Reviews. 2006, 106, 767-781. [44] Chung, J.W., Kwak, S.Y. Iron-induced cyclodextrin self-assembly into size-controllable nanospheres. Langmuir. 2010, 26, 2418-2423. [45] Silva, L.C., Goncalves, I.S., Pillinger, M., Xue, W.M., Rocha, J., J.C., J., Dias, T., Kuhn, F.E. Synthesis and characterization of the inclusion compound of a methyltrioxorhenium(VII) adduct of 4-ferrocenylpyridine with beta-cyclodextrin. Journal of Organometallic Chemistry. 2002, 656, 281-287. [46] Vasudevan, S., Mohanambe, L. Inclusion of ferrocene in a cyclodextrin-functionalized layered metal hydroxide : a new organometallic-organic-LDH nanohybrid. Inorganic Chemistry. 2005, 44, 2128-2130. [47] Du, P., Liu, J., Chen, G., Jiang, M. Dual responsive supramolecular hydrogel with electrochemical activity. Langmuir. 2011, 27, 9602-9608. [48] Singleton, M.L., Crouthers, D.J., Duttweiler, R.P., Reibenspies, J.H., Darensbourg, M.Y. Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. Inorganic Chemistry. 2011, 50, 5015-5026. [49] Hu, J., Liu, S. Engineering responsive polymer building blocks with host−guest molecular recognition for functional applications. Accounts of Chemical Research. 2014, 47, 2084-2095. [50] Harada, A., Takashima, Y., Nakahata, M. Supramolecular polymeric materials via cyclodextrin−guest interactions. Accounts of Chemical Research. 2014, 47, 2128-2140. [51] Aboudzadeh, M.A., Muñoz, M.E., Santamaría, A., Marcilla, R., Mecerreyes, D. Facile synthesis of supramolecular ionic polymers that combine unique rheological, ionic conductivity, and self-healing properties. Macromolecular Rapid Communications. 2012, 33, 314-318. [52] Bosnian, A.W., Brunsveld, L., Folmer, B.J.B., Sijbesma, R.P., Meijer, E.W. Supramolecular polymers : from scientific curiosity to technological reality. Macromolecular Symposia. 2003, 201, 143-154. [53] Zhang, A., Yang, L., Lin, Y., Yan, L., Lu, H., Wang, L. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes : synthesis and characterization. Journal of Applied Polymer Science. 2013, 129, 2435-2442. [54] Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.L., Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. Journal of the American Chemical Society. 2009, 131, 7966-7967. [55] Tee, B.C.-K., Wang, C., Allen, R., Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology. 2012, 7, 825-832. [56] Wang, C., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry. 2013, 5, 1042-1048. [57] Sun, Y., Lopez, J., Lee, H.-W., Liu, N., Zheng, G., Wu, C.-L., Sun, J., Liu, W., Chung, J.W., Bao, Z., Cui, Y. A stretchable graphitic carbon/si anode enabled by conformal coating of a self-healing elastic polymer. Advanced Materials. 2016, 28, 2455-2461. [58] Chang, Y., Chen, W.Y., Yandi, W., Shih, Y.J., Chu, W.L., Liu, Y.L., Chu, C.W., Ruaan, R.C., Higuchi, A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(n-isopropyl acrylamide). Biomacromolecules. 2009, 10, 2092-2100. [59] Han, C.C., Wei, T.C., Wu, C.S., Liu, Y.L. Temperature-responsive poly(tetrafluoroethylene) membranes grafted with branched poly(N-isopropylacrylamide) chains. Journal of Membrane Science. 2010, 358, 60-66. [60] Peng, I.C., Yeh, C.C., Lu, Y.T., Muduli, S., Ling, Q.D., Alarfaj, A.A., Munusamy, M.A., Kumar, S.S., Murugan, K., Lee, H.c., Chang, Y., Higuchi, A. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials. 2016, 76, 76-86. [61] Chiang, W.L., Hu, Y.C., Liu, H.Y., Hsiao, C.W., Sureshbabu, R., Yang, C.M., Chung, M.F., Chia, W.T., Sung, H.W. Injectable microbeads with a thermo-responsive shell and a pH-responsive core as a dual-switch-controlled release system. Small. 2014, 10, 4100-4105. [62] Chuo, T.W., Wei, T.C., Chang, Y., Liu, Y.L. Electrically driven biofouling release of a poly(tetrafluoroethylene) membrane modified with an electrically induced reversibly cross-linked polymer. ACS Applied Materials and Interfaces. 2013, 5, 9918-9925. [63] Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nature Communications. 2011, 2, 1-6. [64] Chuo, T.W., Wei, T.C., Liu, Y.L. Electrically driven self-healing polymers based on reversible guest–host complexation of beta-cyclodextrin and ferrocene. Journal of Polymer Science Part A : Polymer Chemistry. 2013, 51, 3395-3403. [65] Ling, J., Rong, M.Z., Zhang, M.Q. Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. polymer. 2012, 53, 2691-2698. [66] Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A., Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie. 2011, 123, 1698-1701. [67] Miyamae, K., Nakahata, M., Takashima, Y., Harada, A. Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest Interactions. Angewandte Chemie International Edition. 2015, 54, 8984-8987. [68] Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R. New thermally remendable highly cross-linked polymeric materials. Macromolecules. 2003, 36, 1802-1807. [69] Gandini, A., Coelho, D., Gomes, M., Reis, B., Silvestre, A. Materials from renewable resources based on furan monomers and furan chemistry : work in progress. Journal of Materials Chemistry. 2009, 19, 8656-8664. [70] Gandini, A., Silvestre, A.J.D., Coelho, D. Reversible click chemistry at the service of macromolecular materials. Polymer Chemistry. 2011, 2, 1713-1719. [71] Liu, Y.L., Hsieh, C.Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science Part A : Polymer Chemistry. 2006, 44, 905-913. [72] Liu, Y.L., Chen, Y.W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimideand furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics. 2007, 208, 224-232. [73] Kavitha, A.A., Singha, N.K. “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality : a new class of self-healing polymeric material. ACS Applied Materials and Interfaces. 2009, 1, 1427-1436. [74] Zhang, Y., Broekhuis, A.A., Picchioni, F. Thermally self-healing polymeric materials : the next step to recycling thermoset polymers? Macromolecules. 2009, 42, 1906-1912. [75] Wilson, G.O., Caruso, M.M., Schelkopf, S.R., Sottos, N.R., White, S.R., Moore, J.S. Adhesion promotion via noncovalent interactions in self-healing polymers. ACS Applied Materials and Interfaces. 2011, 3, 3072-3077. [76] Kötteritzsch, J., Stumpf, S., Hoeppener, S., Vitz, J., Hager, M.D., Schubert, U.S. One-component intrinsic self-healing coatings based on reversible crosslinking by diels–alder cycloadditions. Macromolecular Chemistry and Physics. 2013, 214, 1636-1649. [77] Nji, J., Li, G. A biomimic shape memory polymer based self-healing particulate composite. polymer. 2010, 51, 6021-6029. [78] Neuser, S., Michaud, V., White, S.R. Improving solvent-based self-healing materials through shape memory alloys. polymer. 2012, 53, 370-378. [79] Burton, D.S., Gao, X., Brinson, L.C. Finite element simulation of a self-healing shape memory alloy composite. Mechanics of Materials. 2006, 38, 525-537. [80] Li, G., Zhang, P. A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. polymer. 2013, 54, 5075-5086. [81] Habault, D., Zhang, H., Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chemical Society Reviews. 2013, 42, 7244-7256. [82] Rodriguez, E.D., Luo, X., Mather, P.T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Applied Materials and Interfaces. 2011, 3, 152-161. [83] Wen, H., Chen, S., Ge, Z., Zhuo, H., Ling, J., Liu, Q. Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Advances. 2017, 7, 31525-31534. [84] Zheng, P., McCarthy, T.J. A surprise from 1954 : siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. Journal of the American Chemical Society. 2012, 134, 2024-2027. [85] Pratama, P.A., Sharifi, M., Peterson, A.M., Palmese, G.R. Room temperature self-healing thermoset based on the diels−alder reaction. ACS Applied Materials and Interfaces. 2013, 5, 12425-12431. [86] Peterson, A.M., Jensen, R.E., Palmese, G.R. Room-temperature healing of a thermosetting polymer using the diels-alder reaction. ACS Applied Materials and Interfaces. 2010, 2, 1141-1149. [87] Reutenauer, P., Buhler, E., Boul, P.J., Candau, S.J., Lehn, J.M. Room temperature dynamic polymers based on diels–alder chemistry. Chemistry - A European Journal. 2009, 15, 1893-1900. [88] Cash, J.J., Kubo, T., Bapat, A.P., Sumerlin, B.S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macomolecules. 2015, 48, 2098-2106. [89] Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature Chemistry. 2011, 3, 34-37. [90] Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A. Preorganized hydrogel : self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Advanced Materials. 2013, 25, 2849-2853. [91] Jonkers, H.M. Healing agent in cement-based materials and structures, and process for its preparation Technische Universiteit Delft, European, 2009, Vol. EP 2082999 A1. [92] Jonkers, H.M. Healing agent for self-healing cementious material Technische Universiteit Delft, U.S.A, 2014, Vol. US8911549 B2. [93] Patel, P. Helping concrete heal itself. In: Chemical and Engineering News, 2016, Vol. 94, pp. 29-30. [94] Williams, G., Trask, R., Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Composites: Part A. 2007, 38, 1525-1532. [95] Fernández, J.E. Materials for aesthetic, energy-efficient,and self-diagnostic buildings. Science. 2007, 315, 1807-1810. [96] Wang, H., Zhou, H., Gestos, A., Fang, J., Lin, T. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Applied Materials and Interfaces. 2013, 5, 10221-10226. [97] Wang, H., Zhou, H., Gestos, A., Fang, J., Niu, H., Ding, J., Lin, T. Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter. 2013, 9, 277-282. [98] Zhou, H., Wang, H., Niu, H., Gestos, A., Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Advanced Functional Materials. 2013, 23, 1664-1670. [99] Huang, C.H., Liu, Y.L. Self-healing polymeric materials for membrane separation : an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Advances. 2017, 7, 38360-38366. [100] Oh, J.Y., Gagné, S.R., Chiu, Y.C., Chortos, A., Lissel, F., Wang, G.J.N., Schroeder, B.C., Kurosawa, T., Lopez, J., Katsumata, T., Xu, J., Zhu, C., Gu, X., Bae, W.-G., Kim, Y., Jin, L., Chung, J.W., Tok, J.B.H., Bao, Z. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016, 539, 411-415. [101] Bauer, S., Kaltenbrunner, M. Semiconductors that stretch and heal. Nature. 2016, 539, 366-367. [102] Han, L., Lu, X., Wang, M., Gan, D., Deng, W., Wang, K., Fang, L., Liu, K., Chan, C.W., Tang, Y., Weng, L.T., Yuan, H. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small. 2017, 13, 1-9. [103] Stankiewicz, A., Barker, M.B. Development of self-healing coatings for corrosion protection on metallic structures. Smart Materials and Structures. 2016, 25, 1-10. [104] Wei, H., Wang, Y., Guo, J., Shen, N.Z., Jiang, D., Zhang, X., Yan, X., Zhu, J., Wang, Q., Shao, L., Lin, H., Wei, S., Guo, Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. Journal of Materials Chemistry A. 2015, 3, 469-480. [105] Jadhav, R.S., Hundiwale, D.G., Mahulikar, P.P. Synthesis and characterization of phenol–formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. Journal of Applied Polymer Science. 2011, 119, 2911-2916. [106] Boura, S.H., Peikari, M., Ashrafi, A., Samadzadeh, M. Self-healing ability and adhesion strength of capsule embedded coatings—micro and nano sized capsules containing linseed oil. Progress in Organic Coatings. 2012, 75, 292-300. [107] Tatiya, P.D., Hedaoo, R.K., Mahulikar, P.P., Gite, V.V. Novel polyurea microcapsules using dendritic functional monomer : synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings. Industrial and Engineering Chemistry Research. 2013, 52, 1562-1570. [108] Nesterova, T., Johansen, K.D., Pedersen, L.T., Kiil, S. Microcapsule-based self-healing anticorrosive coatings : capsule size, coating formulation, and exposure testing. Progress in Organic Coatings. 2012, 75, 309-318. [109] Koh, E., Lee, S., Shin, J., Kim, Y.W. Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Industrial and Engineering Chemistry Research. 2013, 52, 15541-15548. [110] Koh, E., Baek, S.Y., Kim, N.K., Lee, S., Shin, J., Kim, Y.W. Microencapsulation of the triazole derivative for self-healing anticorrosion coatings. New Journal of Chemistry. 2014, 38, 4409-4419. [111] Wu, G., An, J., Sun, D., Tang, X., Xiang, Y., Yang, J. Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. Journal of Materials Chemistry A. 2014, 2, 11614-11620. [112] Huang, M., Yang, J. Facile microencapsulation of HDI for self-healing anticorrosion coatings. Journal of Materials Chemistry. 2011, 21, 11123-11130. [113] Sun, D., An, J., Wu, G., Yang, J. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. Journal of Materials Chemistry A. 2015, 3, 4435-4444. [114] Huang, M., Zhang, H., Yang, J. Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings. Corrosion Science. 2012, 65, 561-566. [115] Park, J.H., Braun, P.V. Coaxial electrospinning of self-healing coatings. Advanced Materials. 2010, 22, 496-499. [116] Lutz, A., Berg, O.v.d., Damme, J.V., Verheyen, K., Bauters, E., Graeve, I.D., Prez, F.E.D., Terryn, H. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Applied Materials and Interfaces. 2015, 7, 175-183. [117] Andreeva, D.V., Fix, D., Mohwald, H., Shchukin, D.G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Advanced Materials. 2008, 20, 2789-2794. [118] Xiao, Y.K., Ji, W.F., Chang, K.S., Hsu, K.T., Yeh, J.M., Liu, W.R. Sandwich-structured rGO/PVDF/PU multilayer coatings for anti-corrosion application. RSC Advances. 2017, 7, 33829-33836. [119] Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Möhwald, H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Advanced Materials. 2006, 18, 1672-1678. [120] Zheludkevich, M.L., Shchukin, D.G., Yasakau, K.A., Mohwald, H., Ferreira, M.G.S. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chemistry of Materials. 2007, 19, 402-411. [121] Fan, F., Zhou, C., Wang, X., Szpunar, J. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Applied Materials and Interfaces. 2015, 7, 27271-27278. [122] Li, G.L., Zheng, Z., Mohwald, H., Shchukin, D.G. Silica/polymer double-walled hybrid nanotubes : synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano. 2013, 7, 2470-2478. [123] Zheng, Z., Huang, X., Schenderlein, M., Borisova, D., Cao, R., Möhwald, H., Shchukin, D. Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers. Advanced Functional Materials. 2013, 23, 3307-3314. [124] Zheng, Z., Schenderlein, M., Huang, X., Brownbill, N.J., Blanc, F.d.r., Shchukin, D. Influence of functionalization of nanocontainers on self-healing anticorrosive coatings. ACS Applied Materials and Interfaces. 2015, 7, 22756-22766. [125] Li, G.L., Schenderlein, M., Men, Y., Möhwald, H., Shchukin, D.G. Monodisperse polymeric core–shell nanocontainers for organic self-healing anticorrosion coatings. Advanced Materials Interfaces. 2014, 1, 1-6. [126] Qian, H., Xu, D., Du, C., Zhang, D., Li, X., Huang, L., Deng, L., Tu, Y., Mol, J.M.C., Terryn, H.A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A. 2017, 5, 2355-2364. [127] Xie, T., Rousseau, I.A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. polymer. 2009, 50, 1852-1856. [128] Luo, X., Mather, P.T. Shape memory assisted self-healing coating. ACS Macro Letters. 2013, 2, 152-156. [129] Abdullayev, E., Abbasov, V., Tursunbayeva, A., Portnov, V., Ibrahimov, H., Mukhtarova, G., Lvov, Y. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Applied Materials and Interfaces. 2013, 5, 4464-4471. [130] Rahimi, A., Amiri, S. Self-healing anticorrosion coating containing 2-mercaptobenzothiazole and 2-mercaptobenzimidazole nanocapsules. Journal of Polymer Research. 2016, 4, 1-10. [131] Grigoriev, D., Shchukina, E., Shchukin, D.G. Nanocontainers for self-healing coatings. Advanced Materials Interfaces. 2017, 4, 1-11. [132] He, Y., Zhang, C., Wu, F., Xu, Z. Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer. Synthetic Metals. 2016, 212, 186-194. [133] Lu, W.K., Elsenbaumer, R.L., Wesslingb, B. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals. 1995, 71, 2163-2166. [134] Talo, A., Passiniemi, P., Forsen, Ylasaari, S. Polyaniline/epoxy coatings with good anti-corrosion properties. Synthetic Metals. 1997, 85, 1333-1334. [135] Fahlman, M., Jasty, S., Epstein, A.J. Corrosion protection of iron/steel by emeraldine base polyaniline: an X-ray photoelectron spectroscopy study. Synthetic Metals. 1997, 85, 1323-1326. [136] Tallman, D.E., Spinks, G., Dominis, A., Wallace, G.G. Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry. 2002, 6, 73-84. [137] Lu, F.L., Wudl, F., Nowak, M., Heeger, A.J. Phenyl-capped octaaniline(COA) : an excellent model for polyaniline. Journal of the American Chemical Society. 1986, 108, 8311-8313. [138] Wei, Y., Yang, C., Ding, T. A one-step method to synthesize N,N'-bis(4'-aminophenyl)-1,4-quinonenediimine and its derivatives. Tetrahedron Leuers. 1996, 37, 731-734. [139] Wang, Z.Y., Yang, C., Gao, J.P., Lin, J., Meng, X.S. Electroactive polyimides derived from amino-terminated aniline trimer. Macromolecules. 1998, 31, 2702-2704. [140] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., Wei, Y. Synthesis of parent aniline tetramer and pentamer and redox properties. Materials Letters. 2005, 59, 2446-2450. [141] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., Wei, Y. Synthesis of phenyl-capped aniline heptamer and its UV-vis spectral study. Synthetic Metals. 2005, 149, 129-134. [142] Yang, X., Jiang, Y., Zhao, T., Yu, Y. Amino-capped aniline trimer/epoxy resin intercrosslinked networks. Journal of Applied Polymer Science. 2006, 102, 222-226. [143] Huang, K.Y., Jhuo, Y.S., Wu, P.S., Lin, C.H., Yu, Y.H., Yeh, J.M. Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. European Polymer Journal. 2009, 45, 485-493. [144] Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L., Wei, Y. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chemistry of Materials. 2011, 23, 2075-2083. [145] Peng, C.W., Chang, K.C., Weng, C.J., Lai, M.C., Hsu, C.H., Hsu, S.C., Hsu, Y.Y., Hung, W.I., Wei, Y., Yeh, J.M. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochimica Acta. 2013, 95, 192-199. [146] Chang, K.C., Lu, H.I., Peng, C.W., Lai, M.C., Hsu, S.C., Hsu, M.H., Tsai, Y.K., Chang, C.H., Hung, W.I., Wei, Y., Yeh, J.M. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. ACS Applied Materials and Interfaces. 2013, 5, 1460-1467. [147] Lin, S.C., Wu, C.S., Yeh, J.M., Liu, Y.L. Reaction mechanism and synergistic anticorrosion property of reactive blends of maleimide-containing benzoxazine and amine-capped aniline trimer. Polymer Chemistry. 2014, 5, 4235-4244. [148] Solvas, J.M.C., Salmeron, E.O., Fernandez, I., Fuentes, L.G., Gonzalez, F.S., Berenguel, A.V. Ferrocene–beta-cyclodextrin conjugates : synthesis, supramolecular behavior, and use as electrochemical sensors. Chemistry A European journal. 2009, 15, 8146-8162. [149] Meldrum, A.N. LIV.—A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions. 1908, 93, 598-601. [150] Davidson, D., Bernhard, S.A. The structure of meldrum's supposed beta-lactonic acid. Journal of the American Chemical Society. 1948, 70, 3426-3428. [151] Garcia, S.J., Suay, J. Anticorrosive properties of an epoxy-meldrum acid cured system catalyzed by erbium III trifluromethanesulfonate. Progress in Organic Coatings. 2006, 57, 319-331. [152] Chou, Y.K., Chen, Y., Lin, L.K., Liu, Y.L. Thermosetting resins based on a self-crosslinkable monomer/polymer possessing meldrum’s acid groups. Macromolecular Chemistry and Physics. 2017, 1-9. [153] Chen, Y., Lin, L.K., Chiang, S.J., Liu, Y.L. A cocatalytic effect between meldrum’s acid and benzoxazine compounds in preparation of high performance thermosetting resins. Macromolecular Rapid Communications. 2017, 38. [154] Lin, L.K., Hu, C.C., Su, W.C., Liu, Y.L. Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications. 2015, 51, 12760-12763. [155] Kuang, X., Liu, G., Dong, X., Liu, X., Xu, J., Wang, D. Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker. Journal of Polymer Science Part A : Polymer Chemistry. 2015, 53, 2094-2103. [156] Staudinger, H. Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft. 1905, 38, 1735-1739. [157] Leibfarth, F.A., Kang, M., Ham, M., Kim, J., Campos, L.M., Gupta, N., Moon, B., Hawker, C.J. A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry. 2010, 2, 207-212. [158] Leibfarth, F.A., Wolffs, M., Campos, L.M., Delany, K., Treat, N., Kade, M.J., Moon, B., Hawker, C.J. Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science. 2012, 3, 766-771. [159] Kwon, T.W., Jeong, Y.K., Lee, I., Kim, T.S., Choi, J.W., Coskun, A. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Advanced Materials. 2014, 26, 7979-7985. [160] Yilgör, İ., McGrath, J.E. Polysiloxane containing copolymers : a survey of recent developments. Advances in Polymer Science. 1988, 86, 1-86. [161] Shen, J., Shao, Z., Li, S. Physical ageing studies of polysiloxane-modified epoxy resin. polymer. 1995, 36, 3479-3483. [162] Zhu, B., Katsoulis, D.E., Keryk, J.R. Toughening of a polysilsesquioxane network by simultaneous incorporation of short and long PDMS chain segments. Macromolecules. 2004, 37, 1455-1462. [163] Liu, Y.L., Chang, G.P., Hsu, K.Y., Chang, F.C. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis(glycidyldimethylsiloxy)octasilsesquioxane and small-molecule curing agents. Journal of Polymer Science Part A : Polymer Chemistry. 2006, 44, 3825-3835. [164] Tseng, M.C., Liu, Y.L. Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. polymer. 2010, 51, 5567-5575. [165] Li, G., Wang, L., Ni, H., Jr., C.U.P. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers : a review. Journal of Inorganic and Organometallic Polymers. 2002, 11, 123-154. [166] Yen, Y.C., Kuo, S.W., Huang, C.F., Chen, J.K., Chang, F.C. Miscibility and hydrogen-bonding behavior in organic/inorganic polymer hybrids containing octaphenol polyhedral oligomeric silsesquioxane. The Journal of Physical Chemistry B. 2008, 112, 10821-10829. [167] Liu, Y.L., Liu, C.S., Cho, C.I., Hwu, M.J. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films. Nanotechnology. 2007, 18, 225701-225705. [168] Liu, Y.L., Tseng, M.C., Fangchiang, M.H. Polymerization and nanocomposites properties of multifunctional methylmethacrylate POSS. Journal of Polymer Science Part A : Polymer Chemistry. 2008, 46, 5157-5166. [169] Liu, Y.L., Fangchiang, M.H. Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. Journal of Materials Chemistry. 2009, 19, 3643-3647. [170] Kuo, S.W., Wu, Y.C. Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. Journal of Materials Chemistry. 2012, 22, 2982-2991. [171] Kuo, S.W., Chang, F.C. POSS related polymer nanocomposites. Progress in Polymer Science. 2011, 36, 1649-1696. [172] Lin, Y.C., Kuo, S.W. Self-assembly and secondary structures of linear polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticles through click chemistry. Journal of Polymer Science Part A : Polymer Chemistry. 2011, 49, 2127-2137. [173] Xu, Z., Zhao, Y., Wang, X., Lin, T. A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on diels–alder chemistry. Chemical Communications. 2013, 49, 6755-6757.
|