帳號:guest(18.116.40.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卓采薇
作者(外文):Chuo, Tsai-Wei
論文名稱(中文):具有可逆交聯結構之自修復高分子:合成、性質與應用研究
論文名稱(外文):Preparation, properties, and application of self-healing polymers based on reversible crosslinked-structures
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):蘇文炯
鄭如忠
孫一明
葉瑞銘
魏大欽
趙基揚
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032810
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:201
中文關鍵詞:自修復材料防腐蝕性質可逆交聯高分子
外文關鍵詞:Self-healinganti-corrosionreversiblepolymer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:459
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
具有自修復性之智能材料,不論在自修復機制的建立或是材料的應用方面,近年來都受到研究者廣泛的注意。對熱固性自修復高分子材料而言,其自修復機制大抵可以分為自發性與非自發性自修復材料。前者為使用內包埋修復劑,其自修復行為由破壞材料引發,屬於一次性自修復行為,雖具有優異的自修復性,但無法重複與長期使用,如做為塗料之應用,則需長期更換。而非自發性自修復為利用可逆交聯反應建構的高分子自修復材料,雖須外加環境刺激以啟動自修復行為,但自修復性質可以重複實施,對於塗料以及其他保護性材料的應用,有其優勢。
因此,本研究利用不含修復劑之可逆交聯結構建立熱固性高分子自修復材料,使用兩種不同的環境因子作為自修復行為的啟動機制,即電與熱之刺激應答,並且將其應用於防腐蝕與其他商業塗料之等等應用。本研究以四部分進行,包括:
第一部分,利用防腐蝕單體-苯胺三聚體(amine-capped aniline trimer,ACAT)分子與商業用之汽車修補漆分別摻混至電致可逆交聯主客錯合物PGMA-Fc/Bis-CD,比較兩者之自修復與防腐蝕之性質,證實摻混在汽車修補漆與防腐蝕單體-苯胺兩者其保護效率皆可達到88%以上,並且各別在給予傷痕後之電致修復下之保護效率也可達到86%以上,進而摻混後之塗料皆可同時具有防腐蝕與自修復之特性。而ACAT單體可與電致可逆交聯主客錯合物PGMA-Fc/Bis-CD有協同效應,可使塗層具有防腐蝕性並且增強其自修復效果,成為優異之電致自修復防腐蝕材料。
第二部分,進行多官能基之可逆交聯反應,合成帶有呋喃官能基之苯胺單體ACAT-Fu4,及兼具貼附性之米氏酸及呋喃官能基之單體MAFBCB,個別與多馬來醯胺與多呋喃官能基之單體,M3與TFY,以不同進料配置進行Diels–Alder反應,為熱致反應自修復與防腐蝕材料,命名為self-healing and anti-corrsion,SHAC樣品組,分別為SHAC-A與SHAC-MA組材料。SHAC-A50與SHAC-A20Y展現優異的效果,其保護效率皆超過98%,而在自修復防腐蝕性質中,在二次熱致修復後,其保護效率為96%以上;另外,SHAC-MA20與SHAC-MA20Y其保護效率達到90 %以上,並且SHAC-MA20、SHAC-MA50與SHAC-MA20Y,而自修復防腐蝕實驗中,在高溫熱致二次修復後與長時間日照下,其保護效率皆為88 %以上。
第三部分,發展可逆醯胺鍵結應用於自修復材料中,利用烯酮(ketene)官能基與具有側碳鏈之二級胺(amine),在室溫下進行可逆醯胺反應,且於45 ℃左右進行逆反應,恢復回ketene與amine官能基的狀態;因而利用帶有米氏酸之聚二甲基矽氧烷(Meldrum’s acid-containing polydimethylsiloxane,PDMSMA),使之進行開環成為帶有烯酮(ketene)官能基的PDMSMA-ketene再與具有側碳鏈之雙邊二級胺(amine)進行醯胺反應成為塊材材料PDMSMA-ketene/diamine,而當PDMSMA-ketene/diamine材料受到損傷時,可分別在室溫一天與戶外太陽光照射下靜置一天進行自修復,恢復材料樣貌,成為新穎的動態共價化學方式之自修復材料,並且摻混在商業用之汽車修補漆中,可使塗料具有自修復特性。
  第四部分,利用無機之多面體低聚倍半矽氧烷(methacryl POSS,MMA-POSS),其分子帶有八個甲基丙烯酸官能基與具有呋喃官能基之有機單體(furfurylamine)進行反應,追蹤其反應機制,證實利用Michael Addition反應形成交聯有機凝膠,並具有自組裝的排列,而在膠體乾燥下溫度120 ℃,12小時進行狄耳士-阿德爾(Diels–Alder)反應,使之具有自修復的特性。
Self-healing polymer are interested by researcher in recent years, whatever to found the self-healing mechanism or the application of materials. For thermosetting self-healing polymer, the self-healing mechanism can be divided into two categories, spontaneous and non-spontaneous self-healing materials. spontaneous self-healing materials use repair agent in internal, the healing behavior caused by the destruction of materials, is a one-time self-healing behavior, although with excellent self-repair, but can not be repeated with long-term use. The non-spontaneous self-healing use of reversible reaction of polymer, although it need environmental stimuli to start healing, but the self-healing properties are advantages, can be repeated for the application of coatings and protective materials in coatings.
Therefore, in this study, a thermosetting self-healing polymer is constructed by using a reversible cross-linked structure without repairing agent. Two different environmental factors are used as the start up mechanism of self-healing behavior, electric and heat. Furthermore, the self-healing application in anti-corrosion and other commercial coatings and so on. The study is conducted in four parts.

  First, Using the anti-corrosion monomer, amine-capped aniline trimer (ACAT), and the commercially car paint are blended on the electro-reversible crosslinked host-guest complexes PGMA-Fc / Bis-CD. Both coatings protection efficiency can reach more than 88%. after the coatings have the damage and get the electric healing, the protection efficiency can reach more than 86%. In addition to the ACAT monomer has a synergistic effect with the electro-reversible crosslinked host-guest complexes PGMA-Fc / Bis-CD, which makes the coating corrosion-resistant and enhances its self-healing effect, making it an excellent self-healing material.

In the second part, the reversible crosslinked reaction of multi-functional groups was carried out to synthesize ACAT-Fu4, which have furan functional groups in aniline, and MAFBCB, which is a combination of Meldrum's acid and furan functional groups. And multi-maleimide and multi-furan groups molecules, M3 and TFY, are used to mixed in different equivalent with ACAT-Fu4 or MAFBCB in Diels-Alder reaction, become to thermally induced self-healing and anti-corrosion materials, SHAC-A and SHAC-MA group materials. In the part one, SHAC-A50 and SHAC-A20Y show excellent results, the protection efficiency is more than 98%. After the second thermal repair in the self-healing and anti-corrosion test, the protection efficiency is 96%. In the second parts, SHAC-MA20 and SHAC-MA20Y with the protection efficiency of more than 90%. And SHAC-MA20, SHAC-MA50 and SHAC-MA20Y in the self-healing and anti-corrosion test, protection efficiency is more than 88%, after secondary repair and long time sunshine.

In the third part, the development of reversible amide bond is applied to the self-healing material. The reversible amide reaction is carried out at room temperature by using a ketene functional group and an amine group, having a side chain. As well as reverse reaction in the 45 ° C, to becoming the ketene and the amine functional groups. Thus, the polydimethylsiloxane with Meldrum's acid was used to open the ring reaction to form a PDMSMA with a ketene functional group PDMSMA-ketene. Using PDMSMA-ketene reacts with secondary amine, who having a side-carbon chain, to form the bulk material PDMSMA-ketene / diamine. When the PDMSMA-ketene / diamine material is damaged, it can heal at room temperature. It is a novel dyamic covalent chemicals method in self-healing material. Finally, blended in a commercially car paint, it can make the coating having the self-healing properties.

In the fourth part, using inorganic polytrimethoxysilane siloxane (Methacryl POSS, MMA-POSS) with its molecules with eight methacrylic acid functional groups and reaction in furan functional groups of organic monomer (Furfurylamine). The reaction mechanism is Michael Addition reaction to form crosslinked organic gel, and has a self-assembled arrangement, while the colloid drying temperature of 120 ℃, 12 hours Diels-Alder reaction , So that it has a self-healing properties.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 自修復材料之結構方式簡介 2
1-2.1 自修復材料之修復方式 2
1-2.2 自發性自修復材料 3
1-2.3 非自發性自修復材料 6
1-2.3.1 可逆交聯之共價鍵結 7
1-2.3.2 可逆交聯之非共價鍵結 11
1-3 環境應答自修復材料 15
1-3.1 電致自修復材料 15
1-3.2 光致自修復材料 20
1-3.3 酸鹼值致自修復材料 23
1-3.4 氧化還原致自修復材料 26
1-3.5 熱致自修復材料 29
第二章 自修復材料之應用 43
2-1 自修復與防腐蝕之應用 46
2-2 研究動機 58
第三章 電致可逆交聯超分子錯合物之自修復性質與防腐蝕應用 61
3-1 文獻回顧 61
3-2 實驗方法 67
3-2.1 實驗藥品 67
3-2.2 實驗儀器設備 67
3-2.3 電致自修復材料之製備 69
3-2.4 防腐蝕單體ACAT之製備 71
3-2.5 電致自修復材料之防腐蝕檢測製備 72
3-2.6 電化學之防腐蝕檢測方法 74
3-3 結果與討論 76
3-4 結論 88
第四章 多官能基之可逆交聯反應應用於自修復與防腐蝕 89
4-1 文獻回顧 89
4-2 實驗方法 92
4-2.1 實驗藥品 92
4-2.2 實驗儀器設備 93
4-2.3 實驗製備 95
4-2.3.1 ACAT-Fu4單體合成 95
4-2.3.2 M3單體合成 96
4-2.3.3 TFY單體合成 97
4-2.3.4 熱致自修復材料之抗腐蝕檢測製備 98
4-2.3.5 電化學抗腐蝕檢測方法 99
4-3 結果與討論 101
4-3.1 ACAT-Fu4單體鑑定 101
4-3.2 M3單體鑑定 104
4-3.3 TFY單體鑑定 107
4-3.4 添加ACAT-Fu4之可逆交聯自修復防腐蝕 110
4-3.5 添加MAFBCB之可逆交聯自修復防腐蝕 128
4-4 結論 142
第五章 醯胺鍵結之動態共價化學自修復材料 143
5-1 文獻回顧 143
5-2 實驗方法 146
5-2.1 實驗藥品 146
5-2.2 實驗儀器設備 147
5-2.3 實驗製備 148
5-2.3.1 MA-VB單體合成 148
5-2.3.2 PDMSMA高分子合成 149
5-2.3.3 PDMSMA-Ketene/diamine自修復膜之製作方法 150
5-2.3.1 PDMSMA-Ketene/diamine摻混於商業用汽車修補漆之製作方法 150
5-3 結果與討論 153
5-3.1 PDMSMA-Ketene/diamine之反應追蹤實驗 153
5-3.2 PDMSMA-ketene/diamine之自修復檢測 159
5-3.3 PDMSMA-ketene/diamine摻混於汽車修補漆之自修復檢測 163
5-4 結論 165
第六章 有機無機摻混之自修復材料 166
6-1 文獻回顧 166
6-2 實驗方法 169
6-2.1 實驗藥品 169
6-2.2 實驗儀器設備 170
6-2.3 膠體製備 171
6-3 結果與討論 173
6-4 結論 184
總結 185
參考文獻 187
發表期刊 201

[1] Wu, D.Y., Meure, S., Solomon, D. Self-healing polymeric materials : a review of recent developments. Progress in Polymer Science. 2008, 33, 479-522.
[2] Murphy, E.B., Wudl, F. The world of smart healable materials. Progress in Polymer Science. 2010, 35, 223-251.
[3] Mauldin, T.C., Kessler, M.R. Self-healing polymers and composites. International Materials Reviews. 2010, 55, 317-346.
[4] Syrett, J.A., Becer, C.R., Haddleton, D.M. Self-healing and self-mendable polymers. Polymer Chemistry. 2010, 1, 978-987.
[5] Guimard, N.K., Oehlenschlaeger, K.K., Zhou, J., Hilf, S., Schmidt, F.G., Kowollik, C.B. Current trends in the field of self-healing materials. Macromolecular Chemistry and Physics. 2012, 213, 131-143.
[6] Yang, Y., Urban, M.W. Self-healing polymeric materials. Chemical Society Reviews. 2013, 42, 7446-7467.
[7] Zhong, N., Post, W. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices : A review. Composites : Part A. 2015, 69, 226-239.
[8] Hager, M.D., Zwaag, S.V.D., Schubert, U.S. Self-healing Materials. Advances in Polymer Science. 2016, 273, 1-409.
[9] Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M., Zikulnig-Rusch, E. Self-healing of densely crosslinked thermoset polymers—a critical review. Progress in Organic Coatings. 2017, 104, 232-249.
[10] Wang, H.P., Yuan, Y.C., Rong, M.Z., Zhang, M.Q. Self-healing of thermoplastics via living polymerization. Macromolecules. 2010, 43, 595-598.
[11] Wool, R.P. Self-healing materials : a review. Soft Matter. 2008, 4, 400-418.
[12] Jackson, A.C., Bartelt, J.A., Marczewski, K., Sottos, N.R., Braun, P.V. Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. Macromolecular Rapid Communications. 2011, 32, 82-87.
[13] Blaiszik, B.J., Caruso, M.M., McIlroy, D.A., Moore, J.S., White, S.R., Sottos, N.R. Microcapsules filled with reactive solutions for self-healing materials. polymer. 2009, 50, 990-997.
[14] Yuan, Y.C., Yin, T., Rong, M.Z., Zhang, M.Q. Self healing in polymers and polymer composites. concepts, realization and outlook : A review. eXPRESS Polymer Letters. 2008, 2, 238-250.
[15] Sottos, N.R., Toohey, K.S., Lewis, J.A., MooreE, J.S., White, S.R. Self-healing materials with microvascular networks. Nature Materials. 2007, 6, 581-585.
[16] Zhang, P., Li, G. Healing-on-demand composites based on polymer artificial muscle. polymer. 2015, 64, 29-38.
[17] Kuhl, N., Bode, S., Hager, M.D., Schubert, U.S. Self-healing polymers based on reversible covalent bonds. Advances in Polymer Science. 2016, 273, 1-58.
[18] Jeong, B., Kim, S.W., Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews. 2002, 54, 37-51.
[19] Schofield, W.C.E., Badyal, J.P.S. Controlled fragrant molecule release from surface-tethered cyclodextrin host-guest inclusion complexes. ACS Applied Materials and Interfaces. 2011, 3, 2051-2056.
[20] Cao, Z., Mi, L., Mendiola, J., Menye, J.R.E., Zhang, L., Xue, H., Jiang, S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angewandte Chemie International Edition. 2012, 51, 2602-2605.
[21] Fu, Q., Cheng, L., Zhang, Y., Shi, W. Preparation and reversible photo-crosslinking/photo-cleavage behavior of 4-methylcoumarin functionalized hyperbranched polyester. polymer. 2008, 49, 4981-4988.
[22] Diels, O., Alder, K. Synthesen in der hydroaromatischen reihe. European Journal of Organic Chemistry. 1928, 460, 98-122.
[23] Gandini, A. The furan/maleimide diels–alder reaction : a versatile click–unclick tool in macromolecular synthesis. Progress in Polymer Science. 2013, 38, 1-29.
[24] Bergman, S.D., Wudl, F. Mendable polymers. Journal of Materials Chemistry. 2008, 18, 41-62.
[25] Liu, Y.L., Chuo, T.W. Self-healing polymers based on thermally reversible diels–alder chemistry. Polymer Chemistry. 2013, 4, 2194-2205.
[26] Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K., Wudl, F. A thermally re-mendable cross-linked polymeric material. Science. 2002, 295, 1698-1702.
[27] Ling, J., Rong, M.Z., Zhang, M.Q. Coumarin imparts repeated photochemical remendability to polyurethane. Journal of Materials Chemistry. 2011, 21, 18373-18380.
[28] Hu, L., Cheng, X., Zhang, A. A facile method to prepare UV light-triggered self-healing polyphosphazenes. Journal of Materials Science. 2015, 50, 2239-2246.
[29] Froimowicz, P., Frey, H., Landfester, K. Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromolecular Rapid Communications. 2011, 32, 468-473.
[30] Yoon, J.A., Kamada, J., Koynov, K., Mohin, J., Nicolay, R., Zhang, Y., Balazs, A.C., Kowalewski, T., Matyjaszewski, K. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules. 2012, 45, 142-149.
[31] Cheng, C., Bai, X., Zhang, X., Li, H., Huang, Q., Tu, Y. Self-healing polymers based on a photo-active reversible addition-fragmentation chain transfer (RAFT) agent. Journal of Polymer Research. 2015, 22, 1-8.
[32] Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 2011, 44, 2536-2541.
[33] Otsuka, H., Nagano, S., Kobashi, Y., Maeda, T., Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chemical Communications. 2010, 46, 1150-1152.
[34] Deng, G., Tang, C., Li, F., Jiang, H., Chen, Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules. 2010, 43, 1191-1194.
[35] Deng, G., Li, F., Yu, H., Liu, F., Liu, C., Sun, W., Jiang, H., Chen, Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol−gel transitions. ACS Macro Letters. 2012, 1, 275-279.
[36] Zhang, Y., Tao, L., Li, S., Wei, Y. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules. 2011, 12, 2894-2901.
[37] Ying, H., Zhang, Y., Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nature Communications. 2014, 5, 3218-3226.
[38] Kennedy, K.G., Miles, D.T. Electrochemistry of ferrocene-modified monolayer-protected gold nanoclusters at reduced temperatures. Journal of Undergraduate Chemistry Research. 2004, 4, 145-150.
[39] Manakker, F.V.D., Vermonden, T., Nostrum, C.F.V., Hennink, W.E. Cyclodextrin-based polymeric materials : synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 2009, 10, 3157-3175.
[40] Harada, A., Takahashi, S. Preparation and properties of cyclodextrin-ferrocene inclusion complexes. Journal of the Chemical Society, Chemical Communications. 1984, 645-646.
[41] Harada, A. Cyclodextrin-based molecular machines. Accounts of Chemical Research. 2001, 34, 456-464.
[42] Yan, Q., Yuan, J., Cai, Z., Xin, Y., Kang, Y., Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society. 2010, 132, 9268-9270.
[43] Monflier, E., Hapiot, F., Tilloy, S. Cyclodextrins as supramolecular hosts for organometallic complexes. Chemical Reviews. 2006, 106, 767-781.
[44] Chung, J.W., Kwak, S.Y. Iron-induced cyclodextrin self-assembly into size-controllable nanospheres. Langmuir. 2010, 26, 2418-2423.
[45] Silva, L.C., Goncalves, I.S., Pillinger, M., Xue, W.M., Rocha, J., J.C., J., Dias, T., Kuhn, F.E. Synthesis and characterization of the inclusion compound of a methyltrioxorhenium(VII) adduct of 4-ferrocenylpyridine with beta-cyclodextrin. Journal of Organometallic Chemistry. 2002, 656, 281-287.
[46] Vasudevan, S., Mohanambe, L. Inclusion of ferrocene in a cyclodextrin-functionalized layered metal hydroxide : a new organometallic-organic-LDH nanohybrid. Inorganic Chemistry. 2005, 44, 2128-2130.
[47] Du, P., Liu, J., Chen, G., Jiang, M. Dual responsive supramolecular hydrogel with electrochemical activity. Langmuir. 2011, 27, 9602-9608.
[48] Singleton, M.L., Crouthers, D.J., Duttweiler, R.P., Reibenspies, J.H., Darensbourg, M.Y. Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. Inorganic Chemistry. 2011, 50, 5015-5026.
[49] Hu, J., Liu, S. Engineering responsive polymer building blocks with host−guest molecular recognition for functional applications. Accounts of Chemical Research. 2014, 47, 2084-2095.
[50] Harada, A., Takashima, Y., Nakahata, M. Supramolecular polymeric materials via cyclodextrin−guest interactions. Accounts of Chemical Research. 2014, 47, 2128-2140.
[51] Aboudzadeh, M.A., Muñoz, M.E., Santamaría, A., Marcilla, R., Mecerreyes, D. Facile synthesis of supramolecular ionic polymers that combine unique rheological, ionic conductivity, and self-healing properties. Macromolecular Rapid Communications. 2012, 33, 314-318.
[52] Bosnian, A.W., Brunsveld, L., Folmer, B.J.B., Sijbesma, R.P., Meijer, E.W. Supramolecular polymers : from scientific curiosity to technological reality. Macromolecular Symposia. 2003, 201, 143-154.
[53] Zhang, A., Yang, L., Lin, Y., Yan, L., Lu, H., Wang, L. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes : synthesis and characterization. Journal of Applied Polymer Science. 2013, 129, 2435-2442.
[54] Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.L., Leibler, L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. Journal of the American Chemical Society. 2009, 131, 7966-7967.
[55] Tee, B.C.-K., Wang, C., Allen, R., Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology. 2012, 7, 825-832.
[56] Wang, C., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry. 2013, 5, 1042-1048.
[57] Sun, Y., Lopez, J., Lee, H.-W., Liu, N., Zheng, G., Wu, C.-L., Sun, J., Liu, W., Chung, J.W., Bao, Z., Cui, Y. A stretchable graphitic carbon/si anode enabled by conformal coating of a self-healing elastic polymer. Advanced Materials. 2016, 28, 2455-2461.
[58] Chang, Y., Chen, W.Y., Yandi, W., Shih, Y.J., Chu, W.L., Liu, Y.L., Chu, C.W., Ruaan, R.C., Higuchi, A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(n-isopropyl acrylamide). Biomacromolecules. 2009, 10, 2092-2100.
[59] Han, C.C., Wei, T.C., Wu, C.S., Liu, Y.L. Temperature-responsive poly(tetrafluoroethylene) membranes grafted with branched poly(N-isopropylacrylamide) chains. Journal of Membrane Science. 2010, 358, 60-66.
[60] Peng, I.C., Yeh, C.C., Lu, Y.T., Muduli, S., Ling, Q.D., Alarfaj, A.A., Munusamy, M.A., Kumar, S.S., Murugan, K., Lee, H.c., Chang, Y., Higuchi, A. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials. 2016, 76, 76-86.
[61] Chiang, W.L., Hu, Y.C., Liu, H.Y., Hsiao, C.W., Sureshbabu, R., Yang, C.M., Chung, M.F., Chia, W.T., Sung, H.W. Injectable microbeads with a thermo-responsive shell and a pH-responsive core as a dual-switch-controlled release system. Small. 2014, 10, 4100-4105.
[62] Chuo, T.W., Wei, T.C., Chang, Y., Liu, Y.L. Electrically driven biofouling release of a poly(tetrafluoroethylene) membrane modified with an electrically induced reversibly cross-linked polymer. ACS Applied Materials and Interfaces. 2013, 5, 9918-9925.
[63] Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nature Communications. 2011, 2, 1-6.
[64] Chuo, T.W., Wei, T.C., Liu, Y.L. Electrically driven self-healing polymers based on reversible guest–host complexation of beta-cyclodextrin and ferrocene. Journal of Polymer Science Part A : Polymer Chemistry. 2013, 51, 3395-3403.
[65] Ling, J., Rong, M.Z., Zhang, M.Q. Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. polymer. 2012, 53, 2691-2698.
[66] Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A., Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie. 2011, 123, 1698-1701.
[67] Miyamae, K., Nakahata, M., Takashima, Y., Harada, A. Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest Interactions. Angewandte Chemie International Edition. 2015, 54, 8984-8987.
[68] Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R. New thermally remendable highly cross-linked polymeric materials. Macromolecules. 2003, 36, 1802-1807.
[69] Gandini, A., Coelho, D., Gomes, M., Reis, B., Silvestre, A. Materials from renewable resources based on furan monomers and furan chemistry : work in progress. Journal of Materials Chemistry. 2009, 19, 8656-8664.
[70] Gandini, A., Silvestre, A.J.D., Coelho, D. Reversible click chemistry at the service of macromolecular materials. Polymer Chemistry. 2011, 2, 1713-1719.
[71] Liu, Y.L., Hsieh, C.Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science Part A : Polymer Chemistry. 2006, 44, 905-913.
[72] Liu, Y.L., Chen, Y.W. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimideand furan-functionalized aromatic polyamides. Macromolecular Chemistry and Physics. 2007, 208, 224-232.
[73] Kavitha, A.A., Singha, N.K. “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality : a new class of self-healing polymeric material. ACS Applied Materials and Interfaces. 2009, 1, 1427-1436.
[74] Zhang, Y., Broekhuis, A.A., Picchioni, F. Thermally self-healing polymeric materials : the next step to recycling thermoset polymers? Macromolecules. 2009, 42, 1906-1912.
[75] Wilson, G.O., Caruso, M.M., Schelkopf, S.R., Sottos, N.R., White, S.R., Moore, J.S. Adhesion promotion via noncovalent interactions in self-healing polymers. ACS Applied Materials and Interfaces. 2011, 3, 3072-3077.
[76] Kötteritzsch, J., Stumpf, S., Hoeppener, S., Vitz, J., Hager, M.D., Schubert, U.S. One-component intrinsic self-healing coatings based on reversible crosslinking by diels–alder cycloadditions. Macromolecular Chemistry and Physics. 2013, 214, 1636-1649.
[77] Nji, J., Li, G. A biomimic shape memory polymer based self-healing particulate composite. polymer. 2010, 51, 6021-6029.
[78] Neuser, S., Michaud, V., White, S.R. Improving solvent-based self-healing materials through shape memory alloys. polymer. 2012, 53, 370-378.
[79] Burton, D.S., Gao, X., Brinson, L.C. Finite element simulation of a self-healing shape memory alloy composite. Mechanics of Materials. 2006, 38, 525-537.
[80] Li, G., Zhang, P. A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. polymer. 2013, 54, 5075-5086.
[81] Habault, D., Zhang, H., Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chemical Society Reviews. 2013, 42, 7244-7256.
[82] Rodriguez, E.D., Luo, X., Mather, P.T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Applied Materials and Interfaces. 2011, 3, 152-161.
[83] Wen, H., Chen, S., Ge, Z., Zhuo, H., Ling, J., Liu, Q. Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Advances. 2017, 7, 31525-31534.
[84] Zheng, P., McCarthy, T.J. A surprise from 1954 : siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. Journal of the American Chemical Society. 2012, 134, 2024-2027.
[85] Pratama, P.A., Sharifi, M., Peterson, A.M., Palmese, G.R. Room temperature self-healing thermoset based on the diels−alder reaction. ACS Applied Materials and Interfaces. 2013, 5, 12425-12431.
[86] Peterson, A.M., Jensen, R.E., Palmese, G.R. Room-temperature healing of a thermosetting polymer using the diels-alder reaction. ACS Applied Materials and Interfaces. 2010, 2, 1141-1149.
[87] Reutenauer, P., Buhler, E., Boul, P.J., Candau, S.J., Lehn, J.M. Room temperature dynamic polymers based on diels–alder chemistry. Chemistry - A European Journal. 2009, 15, 1893-1900.
[88] Cash, J.J., Kubo, T., Bapat, A.P., Sumerlin, B.S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macomolecules. 2015, 48, 2098-2106.
[89] Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature Chemistry. 2011, 3, 34-37.
[90] Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A. Preorganized hydrogel : self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Advanced Materials. 2013, 25, 2849-2853.
[91] Jonkers, H.M. Healing agent in cement-based materials and structures, and process for its preparation Technische Universiteit Delft, European, 2009, Vol. EP 2082999 A1.
[92] Jonkers, H.M. Healing agent for self-healing cementious material Technische Universiteit Delft, U.S.A, 2014, Vol. US8911549 B2.
[93] Patel, P. Helping concrete heal itself. In: Chemical and Engineering News, 2016, Vol. 94, pp. 29-30.
[94] Williams, G., Trask, R., Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Composites: Part A. 2007, 38, 1525-1532.
[95] Fernández, J.E. Materials for aesthetic, energy-efficient,and self-diagnostic buildings. Science. 2007, 315, 1807-1810.
[96] Wang, H., Zhou, H., Gestos, A., Fang, J., Lin, T. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Applied Materials and Interfaces. 2013, 5, 10221-10226.
[97] Wang, H., Zhou, H., Gestos, A., Fang, J., Niu, H., Ding, J., Lin, T. Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter. 2013, 9, 277-282.
[98] Zhou, H., Wang, H., Niu, H., Gestos, A., Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Advanced Functional Materials. 2013, 23, 1664-1670.
[99] Huang, C.H., Liu, Y.L. Self-healing polymeric materials for membrane separation : an example of a polybenzimidazole-based membrane for pervaporation dehydration on isopropanol aqueous solution. RSC Advances. 2017, 7, 38360-38366.
[100] Oh, J.Y., Gagné, S.R., Chiu, Y.C., Chortos, A., Lissel, F., Wang, G.J.N., Schroeder, B.C., Kurosawa, T., Lopez, J., Katsumata, T., Xu, J., Zhu, C., Gu, X., Bae, W.-G., Kim, Y., Jin, L., Chung, J.W., Tok, J.B.H., Bao, Z. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016, 539, 411-415.
[101] Bauer, S., Kaltenbrunner, M. Semiconductors that stretch and heal. Nature. 2016, 539, 366-367.
[102] Han, L., Lu, X., Wang, M., Gan, D., Deng, W., Wang, K., Fang, L., Liu, K., Chan, C.W., Tang, Y., Weng, L.T., Yuan, H. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small. 2017, 13, 1-9.
[103] Stankiewicz, A., Barker, M.B. Development of self-healing coatings for corrosion protection on metallic structures. Smart Materials and Structures. 2016, 25, 1-10.
[104] Wei, H., Wang, Y., Guo, J., Shen, N.Z., Jiang, D., Zhang, X., Yan, X., Zhu, J., Wang, Q., Shao, L., Lin, H., Wei, S., Guo, Z. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. Journal of Materials Chemistry A. 2015, 3, 469-480.
[105] Jadhav, R.S., Hundiwale, D.G., Mahulikar, P.P. Synthesis and characterization of phenol–formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. Journal of Applied Polymer Science. 2011, 119, 2911-2916.
[106] Boura, S.H., Peikari, M., Ashrafi, A., Samadzadeh, M. Self-healing ability and adhesion strength of capsule embedded coatings—micro and nano sized capsules containing linseed oil. Progress in Organic Coatings. 2012, 75, 292-300.
[107] Tatiya, P.D., Hedaoo, R.K., Mahulikar, P.P., Gite, V.V. Novel polyurea microcapsules using dendritic functional monomer : synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings. Industrial and Engineering Chemistry Research. 2013, 52, 1562-1570.
[108] Nesterova, T., Johansen, K.D., Pedersen, L.T., Kiil, S. Microcapsule-based self-healing anticorrosive coatings : capsule size, coating formulation, and exposure testing. Progress in Organic Coatings. 2012, 75, 309-318.
[109] Koh, E., Lee, S., Shin, J., Kim, Y.W. Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Industrial and Engineering Chemistry Research. 2013, 52, 15541-15548.
[110] Koh, E., Baek, S.Y., Kim, N.K., Lee, S., Shin, J., Kim, Y.W. Microencapsulation of the triazole derivative for self-healing anticorrosion coatings. New Journal of Chemistry. 2014, 38, 4409-4419.
[111] Wu, G., An, J., Sun, D., Tang, X., Xiang, Y., Yang, J. Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. Journal of Materials Chemistry A. 2014, 2, 11614-11620.
[112] Huang, M., Yang, J. Facile microencapsulation of HDI for self-healing anticorrosion coatings. Journal of Materials Chemistry. 2011, 21, 11123-11130.
[113] Sun, D., An, J., Wu, G., Yang, J. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. Journal of Materials Chemistry A. 2015, 3, 4435-4444.
[114] Huang, M., Zhang, H., Yang, J. Synthesis of organic silane microcapsules for self-healing corrosion resistant polymer coatings. Corrosion Science. 2012, 65, 561-566.
[115] Park, J.H., Braun, P.V. Coaxial electrospinning of self-healing coatings. Advanced Materials. 2010, 22, 496-499.
[116] Lutz, A., Berg, O.v.d., Damme, J.V., Verheyen, K., Bauters, E., Graeve, I.D., Prez, F.E.D., Terryn, H. A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Applied Materials and Interfaces. 2015, 7, 175-183.
[117] Andreeva, D.V., Fix, D., Mohwald, H., Shchukin, D.G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Advanced Materials. 2008, 20, 2789-2794.
[118] Xiao, Y.K., Ji, W.F., Chang, K.S., Hsu, K.T., Yeh, J.M., Liu, W.R. Sandwich-structured rGO/PVDF/PU multilayer coatings for anti-corrosion application. RSC Advances. 2017, 7, 33829-33836.
[119] Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Möhwald, H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Advanced Materials. 2006, 18, 1672-1678.
[120] Zheludkevich, M.L., Shchukin, D.G., Yasakau, K.A., Mohwald, H., Ferreira, M.G.S. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chemistry of Materials. 2007, 19, 402-411.
[121] Fan, F., Zhou, C., Wang, X., Szpunar, J. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Applied Materials and Interfaces. 2015, 7, 27271-27278.
[122] Li, G.L., Zheng, Z., Mohwald, H., Shchukin, D.G. Silica/polymer double-walled hybrid nanotubes : synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano. 2013, 7, 2470-2478.
[123] Zheng, Z., Huang, X., Schenderlein, M., Borisova, D., Cao, R., Möhwald, H., Shchukin, D. Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers. Advanced Functional Materials. 2013, 23, 3307-3314.
[124] Zheng, Z., Schenderlein, M., Huang, X., Brownbill, N.J., Blanc, F.d.r., Shchukin, D. Influence of functionalization of nanocontainers on self-healing anticorrosive coatings. ACS Applied Materials and Interfaces. 2015, 7, 22756-22766.
[125] Li, G.L., Schenderlein, M., Men, Y., Möhwald, H., Shchukin, D.G. Monodisperse polymeric core–shell nanocontainers for organic self-healing anticorrosion coatings. Advanced Materials Interfaces. 2014, 1, 1-6.
[126] Qian, H., Xu, D., Du, C., Zhang, D., Li, X., Huang, L., Deng, L., Tu, Y., Mol, J.M.C., Terryn, H.A. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A. 2017, 5, 2355-2364.
[127] Xie, T., Rousseau, I.A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. polymer. 2009, 50, 1852-1856.
[128] Luo, X., Mather, P.T. Shape memory assisted self-healing coating. ACS Macro Letters. 2013, 2, 152-156.
[129] Abdullayev, E., Abbasov, V., Tursunbayeva, A., Portnov, V., Ibrahimov, H., Mukhtarova, G., Lvov, Y. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Applied Materials and Interfaces. 2013, 5, 4464-4471.
[130] Rahimi, A., Amiri, S. Self-healing anticorrosion coating containing 2-mercaptobenzothiazole and 2-mercaptobenzimidazole nanocapsules. Journal of Polymer Research. 2016, 4, 1-10.
[131] Grigoriev, D., Shchukina, E., Shchukin, D.G. Nanocontainers for self-healing coatings. Advanced Materials Interfaces. 2017, 4, 1-11.
[132] He, Y., Zhang, C., Wu, F., Xu, Z. Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer. Synthetic Metals. 2016, 212, 186-194.
[133] Lu, W.K., Elsenbaumer, R.L., Wesslingb, B. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals. 1995, 71, 2163-2166.
[134] Talo, A., Passiniemi, P., Forsen, Ylasaari, S. Polyaniline/epoxy coatings with good anti-corrosion properties. Synthetic Metals. 1997, 85, 1333-1334.
[135] Fahlman, M., Jasty, S., Epstein, A.J. Corrosion protection of iron/steel by emeraldine base polyaniline: an X-ray photoelectron spectroscopy study. Synthetic Metals. 1997, 85, 1323-1326.
[136] Tallman, D.E., Spinks, G., Dominis, A., Wallace, G.G. Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry. 2002, 6, 73-84.
[137] Lu, F.L., Wudl, F., Nowak, M., Heeger, A.J. Phenyl-capped octaaniline(COA) : an excellent model for polyaniline. Journal of the American Chemical Society. 1986, 108, 8311-8313.
[138] Wei, Y., Yang, C., Ding, T. A one-step method to synthesize N,N'-bis(4'-aminophenyl)-1,4-quinonenediimine and its derivatives. Tetrahedron Leuers. 1996, 37, 731-734.
[139] Wang, Z.Y., Yang, C., Gao, J.P., Lin, J., Meng, X.S. Electroactive polyimides derived from amino-terminated aniline trimer. Macromolecules. 1998, 31, 2702-2704.
[140] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., Wei, Y. Synthesis of parent aniline tetramer and pentamer and redox properties. Materials Letters. 2005, 59, 2446-2450.
[141] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., Wei, Y. Synthesis of phenyl-capped aniline heptamer and its UV-vis spectral study. Synthetic Metals. 2005, 149, 129-134.
[142] Yang, X., Jiang, Y., Zhao, T., Yu, Y. Amino-capped aniline trimer/epoxy resin intercrosslinked networks. Journal of Applied Polymer Science. 2006, 102, 222-226.
[143] Huang, K.Y., Jhuo, Y.S., Wu, P.S., Lin, C.H., Yu, Y.H., Yeh, J.M. Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. European Polymer Journal. 2009, 45, 485-493.
[144] Weng, C.J., Chang, C.H., Peng, C.W., Chen, S.W., Yeh, J.M., Hsu, C.L., Wei, Y. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chemistry of Materials. 2011, 23, 2075-2083.
[145] Peng, C.W., Chang, K.C., Weng, C.J., Lai, M.C., Hsu, C.H., Hsu, S.C., Hsu, Y.Y., Hung, W.I., Wei, Y., Yeh, J.M. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochimica Acta. 2013, 95, 192-199.
[146] Chang, K.C., Lu, H.I., Peng, C.W., Lai, M.C., Hsu, S.C., Hsu, M.H., Tsai, Y.K., Chang, C.H., Hung, W.I., Wei, Y., Yeh, J.M. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. ACS Applied Materials and Interfaces. 2013, 5, 1460-1467.
[147] Lin, S.C., Wu, C.S., Yeh, J.M., Liu, Y.L. Reaction mechanism and synergistic anticorrosion property of reactive blends of maleimide-containing benzoxazine and amine-capped aniline trimer. Polymer Chemistry. 2014, 5, 4235-4244.
[148] Solvas, J.M.C., Salmeron, E.O., Fernandez, I., Fuentes, L.G., Gonzalez, F.S., Berenguel, A.V. Ferrocene–beta-cyclodextrin conjugates : synthesis, supramolecular behavior, and use as electrochemical sensors. Chemistry A European journal. 2009, 15, 8146-8162.
[149] Meldrum, A.N. LIV.—A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions. 1908, 93, 598-601.
[150] Davidson, D., Bernhard, S.A. The structure of meldrum's supposed beta-lactonic acid. Journal of the American Chemical Society. 1948, 70, 3426-3428.
[151] Garcia, S.J., Suay, J. Anticorrosive properties of an epoxy-meldrum acid cured system catalyzed by erbium III trifluromethanesulfonate. Progress in Organic Coatings. 2006, 57, 319-331.
[152] Chou, Y.K., Chen, Y., Lin, L.K., Liu, Y.L. Thermosetting resins based on a self-crosslinkable monomer/polymer possessing meldrum’s acid groups. Macromolecular Chemistry and Physics. 2017, 1-9.
[153] Chen, Y., Lin, L.K., Chiang, S.J., Liu, Y.L. A cocatalytic effect between meldrum’s acid and benzoxazine compounds in preparation of high performance thermosetting resins. Macromolecular Rapid Communications. 2017, 38.
[154] Lin, L.K., Hu, C.C., Su, W.C., Liu, Y.L. Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications. 2015, 51, 12760-12763.
[155] Kuang, X., Liu, G., Dong, X., Liu, X., Xu, J., Wang, D. Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker. Journal of Polymer Science Part A : Polymer Chemistry. 2015, 53, 2094-2103.
[156] Staudinger, H. Ketene, eine neue Körperklasse. Berichte der deutschen chemischen Gesellschaft. 1905, 38, 1735-1739.
[157] Leibfarth, F.A., Kang, M., Ham, M., Kim, J., Campos, L.M., Gupta, N., Moon, B., Hawker, C.J. A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry. 2010, 2, 207-212.
[158] Leibfarth, F.A., Wolffs, M., Campos, L.M., Delany, K., Treat, N., Kade, M.J., Moon, B., Hawker, C.J. Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science. 2012, 3, 766-771.
[159] Kwon, T.W., Jeong, Y.K., Lee, I., Kim, T.S., Choi, J.W., Coskun, A. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Advanced Materials. 2014, 26, 7979-7985.
[160] Yilgör, İ., McGrath, J.E. Polysiloxane containing copolymers : a survey of recent developments. Advances in Polymer Science. 1988, 86, 1-86.
[161] Shen, J., Shao, Z., Li, S. Physical ageing studies of polysiloxane-modified epoxy resin. polymer. 1995, 36, 3479-3483.
[162] Zhu, B., Katsoulis, D.E., Keryk, J.R. Toughening of a polysilsesquioxane network by simultaneous incorporation of short and long PDMS chain segments. Macromolecules. 2004, 37, 1455-1462.
[163] Liu, Y.L., Chang, G.P., Hsu, K.Y., Chang, F.C. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis(glycidyldimethylsiloxy)octasilsesquioxane and small-molecule curing agents. Journal of Polymer Science Part A : Polymer Chemistry. 2006, 44, 3825-3835.
[164] Tseng, M.C., Liu, Y.L. Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. polymer. 2010, 51, 5567-5575.
[165] Li, G., Wang, L., Ni, H., Jr., C.U.P. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers : a review. Journal of Inorganic and Organometallic Polymers. 2002, 11, 123-154.
[166] Yen, Y.C., Kuo, S.W., Huang, C.F., Chen, J.K., Chang, F.C. Miscibility and hydrogen-bonding behavior in organic/inorganic polymer hybrids containing octaphenol polyhedral oligomeric silsesquioxane. The Journal of Physical Chemistry B. 2008, 112, 10821-10829.
[167] Liu, Y.L., Liu, C.S., Cho, C.I., Hwu, M.J. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films. Nanotechnology. 2007, 18, 225701-225705.
[168] Liu, Y.L., Tseng, M.C., Fangchiang, M.H. Polymerization and nanocomposites properties of multifunctional methylmethacrylate POSS. Journal of Polymer Science Part A : Polymer Chemistry. 2008, 46, 5157-5166.
[169] Liu, Y.L., Fangchiang, M.H. Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. Journal of Materials Chemistry. 2009, 19, 3643-3647.
[170] Kuo, S.W., Wu, Y.C. Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. Journal of Materials Chemistry. 2012, 22, 2982-2991.
[171] Kuo, S.W., Chang, F.C. POSS related polymer nanocomposites. Progress in Polymer Science. 2011, 36, 1649-1696.
[172] Lin, Y.C., Kuo, S.W. Self-assembly and secondary structures of linear polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticles through click chemistry. Journal of Polymer Science Part A : Polymer Chemistry. 2011, 49, 2127-2137.
[173] Xu, Z., Zhao, Y., Wang, X., Lin, T. A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on diels–alder chemistry. Chemical Communications. 2013, 49, 6755-6757.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *