帳號:guest(3.147.84.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪妙肯
作者(外文):Hung, Miao-Ken
論文名稱(中文):高三重態能量σ-π共軛高分子載體應用於高效率電致發光元件之研究
論文名稱(外文):Investigation of High Triplet σ‒π Conjugated Polymer Hosts for Highly Efficient Electroluminescence Devices
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-An
口試委員(中文):陳信龍
陳錦地
華繼中
王宗櫚
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032802
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:217
中文關鍵詞:有機發光二極體熱活化延遲螢光重原子效應高三重態濕式製程
外文關鍵詞:polymer light-emitting diode (PLED)thermally activated delayed fluorescence (TADF)solution processhigh triplet energyheavy-atom effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:150
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統共軛高分子用於高分子發光二極體(PLED),因為適合大面積和成本製作而被廣泛地研究。然而,此類型的高分子作為主體通常存在三重態能量(ET)低於客體的問題,使得ET從高放光效率的客體反向傳遞到低放光效率的主體而導致低發光效率,從而限制其在全彩顯示器或照明應用的發展。相較下,σ-π共軛高分子是個很好的結構可以做為同時滿足高ET和適當載子遷移率的主體材料。為此,本論文對σ-π共軛高分子主體的合成和光電特性進行系統性的研究。
在以下章節中,第一章將提供有機發光二極體(OLEDs)的概述,包括基本工作原理、半導體介面理論、主客體系統的放光機制以及熱活化延遲螢光(TADF)等。然後,第二章將對目前高效率的O/PLEDs進行全面性的介紹並給予本論文的研究動機。第三章記錄基本量測及鑑定、元件製作和合成細節等實驗方法。
在第四章中,我們研究了σ-π共軛高分子主體材料的光物理特性,發現矽σ-π共軛高分子主體側鏈上的電洞傳輸基團(TPA)和/或電子傳輸基團(OXD)會形成激發複體。而且,從磷光光譜可同時發現獨立基團(TPA和/或OXD)、激發複體、矽σ-π共軛高分子主鏈的放光,稱之為多重三重態。此多重三重態的形成提供了三重態激子能量轉移到磷光客體的額外途徑。
在第五章中,我們證實了引入鍺(Ge)重原子到σ-π共軛高分子中可以得到高ET (2.86 eV)的高分子主體P(DMAC-Ge),其不僅可以讓主體得以有效將能量轉移給藍光客體,而且可以降低極化率而讓產生的光色更藍移以及增強自旋軌道耦合以促進客體的反向系統間跨越(RISC)速率而捕捉更多的三重態激子用於發光。當元件使用P(DMAC-Ge)作為主體並混摻天藍光TADF客體,其達到創紀錄的最大外部量子效率(EQE) 24.1%,且在亮度500 cd/m2下的EQE仍有22.8%。因此,目前的研究開拓了一種新的高分子主體的結構設計,並得以作為其它光色TADF客體材料的主體。
第六章延伸了第五章的研究工作,我們設計一系列中心原子(X)由C、Si、Ge 和Sn組成並以雙聯苯-X作為重複單元的σ-π共軛高分子,藉此了解σ-π共軛高分子主鏈的基本特性。我們發現當不同IVA族原子作為中心原子時,其不同σ-π共軛高分子之間明顯存在光學與電性的差異,此影響也反映在其電激發光的表現上。此研究工作在高分子主體的主鏈設計上提供了有用的方針。
在第七章中,我們使用P(DMAC-Ge)分別作為天藍磷光以及藍/綠/紅/白TADF PLEDs的主體。其優化的元件效率對於天藍磷光以及藍/綠/紅/白TADF元件分別達到創紀錄的外部量子效率19.7%、22.3%、20.8% 和4.9%,且放光峰分別為。當進步一摻雜入DMAC-TRZ / Ir-O / Ir-R至發光層中可得到T-P混摻的白光PLED,其色度座標為(0.34, 0.40)並達到創紀錄的EQE 17.2%。此研究工作為首度使用單一種主體材料達到高效率全彩PLEDs的應用。
在第八章中,我們提出四種電子予體型高分子主體,目的在於了解不同電子予體型的主體材料在主/客體系統中對於藍/綠/紅TADF客體的影響。研究中,我們觀察到來自予體-受體 (D-A)相互作用所形成的單重態和三重態的主/客激發複體。然後,我們對主/客激發複體對於光致發光(PL)和電致發光(EL)性質的影響進行一系列的探討,並從中找出最好的高分子主體結構以實現高效能全彩TADF元件的應用。此外,TADF客體得PL效率由於受到主/客激發複體的影響,最終也反映在它們元件的量子效率上。我們相信這類D-A的相互作用同樣也會發生在小分子主/客體混摻的系統中以及非摻雜的TADF發光體系統中。

Conventional conjugated polymers for use as polymer light-emitting diodes (PLEDs) have been studied extensively due to their capability for large-area and low-cost fabrication. However, this type of PLED usually suffers from the issue of the host with lower triplet energy (ET) than the guest materials. It leads to a low emitting efficiency through back transfer of ET from the guest to the polymer hosts in their corresponding devices and thereby limits the development for full-color display or lighting application. In comparison, the σ-π conjugated polymer is a promising candidate structure for developing into the host that can satisfy the requirement of high ET as well as adequate carrier mobility. For this purpose, in this thesis, the investigations for σ-π conjugated polymer hosts are carried out, including their synthesis and optoelectronic properties.
In the following chapters, an overview of OLEDs is given in Chapter 1, including the basic working principle, fundamental theory on semiconductor junctions, emission mechanism in host-guest system, and principle of thermally activated delayed fluorescence (TADF) OLEDs etc. Then, a comprehensive summary of the state-of-the-art O/PLEDs and the thesis motivation are given in Chapter 2. The experimental methods are presented in Chapter 3, which includes the general measurements and characterization, device fabrication and details of synthetic methods.
In Chapter 4, the photophysical properties of σ‒π polymer host materials are investigated. The bipolar and unipolar side arm on Si-based σ-π conjugated polymer hosts can form the excited-state complexes between their hole transport moiety (triphenylamine, TPA) and/or electron transport moiety (oxadiazole, OXD) side arms. Moreover, the triplet states of the isolated moiety (TPA or/and OXD), excited-state complex and σ-π polymer backbone can exist simultaneously, called multiple triplet states. The formation of multiple triplet states provides an additional route for transferring triplet exciton energy to phosphor dopant.
Chapter 5 demonstrates that the heavy-atom germanium (Ge) in σ-π conjugated polymer host, poly(acridan grafted biphenyl germanium), P(DMAC-Ge), provides high ET level (2.86 eV) to give efficient energy transfer from host to blue guest, low orientation polarizability leading to bluer emission from the guest, and the enhancement of spin-orbit coupling to promote the reversed intersystem crossing (RISC) rate of guest and thus harvesting more triplet excitons for light emission. The sky-blue TADF electroluminescence using this host/guest pair gives the record-high external quantum efficiency (EQE) 24.1% at maximum and 22.8% at 500 cd/m2. Thus, the present study opens up a new promising design route of polymer host for various TADF guests for highly efficient TADF PLED.
Chapters 6 extends the work of Chapter 5, a series of σ‒π polymers grafted biphenyl side chain, composed of biphenyl-X as the repeat unit, where X= C, Si, Ge and Sn with the radii 70, 110, 125 and 145 pm, respectively, are proposed for further exploring differences of the σ‒π polymer backbones with various group IVA central atoms. The most crucial point in this study is that the ET levels and charge transport properties of σ‒π polymers are highly affected by their central atoms, which result in significant differences in electroluminescence properties. Such findings in this work provide useful guidelines on the construction and selection of backbones for designing polymer hosts.
Chapter 7 employs the polymer host P(DMAC-Ge) in sky-blue phosphorescence and blue/green/red/white TADF PLEDs, respectively. The optimized devices using P(DMAC-Ge) as host along with the cohost DCzPPy in the EML and doping with sky-blue Ph- and B/G/R TADF- guests, respectively, achieve record-high maximum EQEs of 19.7%, 22.3%, 20.8% and 4.9% with emission peaks at 470, 485, 508 and 630 nm, respectively. Upon further dopping the three-color dopants (DMAC-TRZ/Ir-O/Ir-R) into the emitting layer, the T-P hybrid white PLED shows the record-high EQE 17.2% with CIE (0.34, 0.40). This is the first report using the single cohost to achieve the full-color TADF PLEDs with high device performance.
In Chapter 8, four donor type D-polymer hosts comprising Si-/Ge- based biphenyl unit polymer backbones and various donor side arms are proposed, which aims at understanding the effect of hosts on the optoelectronic properties of the blue/green/red (B/G/R) TADF emitters in host/TADF-guest system. The singlet and triplet host/guest exciplexes from the donor-acceptor interactions between the polymer hosts and TADF emitters are observed. Importantly, this work provides a serial comparison to the influence of the host/guest exciplex on PL and EL properties, and finds out the promising structure of polymer host to realize highly efficient full-color TADF device applications. Furthermore, the PL efficiencies of the TADF emitters influenced by host/guest exciplexes also reflect on their external quantum efficiencies (EQEs). Such D-A interactions should also occur in small-molecule host/guest system as well as non-doped TADF emitter system.
CHAPTER 1: INTRODUCTION 1
1-1 Preface 1
1-2 Application and current development of OLEDs 2
1-3 Evolution of organic electroluminescence devices 5
1-4 Metal-semiconductor junctions 6
1-4.1 Metal-metal junction 6
1-4.2 Schottky junctions 7
1-4.3 Ohmic junction 11
1-5 Basic working principle of OLED 12
1-6 Fluorescent, phosphorescent and TADF OLEDs 14
1-7 Emission mechanisms in host-dopant system 16
1-8 Developments and Fundamental principles of TADF OLEDs 19
1-8.1 Development of TADF OLEDs 19
1-8.2 TADF mechanism and working principle 20
1-8.3 Requirements for an ideal TADF emitter design 23
1-8.4 Key parameters for TADF electroluminescence 24
1-9 Electronic spin-orbit coupling 24
1-10 References 26
CHAPTER 2: Literature Review and Thesis Motivation 28
2-1 State-of-the-art R/G/B OLEDs by Dry Process 28
2-2 State-of-the-art R/G/B OLEDs by Solution Process 29
2-3 State-of-the-art White TADF OLEDs by Dry Process 31
2-4 State-of-the-art White TADF OLEDs by Solution Process 33
2-5 State-of-the-art R/G/B and White Phosphorescent OLEDs by Dry and Solution Processes 34
2-6 Literature Analysis 36
2-7 Thesis Motivation 37
2-8 References 38
CHAPTER 3: EXPERIMENTAL METHODS 43
3-1 Synthetic Methods 43
3-2 General Measurements and characterization 61
3-2.1 Physical characterization 61
3-2.2 Optical characterization 62
3-2.3 Electrochemical characterization 63
3-2.4 Theoretical Methodology 64
3-2.5 Device fabrication 64
3-3 Materials for Device Fabrications 65
3-3.1 Anode and Hole Injection Materials 65
3-3.2 Transport Layer Materials 65
3-3.3 Phosphorescent and TADF emitters 66
3-4 References 66
CHAPTER 4: Influence of Multiple Triplet States in Bipolar and Unipolar Diphenylsilane σ-π Conjugated Polymer on Electro –phosphorescence 67
4-1 Introduction 67
4-2 Redults and Discussion 70
4-2.1 Si-based σ-π polymer hosts 70
4-2.2 Thermal, electrochemical and photophysical properties of σ-π polymer host 71
4-2.3 Multiple triplet state in σ-π polymer host 78
4-2.4 Influence of excited-state complex of polymer host on device performance 83
4-3 Conclusion 85
4-4 References 85
CHAPTER 5: Acridan Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability and External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence 89
5-1 Introduction 89
5-2 Results and Discussion 91
5-2.1 Synthesis and Physical Characterization of σ-π Conjugated Polymers 91
5-2.2 Orientation Polarizability Effect of Host on Emission Color of TADF Guest 96
5-2.3 External Heavy-Atom Effect on TADF Guest 102
5-2.4 Device Performance for Host with σ-π Conjugated or Non-Conjugated Backbone 106
5-3 Conclusion 115
5-4 References 115
CHAPTER 6: Optoelectronic Properties of High Triplet σ‒π Conjugated Poly[(biphenyl group-IVA-atom (C, Si, Ge, Sn)] Backbones 120
6-1 Introduction 120
6-2 Results and Discussion 122
6-2.1 Design Strategy for High ET σ‒π Polymer 122
6-2.2 Theoretical Calculations and Photophysical Characteristics 126
6-2.3 Electrochemical, Triplet Energy and Charge Transport Properties 129
6-2.4 Sky-Blue Ph- and TADF- PLEDs with P(dBPh-X)s as Host 137
6-3 Conclusion 140
CHAPTER 7: Poly(Acridan Grafted Biphenyl Germanium) as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Electroluminescence Devices 147
7-1 Introduction 147
7-2 Results and Discussion 150
7-2.1 Significance of Ge-Polymer Backbone Effect on Electron Transport and Device Performance 150
7-2.2 Optical Characteristics and Electroluminescence Dynamics for the Polymer Host P(DMAC-Ge) 155
7-2.3 High Performance Sky-Blue Phosphorescence and B/G/R TADF PLEDs 159
7-2.4 TADF/Phosphor (T-P) Hybrid TADF White PLEDs 163
7-3 Conclusion 167
7-4 References 168
CHAPTER 8: Exploration of Donor-Acceptor Interactions in Donor-Grafted Polymer Host/TADF-Guest System for Highly Efficient Photoluminescence and Electroluminescence 175
8-1 Introduction 175
8-2 Results and Discussion 177
8-2.1 Possible Emitting Species in Host/TADF-Guest System 177
8-2.1.1 Thermal, optical and electrochemical properties 179
8-2.2 Exciplexes (Dg/Ag)* from Intermolecular D/A Interaction 183
8-2.3 Donor-Acceptor Interaction in Simulated Donor/Acceptor System 185
8-2.4 Exciplexes (Dh/Ag)* from Host-Guest Interaction 189
8-2.5 Influence of the Exciplexes 3(Dh/Ag)* on B/G/R TADF Emissions 199
8-2.5.1 Influence of the Exciplexes 3(Dh/Ag)* on B/G/R TADF Emissions 202
8-2.6 Mechanism of D-polymer Host-TADF Guest Interaction 203
8-2.7 Influence of (Dh/Ag)* on Device Characterization 204
8-2.7.1 Side Chain Effects of D-polymer Hosts on EL Spectral Stability 207
8-3 Conclusion 210
8-4 References 211
Chapter 1:
(1) Tang, C. W.; VanSlyke, S. A., Organic Electroluminescent Diodes. Applied Physics Letters 1987, 51, 913.
(2) Batool, F., A Review Paper on: Organic Light-Emitting Diode (OLED) Technology and Applications. IJARCCE 2016, 5, 152.
(3) Chang, Y.-L.; Lu, Z.-H., White Organic Light-Emitting Diodes for Solid-State Lighting. J. Display Technol. 2013, 9, 459.
(4) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs). Adv Mater 2010, 22, 572.
(5) An Introduction to OLED Displays. https://www.oled-info.com/oled-introduction.
(6) Sasabe, H.; Kido, J., Recent Progress in Phosphorescent Organic Light-Emitting Devices. European Journal of Organic Chemistry 2013, 2013, 7653.
(7) Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv Mater 2017, 29.
(8) Liquid-Crystal Display (LCD) and Organic LED (OLED) Display. https://www.nikon.com/products/fpd/technology/story01.htm.
(9) OLED TV: Introduction and Market News. https://www.oled-info.com/oled-tv.
(10) WRGB OLED vs. RGB OLED. http://www.newspim.com/news/view/20150506000220.
(11) OLED Lighting Introduction and Market Status. https://www.oled-info.com/oled-lighting.
(12) OLED Lighting Future. https://www.oled-info.com/idtechex-still-optmistic-about-oled-lighting-market-sees-it-reaching-18-billion-sales-2025.
(13) Yook, K. S.; Lee, J. Y., Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv Mater 2014, 26, 4218.
(14) 2017 Solution Process OLED Annual Report. http://ubiresearch.com/2017-solution-process-oled-annual-report/.
(15) Wei, Q.; Ge, Z.; Voit, B., Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromol Rapid Commun 2018, 40, 1800570.
(16) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R., All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3, 18020.
(17) Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38, 2042.
(18) Kim, K. H.; Kim, J. J., Origin and Control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs. Adv. Mater. 2018, 30, 1705600.
(19) Kwon, J.-H.; Pode, R., High Efficiency Red Phosphorescent Organic Light-Emitting Diodes with Simple Structure. In Organic Light Emitting Diode - Material, Process and Devices, 2011.
(20) Lecture 9: Metal-Semiconductor Junctions. University of the Philippines Los Baños.
(21) OLED: Materials and Devices of Dream Displays夢幻顯示器: OLED材料與元件. 陳金鑫; 黃孝文, 五南: 台北市, 2007.
(22) Suzuri, Y.; Oshiyama, T.; Ito, H.; Hiyama, K.; Kita, H., Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes. Sci. Technol. Adv. Mater. 2014, 15, 054202.
(23) Tao, Y.; Yang, C.; Qin, J., Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev 2011, 40, 2943.
(24) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234.
(25) Park, I. S.; Matsuo, K.; Aizawa, N.; Yasuda, T., High-Performance Dibenzoheteraborin-Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet-Singlet Spin Conversion. Advanced Functional Materials 2018, 28, 1802031.
(26) Bowen Li; Zhiheng Wang; Shi-Jian Su; Fengyun Guo; Yong Cao; Zhang, Y., Quinazoline-Based Thermally Activated Delayed Fluorecence for High-Performance OLEDs with External Quantum Efficiencies Exceeding 20%. Adv. Optical Mater. 2019, 1801496.
Chapter 2:
(1) Liu, W.; Zheng, C. J.; Wang, K.; Zhang, M.; Chen, D. Y.; Tao, S. L.; Li, F.; Dong, Y. P.; Lee, C. S.; Ou, X. M.; Zhang, X. H., High Performance All Fluorescence White Organic Light Emitting Devices with a Highly Simplified Structure Based on Thermally Activated Delayed Fluorescence Dopants and Host. ACS Appl. Mater. Interfaces 2016, 8, 32984.
(2) Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C., Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976.
(3) Ahn, D. H.; Lee, H.; Kim, S. W.; Karthik, D.; Lee, J.; Jeong, H.; Lee, J. Y.; Kwon, J. H., Highly Twisted Donor-Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device. ACS Appl Mater Interfaces 2019, 11, 14909.
(4) Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H., Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics 2018, 12, 235.
(5) Zeng, W.; Lai, H. Y.; Lee, W. K.; Jiao, M.; Shiu, Y. J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K. T.; Wu, C. C.; Yang, C., Achieving Nearly 30% External Quantum Efficiency for Orange-Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids. Adv. Mater. 2018, 30.
(6) Furue, R.; Matsuo, K.; Ashikari, Y.; Ooka, H.; Amanokura, N.; Yasuda, T., Highly Efficient Red-Orange Delayed Fluorescence Emitters Based on Strong π-Accepting Dibenzophenazine and Dibenzoquinoxaline Cores: toward a Rational Pure-Red OLED Design. Adv. Opt. Mater. 2018, 6.
(7) Wada, Y.; Kubo, S.; Kaji, H., Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30.
(8) Jeon, S. K.; Park, H. J.; Lee, J. Y., Highly Efficient Soluble Blue Delayed Fluorescent and Hyperfluorescent Organic Light-Emitting Diodes by Host Engineering. ACS Appl Mater Interfaces 2018, 10, 5700.
(9) Ban, X.; Zhu, A.; Zhang, T.; Tong, Z.; Jiang, W.; Sun, Y., Design of encapsulated hosts and guests for highly efficient blue and green thermally activated delayed fluorescence OLEDs based on a solution-process. Chem. Commun. 2017, 53, 11834.
(10) Hu, Y.; Cai, W.; Ying, L.; Chen, D.; Yang, X.; Jiang, X.-F.; Su, S.; Huang, F.; Cao, Y., Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. J. Mater. Chem. C 2018, 6, 2690.
(11) Yang, Y.; Wang, S.; Zhu, Y.; Wang, Y.; Zhan, H.; Cheng, Y., Thermally Activated Delayed Fluorescence Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Roll-Off. Adv. Funct. Mater. 2018, 28.
(12) Wang, Y.; Zhu, Y.; Xie, G.; Zhan, H.; Yang, C.; Cheng, Y., Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. J. Mater. Chem. C 2017, 5, 10715.
(13) Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F., Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139, 17739.
(14) Ren, Z.; Nobuyasu, R. S.; Dias, F. B.; Monkman, A. P.; Yan, S.; Bryce, M. R., Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Macromolecules 2016, 49, 5452.
(15) Luo, D.; Chen, Q.; Gao, Y.; Zhang, M.; Liu, B., Extremely Simplified, High-Performance, and Doping-Free White Organic Light-Emitting Diodes Based on a Single Thermally Activated Delayed Fluorescent Emitter. ACS Energy Letters 2018, 3, 1531.
(16) Li, J.; Ding, D.; Tao, Y.; Wei, Y.; Chen, R.; Xie, L.; Huang, W.; Xu, H., A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. Adv. Mater. 2016, 28, 3122.
(17) Liu, X. K.; Chen, Z.; Qing, J.; Zhang, W. J.; Wu, B.; Tam, H. L.; Zhu, F.; Zhang, X. H.; Lee, C. S., Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex. Adv. Mater. 2015, 27, 7079.
(18) Liang, J.; Li, C.; Zhuang, X.; Ye, K.; Liu, Y.; Wang, Y., Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for High-Efficiency Hybrid Warm-White OLEDs with Stable High Color-Rendering Index. Adv. Funct. Mater. 2018, 28.
(19) Wu, Z.; Yu, L.; Zhao, F.; Qiao, X.; Chen, J.; Ni, F.; Yang, C.; Ahamad, T.; Alshehri, S. M.; Ma, D., Precise Exciton Allocation for Highly Efficient White Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Adv. Opt. Mater. 2017, 5.
(20) Li, C.; Nobuyasu, R. S.; Wang, Y.; Dias, F. B.; Ren, Z.; Bryce, M. R.; Yan, S., Solution-Processable Thermally Activated Delayed Fluorescence White OLEDs Based on Dual-Emission Polymers with Tunable Emission Colors and Aggregation-Enhanced Emission Properties. Advanced Optical Materials 2017, 5.
(21) Ban, X.; Chen, F.; Liu, Y.; Pan, J.; Zhu, A.; Jiang, W.; Sun, Y., Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes. Chemical Science 2019.
(22) Ban, X.; Chen, F.; Zhao, Y.; Zhu, A.; Tong, Z.; Jiang, W.; Sun, Y., Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs-Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters. ACS Appl Mater Interfaces 2018, 10, 37335.
(23) Pal, A. K.; Krotkus, S.; Fontani, M.; Mackenzie, C. F. R.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E., High-Efficiency Deep-Blue-Emitting Organic Light-Emitting Diodes Based on Iridium(III) Carbene Complexes. Adv. Mater. 2018, 30, e1804231.
(24) Shin, H.; Lee, J. H.; Moon, C. K.; Huh, J. S.; Sim, B.; Kim, J. J., Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Adv. Mater. 2016, 28, 4920.
(25) Kim, K.-H.; Ahn, E. S.; Huh, J.-S.; Kim, Y.-H.; Kim, J.-J., Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%. Chem. Mater. 2016, 28, 7505.
(26) Kim, K. H.; Liao, J. L.; Lee, S. W.; Sim, B.; Moon, C. K.; Lee, G. H.; Kim, H. J.; Chi, Y.; Kim, J. J., Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer. Adv. Mater. 2016, 28, 2526.
(27) Han, T.-H.; Choi, M.-R.; Jeon, C.-W.; Kim, Y.-H.; Kwon, S.-K.; Lee, T.-W., Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci. Adv. 2016, 2, e1601428.
(28) Sasabe, H.; Takamatsu, J.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer, N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv. Mater. 2010, 22, 5003.
(29) Li, G.; Fleetham, T.; Li, J., Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter. Adv Mater 2014, 26, 2931.
(30) Fu, Q.; Chen, J.; Shi, C.; Ma, D., Solution-Processed Small Molecules as Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2012, 4, 6579.
(31) Zhang, B.; Tan, G.; Lam, C. S.; Yao, B.; Ho, C. L.; Liu, L.; Xie, Z.; Wong, W. Y.; Ding, J.; Wang, L., High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex. Adv. Mater. 2012, 24, 1873.
(32) Zhang, B.; Liu, L.; Tan, G.; Yao, B.; Ho, C.-L.; Wang, S.; Ding, J.; Xie, Z.; Wong, W.-Y.; Wang, L., Interfacial triplet confinement for achieving efficient solution-processed deep-blue and white electrophosphorescent devices with underestimated poly(N-vinylcarbazole) as the host. J. Mater. Chem. C 2013, 1.
Chapter 3:
(1) Su, D.; Menger, F. M., Tetrastyrylmethane. Tetrahedron Lett. 1997, 38, 1485.
(2) Ng, M. C.; Craig, D. J.; Harper, J. B.; van-Eijck, L.; Stride, J. A., The Central Atom Size Effect on the Structure of Group 14 Tetratolyls. Chemistry 2009, 15, 6569.
(3) Zhang, B.; Wang, Z., Building Ultramicropores within Organic Polymers Based on a Thermosetting Cyanate Ester Resin. Chem. Commun. 2009, 5027.
(4) Choi, I. T.; Ju, M. J.; Song, S. H.; Kim, S. G.; Cho, D. W.; Im, C.; Kim, H. K., Tailor-Made Hole-Conducting Coadsorbents for Highly Efficient Organic Dye-Sensitized Solar Cells. Chemistry 2013, 19, 15545.
(5) Fei, T.; Cheng, G.; Hu, D.; Dong, W.; Lu, P.; Ma, Y., Iridium complex grafted to 3,6-carbazole-alt-tetraphenylsilane copolymers for blue electrophosphorescence. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1859.
(6) Liao, J.-L.; Chen, X.; Liu, C.-Y.; Chen, S.-A.; Su, C.-H.; Su, A.-C., Investigating Side Chain Mediated Electroluminescence from Carbazole-Modified Polyfluorene. J. Phys. Chem. B 2007, 111, 10379.
Chapter 4:
(1) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 2001, 90, 5048.
(2) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440, 908.
(3) Huang, S.-P.; Jen, T.-H., Chen; Y.-C., H., A.-E.; Yin, S.-H.; Chen, H.-Y.; Chen, S.-A., Effective Shielding of Triplet Energy Transfer to Conjugated Polymer by Its Dense Side Chains from Phosphor Dopant for Highly Efficient Electrophosphorescence. J. Am. Chem. Soc. 2008, 130, 4699.
(4) Evans, N. R.; Devi, L. S.; Mak, C. S. K.; Watkins, S. E.; Pascu, S. I.; hler, A. K.; Friend, R. H.; Williams, C. K.; Holmes, A. B., Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes. J. Am. Chem. Soc. 2006, 128, 6647.
(5) Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A., High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety. J. Am. Chem. Soc. 2003, 125, 636.
(6) Shao, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F., Highly Efficient Blue Electrophosphorescent Polymers with Fluorinated Poly(arylene ether phosphine oxide) as Backbone. J. Am. Chem. Soc. 2012, 134, 15189.
(7) Lu, K. Y.; Chou, H. H.; Hsieh, C. H.; Yang, Y. H.; Tsai, H. R.; Tsai, H. Y.; Hsu, L. C.; Chen, C. Y.; Chen, I. C.; Cheng, C. H., Wide-range color tuning of iridium biscarbene complexes from blue to red by different Ninsertion markN ligands: an alternative route for adjusting the emission colors. Adv. Mater. 2011, 23, 4933.
(8) Liu, J.; Li, L.; Pei, Q., Conjugated Polymer as Host for High Efficiency Blue and White Electrophosphorescence. Macromolecules 2011, 44, 2451.
(9) Kim, S.-J.; Zhang, Y.; Zuniga, C.; Barlow, S.; Marder, S. R.; Kippelen, B., Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org. Electron. 2011, 12, 492.
(10) Chen, Y.; Xia, Y.; Smith, G. M.; Sun, H.; Yang, D.; Ma, D.; Li, Y.; Huang, W.; Carroll, D. L., Solution-Processable Hole-Generation Layer and Electron-Transporting Layer: Towards High-Performance, Alternating-Current-Driven, Field-Induced Polymer Electroluminescent Devices. Adv. Funct. Mater. 2014, 24, 2677.
(11) Yamaguchi, S.; Itami, Y.; Tamao, K., Group 14 Metalloles with Thienyl Groups on 2,5-Positions: Effects of Group 14 Elements on Their
π-Electronic Structures. Organometallics 1998, 17, 4910.
(12) Yamaguchi, S.; Tamao, K., Silole-Containing σ- and π-Conjugated Compounds. J. Chem. Soc., Dalton Trans. 1998, 3693.
(13) Cai, Y.; Qin, A.; Tang, B. Z., Siloles in Optoelectronic Devices. J. Mater. Chem. C 2017, 5, 7375.
(14) Giordan, J. C.; Moore, J. H., Anion States of Para-Disubstituted Benzenes: p-Di-tert-butylbenzene and Related Group 4 Molecules:
p-Bis( trimethyl(silyl, germyl, and stanny1))benzene. J. Am. Chem. Soc. 1983, 105, 6541.
(15) Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S., Silole Derivatives as Efficient Electron Transporting
Materials. J. Am. Chem. Soc. 1996, 118, 11974.
(16) Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; Benzhong, Structures, Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted
2,3,4,5-Tetraphenylsiloles. J. Am. Chem. Soc. 2005, 127, 6335.
(17) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J., Synthesis, Characterization, and Transistor Response of Semiconducting Silole Polymers with Substantial Hole Mobility and Air Stability. Experiment and Theory. J. Am. Chem. Soc. 2008, 130, 7670.
(18) Fang, M.-C.; Watanabe, A.; Ito, O.; Matsuda, M., Time-Resolved Emission Anisotropic Studies of Silylene-Diphenylene Copolymers: Energy Migration along the σ–π Conjugated Chain. Chem. Lett. 1996, 25, 417.
(19) Correa-Duran, F.; Allred, A. L.; Glover, D. E.; Smith, D. E., Dimethylsilyl- and methylene-bridged aromatic groups : I. Polarography and ultraviolet spectroscopy. J. Organomet. Chem. 1973, 49, 353.
(20) Fang, M.-C.; Watanabe, A.; Matsuda, M., Electrochemical studies of σ-π conjugated organosilicon copolymers. Polymer 1996, 37, 163.
(21) Ishikawa, M.; Sakamoto, H.; Ishii, M.; Ohshita, J., Polymeric organosilicon systems. XVII. Synthesis and photochemical and conducting properties of poly[o-and m-(disilanylene)phenylene]s. J. Polym. Sci., A: Polym. Chem. 1993, 31, 3281.
(22) Kepler, R. G.; Zeigler, J. M.; Harrah, L. A.; Kurtz, S. R., Photocarrier generation and transport inσ-bonded polysilanes. Physical Review B 1987, 35, 2818.
(23) Stolka, M.; Yuh, H. J.; McGrane, K.; Pai, D. M., Hole transport in organic polymers with silicon backbone (polysilylenes). . J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 823.
(24) Ohshita, J.; Kanaya, D.; Watanabe, T.; Ishikawa, M., Polymeric organosilicon systems XXIII. Synthesis and photochemical and thermal properties of (E)- and (Z)-poly[(disilanylene) ethenylenes]. J. Organomet. Chem. 1995, 489, 165.
(25) Taylor, H. V.; Allred, A. L.; Hoffman, B. M., An Electron Spin Resonance Study of the Phosphorescent States of Some 4- and 4,4'-Substituted Biphenyls. J. Am. Chem. Soc. 1973, 95, 3215.
(26) 張耀唐, 高三重態能量矽苯型σ-π 共軛高分子電致高效率磷光與電
場穩定白光之研究. 國立清華大學化工系博士論文 民國102年.
(27) Modelli, A.; Jones, D.; Distefano, G., ETS study of the negative ion states of t-butyl and trimethylsilyl derivatives of ethylene and benzene. Chem. Phys. Lett. 1982, 86, 434.
(28) Giordan, J. C.; Moore, J. H., Anion States of Para-Disubstituted Benzenes: p-Di-tert-butylbenzene and Related Group 4 Molecules: p-Bis(trimethyl(silyl, germyl, and stanny1))benzene. J. Am. Chem. Soc. 1983, 105, 6541.
(29) Burkhart, R. D.; Jhon, N. I., Triplet Excimer Formation of Triphenylamine and Related Chromophores in Polystyrene Films. J. Phys. Chem. 1991, 95, 7189.
(30) Leung, M.-k.; Yang, C.-C.; Lee, J.-H.; Tsai, H.-H.; Lin, C.-F.; Huang, C.-Y.; Su, Y. O.; Chiu, C.-F., The Unusual Electrochemical and Photophysical Behavior of 2,2’-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Org. Lett. 2007, 9, 235.
(31) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Principles of Molecular Photochemistry: An Introduction. University Science Books: Sausalito, California 2009.
(32) Chen, S.-A.; Jen, T.-H.; Lu, H.-H., A Review on the Emitting Species in Conjugated Polymers for Photo- and Electro-luminescence. J. Chin. Chem. Soc. 2010, 57, 439.
(33) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151.
(34) Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 1999, 60, 14422.
Chapter 5:
(1) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234.
(2) Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
(3) Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y., Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29, 1946.
(4) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R., All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018, 3, 18020.
(5) Song, D.; Zhao, S.; Luo, Y.; Aziz, H., Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching. Appl. Phys. Lett. 2010, 97, 243304.
(6) Zhang, J.; Ding, D.; Wei, Y.; Xu, H., Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chem Sci 2016, 7, 2870.
(7) Chatterjee, T.; Wong, K.-T., Perspective on Host Materials for Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. Adv. Opt. Mater. 2018, 7, 1800565.
(8) Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C., Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976.
(9) Moon, C. K.; Suzuki, K.; Shizu, K.; Adachi, C.; Kaji, H.; Kim, J. J., Combined Inter- and Intramolecular Charge-Transfer Processes for Highly Efficient Fluorescent Organic Light-Emitting Diodes with Reduced Triplet Exciton Quenching. Adv. Mater. 2017, 29, 1606448.
(10) Rajamalli, P.; Senthilkumar, N.; Huang, P. Y.; Ren-Wu, C. C.; Lin, H. W.; Cheng, C. H., New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. J. Am. Chem. Soc. 2017, 139, 10948.
(11) Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H., Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics 2018, 12, 235.
(12) Tsai, K. W.; Hung, M. K.; Mao, Y. H.; Chen, S. A., Solution‐Processed Thermally Activated Delayed Fluorescent OLED with High EQE as 31% Using High Triplet Energy Crosslinkable Hole Transport Materials. Adv. Funct. Mater. 2019, 29.
(13) Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C., High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules. Appl. Phys. Lett. 2012, 101, 093306.
(14) Cui, L. S.; Kim, J. U.; Nomura, H.; Nakanotani, H.; Adachi, C., Benzimidazobenzothiazole-Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. Engl. 2016, 55, 6864.
(15) Kang, J. S.; Hong, T. R.; Kim, H. J.; Son, Y. H.; Lampande, R.; Kang, B. Y.; Lee, C.; Bin, J.-K.; Lee, B. S.; Yang, J. H.; Kim, J.; Park, S.; Cho, M. J.; Kwon, J. H.; Choi, D. H., High-performance bipolar host materials for blue TADF devices with excellent external quantum efficiencies. J. Mater. Chem. C 2016, 4, 4512.
(16) Haseyama, S.; Niwa, A.; Kobayashi, T.; Nagase, T.; Goushi, K.; Adachi, C.; Naito, H., Control of the Singlet-Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix. Nanoscale Res Lett 2017, 12, 268.
(17) Northey, T.; Stacey, J.; Penfold, T. J., The role of solid state solvation on the charge transfer state of a thermally activated delayed fluorescence emitter. J. Mater. Chem. C 2017, 5, 11001.
(18) Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P., Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence. Nat Commun 2016, 7, 13680.
(19) Einzinger, M.; Zhu, T.; de Silva, P.; Belger, C.; Swager, T. M.; Van Voorhis, T.; Baldo, M. A., Shorter Exciton Lifetimes via an External Heavy-Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1701987.
(20) Zhang, W.; Jin, J.; Huang, Z.; Zhuang, S.; Wang, L., A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect. Sci Rep 2016, 6, 30178.
(21) Zou, Y.; Gong, S.; Xie, G.; Yang, C., Design Strategy for Solution-Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Light-Emitting Diodes. Adv. Opt. Mater. 2018, 6, 1800568.
(22) Zeng, X.; Luo, J.; Zhou, T.; Chen, T.; Zhou, X.; Wu, K.; Zou, Y.; Xie, G.; Gong, S.; Yang, C., Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules 2018, 51, 1598.
(23) Ren, Z.; Nobuyasu, R. S.; Dias, F. B.; Monkman, A. P.; Yan, S.; Bryce, M. R., Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Macromolecules 2016, 49, 5452.
(24) Yang, Y.; Wang, S.; Zhu, Y.; Wang, Y.; Zhan, H.; Cheng, Y., Thermally Activated Delayed Fluorescence Conjugated Polymers with Backbone-Donor/Pendant-Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Roll-Off. Adv. Funct. Mater. 2018, 28, 1706916.
(25) Wang, Y.; Zhu, Y.; Xie, G.; Zhan, H.; Yang, C.; Cheng, Y., Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. J. Mater. Chem. C 2017, 5, 10715.
(26) Hu, Y.; Cai, W.; Ying, L.; Chen, D.; Yang, X.; Jiang, X.-F.; Su, S.; Huang, F.; Cao, Y., Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. J. Mater. Chem. C 2018, 6, 2690.
(27) Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C., A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chem. Commun. 2015, 51, 13662.
(28) Chang, Y. T.; Sharma, S.; Hung, M. K.; Lee, Y. H.; Chen, S. A., Bipolar and Unipolar Silylene-Diphenylene sigma-pi Conjugated Polymer Route for Highly Efficient Electrophosphorescence. Sci Rep 2016, 6, 38404.
(29) Ohshita, J., Group 14 metalloles condensed with heteroaromatic systems. Org. Photonics Photovolt. 2016, 4, 52.
(30) Slater, J. C., Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199.
(31) Liu, J.; Li, L.; Pei, Q., Conjugated Polymer as Host for High Efficiency Blue and White Electrophosphorescence. Macromolecules 2011, 44, 2451.
(32) Chan, C. Y.; Tanaka, M.; Nakanotani, H.; Adachi, C., Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nat Commun 2018, 9, 5036.
(33) Optoelectronics Application Manual. Gage, S.; Evans, D.; Hodapp, M.; Sorenson, H., New York: McGraw-Hill, 1977.
(34) Cotts, B. L.; McCarthy, D. G.; Noriega, R.; Penwell, S. B.; Delor, M.; Devore, D. D.; Mukhopadhyay, S.; De Vries, T. S.; Ginsberg, N. S., Tuning Thermally Activated Delayed Fluorescence Emitter Photophysics through Solvation in the Solid State. ACS Energy Letters 2017, 2, 1526.
(35) Chunmiao Han; Chunbo Duan; Weibo Yang; Mingchen Xie; Xu, H., Allochroic thermally activated delayed fluorescence diodes through field-induced solvatochromic effect. Sci. Adv. 2017, 3, e1700904.
(36) Vazquez, M. E.; Blanco, J. B.; Imperiali, B., Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J. Am. Chem. Soc. 2005, 127, 1300.
(37) Brus, V. V.; Kyaw, A. K. K.; Maryanchuk, P. D.; Zhang, J., Quantifying interface states and bulk defects in high-efficiency solution-processed small-molecule solar cells by impedance and capacitance characteristics. Progress in Photovoltaics: Research and Applications 2015, 23, 1526.
(38) Gan, S.; Hu, S.; Li, X. L.; Zeng, J.; Zhang, D.; Huang, T.; Luo, W.; Zhao, Z.; Duan, L.; Su, S. J.; Tang, B. Z., Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Appl Mater Interfaces 2018, 10, 17327.
(39) Rae, M.; Fedorov, A.; Berberan-Santos, M. N., Fluorescence quenching with exponential distance dependence: Application to the external heavy-atom effect. J. Chem. Phys. 2003, 119, 2223.
(40) Romanova, Z. S.; Deshayes, K.; Piotrowiak, P., Remote Intermolecular “Heavy-Atom Effect”: Spin-Orbit Coupling Across the Wall of a Hemicarcerand. J. Am. Chem. Soc. 2001, 123, 2444.
(41) Ban, X.; Sun, K.; Sun, Y.; Huang, B.; Ye, S.; Yang, M.; Jiang, W., High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit. ACS Appl Mater Interfaces 2015, 7, 25129.
(42) Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F., Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139, 17739.
Chapter 6:
(1) Baldo, M. A.; O’Brien, D. F.; , Y. Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature 1998, 395, 151.
(2) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light
Emitting Diodes. J. Am. Chem. Soc. 2001, 123, 4304.
(3) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-emitting Device. J. Appl. Phys. 2001, 90, 5048.
(4) Kawamura, Y.; Goushi, K.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C., 100% Phosphorescence Quantum Efficiency of Ir(III) Complexes in Organic Semiconductor Films. Appl. Phys. Lett. 2005, 86, 071104.
(5) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234.
(6) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R., All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 2018, 3.
(7) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue Organic Electrophosphorescence Using Exothermic Host–Guest Energy Transfer. Appl. Phys. Lett. 2003, 82, 2422.
(8) Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C., A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chem. Commun. 2015, 51, 13662.
(9) Hertel, B. D.; Setayesh, S.; Nothofer, H.-G.; Scherf, U.; Müllen, K.; Bässler, H., Phosphorescence in Conjugated Poly(para-phenylene)-Derivatives. Adv. Mater. 2001, 13, 65.
(10) Scherf, U.; List, E. J. W., Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationships. Adv. Mater. 2002, 14, 477.
(11) Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E., Phosphorescence Quenching by Conjugated Polymers. J. Am. Chem. Soc. 2003, 125, 7796.
(12) Meyer, H.; Haarer, D.; Naarmann, H.; Hörhold, H. H., Trap Distribution for Charge Carriers in Poly(paraphenylene vinylene) (PPV) and Its Substituted Derivative DPOP-PPV. Physical Review B 1995, 52, 2587.
(13) Crone, B. K.; Campbell, I. H.; Davids, P. S.; Smith, D. L., Charge Injection and Transport in Single-Layer Organic Light-Emitting Diodes. Appl. Phys. Lett. 1998, 73, 3162.
(14) Lebedev, E.; Dittrich, T.; Petrova-Koch, V.; Karg, S.; Brütting, W., Charge Carrier Mobility in Poly(p-phenylenevinylene) Studied by the Time-of-Flight Technique. Appl. Phys. Lett. 1997, 71, 2686.
(15) Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P., Nondispersive Hole Transport in an Electroluminescent Polyfluorene. Appl. Phys. Lett. 1998, 73, 1565.
(16) Dijken, A. v.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.; Rothe, C.; Monkman, A.; Bach, I.; Stossel, P.; Brunner, K., Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Polymer Hosts for High-Efficiency Light-Emitting Diodes. J. Am. Chem. Soc. 2004, 126, 7718.
(17) Chen, Y.-C.; Huang, G.-S.; Hsiao, C.-C.; Chen, S.-A., High Triplet Energy Polymer as Host for Electrophosphorescence with High Efficiency. J. Am. Chem. Soc. 2006, 128, 8549.
(18) Zhang, K.; Tao, Y.; Yang, C.; You, H.; Zou, Y.; Qin, J.; Ma, D., Synthesis and Properties of Carbazole Main Chain Copolymers with Oxadiazole Pendant toward Bipolar Polymer Host: Tuning the HOMO/LUMO Level and Triplet Energy. Chem. Mater. 2008, 20, 7324.
(19) Wu, Z.; Xiong, Y.; Zou, J.; Wang, L.; Liu, J.; Chen, Q.; Yang, W.; Peng, J.; Cao, Y., High-Triplet-Energy Poly(9,9′-bis(2-ethylhexyl)-3,6-fluorene) as Host for Blue and Green Phosphorescent Complexes. Adv. Mater. 2008, 20, 2359.
(20) Liu, J.; Li, L.; Pei, Q., Conjugated Polymer as Host for High Efficiency Blue and White Electrophosphorescence. Macromolecules 2011, 44, 2451.
(21) Sun, D.; Fu, Q.; Ren, Z.; Li, W.; Li, H.; Ma, D.; Yan, S., Carbazole-Based Polysiloxane Hosts for Highly Efficient Solution-Processed Blue Electrophosphorescent Devices. J. Mater. Chem. C 2013, 1, 5344.
(22) Sun, D.; Fu, Q.; Ren, Z.; Li, H.; Ma, D.; Yan, S., Synthesis of Well-Defined Poly(phenylcarbazole-alt-triphenylphosphine oxide) Siloxane as a Bipolar Host Material for Solution-Processed Deep Blue Phosphorescent Devices. Polym. Chem. 2014, 5, 220.
(23) Sun, D.; Yang, Z.; Sun, X.; Li, H.; Ren, Z.; Liu, J.; Ma, D.; Yan, S., Synthesis of Triphenylamine Based Polysiloxane as a Blue Phosphorescent Host. Polym. Chem. 2014, 5, 5046.
(24) Mathai, M. K.; Choong, V.-E.; Choulis, S. A.; Krummacher, B.; So, F., Highly Efficient Solution Processed Blue Organic Electrophosphorescence with 14lm∕W Luminous Efficacy. Appl. Phys. Lett. 2006, 88, 243512.
(25) Yin, C.-R.; Ye, S.-H.; Zhao, J.; Yi, M.-D.; Xie, L.-H.; Lin, Z.-Q.; Chang, Y.-Z.; Liu, F.; Xu, H.; Shi, N.-E.; Qian, Y.; Huang, W., Hindrance-Functionalized π-Stacked Polymer Host Materials of the Cardo-Type Carbazole–Fluorene Hybrid for Solution-Processable Blue Electrophosphorescent Devices. Macromolecules 2011, 44, 4589.
(26) Ha Park, J.; Koh, T.-W.; Do, Y.; Hyung Lee, M.; Yoo, S., Soluble Polynorbornenes with Pendant Carbazole Derivatives as Host Materials for Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2356.
(27) Stanislovaityte, E.; Simokaitiene, J.; Raisys, S.; Al-Attar, H.; Grazulevicius, J. V.; Monkman, A. P.; Jankus, V., Carbazole Based Polymers as Hosts for Blue Iridium Emitters: Synthesis, Photophysics and High Efficiency PLEDs. J. Mater. Chem. C 2013, 1, 8209.
(28) Shao, S.; Ding, J.; Ye, T.; Xie, Z.; Wang, L.; Jing, X.; Wang, F., A Novel, Bipolar Polymeric Host for Highly Efficient Blue Electrophosphorescence: a Non-Conjugated Poly(aryl ether) Containing Triphenylphosphine Oxide Units in the Electron-Transporting Main Chain and Carbazole Units in Hole-Transporting Side Chains. Adv. Mater. 2011, 23, 3570.
(29) Shao, S.; Ding, J.; Wang, L.; Jing, X.; Wang, F., Highly Efficient Blue Electrophosphorescent Polymers with Fluorinated Poly(arylene ether phosphine oxide) as Backbone. J. Am. Chem. Soc. 2012, 134, 15189.
(30) Fu, Q.; Chen, J.; Shi, C.; Ma, D., Solution-Processed Small Molecules as Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2012, 4, 6579.
(31) Chang, Y. T.; Sharma, S.; Hung, M. K.; Lee, Y. H.; Chen, S. A., Bipolar and Unipolar Silylene-Diphenylene sigma-pi Conjugated Polymer Route for Highly Efficient Electrophosphorescence. Sci Rep 2016, 6, 38404.
(32) Hung, M. K.; Tsai, K. W.; Sharma, S.; Wu, J. Y.; Chen, S. A., Acridan Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability and External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence. Angew. Chem. Int. Ed. 2019, 58, 11317.
(33) Slater, J. C., Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199.
(34) Hung, M. K.; Tsai, K. W.; Sharma, S.; Wu, J. Y.; Chen, S. A., Acridan Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability and External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence. Angew. Chem. Int. Ed. Engl. 2019.
(35) Réffy, J.; Veszprémi, T.; Nagy, J., The Role of d-Orbitals in Vinyl, Phenyl, Allyl and Benzyl Derivatives of Silicon, Germanium and Tin. Period. Polytech. Chem. Eng. 1976, 20, 223.
(36) Mizuhata, Y.; Sasamori, T.; Nagahora, N.; Watanabe, Y.; Furukawac, Y.; Tokitoh, N., Synthesis and Properties of Stable 2-Metallanaphthalenes of Heavier Group 14 Elements. Dalton Trans. 2008, 4409.
(37) Yamaguchi, S.; Itami, Y.; Tamao, K., Group 14 Metalloles with Thienyl Groups on 2,5-Positions: Effects of Group 14 Elements on Their
π-Electronic Structures. Organometallics 1998, 17, 4910.
(38) Inorganic Chemistry. Miessler, G. L.; Fischer, P. J.; Tarr, D. A., PEARSON: U.S.A, 2014; p 29.
(39) Huang, S.-P.; Jen, T.-H.; Chen, Y.-C.; Hsiao, A.-E.; Yin, S.-H.; Chen, H.-Y.; Chen, S.-A., Effective Shielding of Triplet Energy Transfer to Conjugated Polymer by Its Dense Side Chains from Phosphor Dopant for Highly Efficient Electrophosphorescence. J. Am. Chem. Soc. 2008, 130, 4699.
(40) Shin, H.; Lee, S.; Kim, K. H.; Moon, C. K.; Yoo, S. J.; Lee, J. H.; Kim, J. J., Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv. Mater. 2014, 26, 4730.
(41) Lee, J.-H.; Cheng, S.-H.; Yoo, S.-J.; Shin, H.; Chang, J.-H.; Wu, C.-I.; Wong, K.-T.; Kim, J.-J., An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. Adv. Funct. Mater. 2015, 25, 361.
(42) Shin, H.; Lee, J. H.; Moon, C. K.; Huh, J. S.; Sim, B.; Kim, J. J., Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Adv. Mater. 2016, 28, 4920.
(43) Udagawa, K.; Sasabe, H.; Igarashi, F.; Kido, J., Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Roll-Off at High Brightness in Blue Phosphorescent OLEDs. Advanced Optical Materials 2016, 4, 86.
(44) Lee, C. W.; Lee, J. Y., Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv. Mater. 2013, 25, 5450.
(45) Tamai, Y.; Ohkita, H.; Benten, H.; Ito, S., Triplet Exciton Dynamics in Fluorene−Amine Copolymer Films. Chem. Mater. 2014, 26, 2733.
(46) George, G. A., The Phosphorescence Spectrum and Photodegradation of Polystyrene Films. J. Appl. Polym. Sci. 1974, 18, 419.
(47) Murgatroyd, P. N., Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect. J. Phys. D: Appl. Phys. 1970, 3, 151.
(48) Gong, S.; Chang, Y.-L.; Wu, K.; White, R.; Lu, Z.-H.; Song, D.; Yang, C., High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chem. Mater. 2014, 26, 1463.
(49) Tao, Y.; Yang, C.; Qin, J., Organic Host Materials for Phosphorescent Organic Light-Emitting Diodes. Chem. Soc. Rev. 2011, 40, 2943.
Chapter 7:
(1) Tang, C. W.; VanSlyke, S. A., Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913.
(2) Batool, F., A Review Paper on: Organic Light-Emitting Diode (OLED) Technology and Applications. IJARCCE 2016, 5, 152.
(3) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs). Adv. Mater. 2010, 22, 572.
(4) Chang, Y.-L.; Lu, Z.-H., White Organic Light-Emitting Diodes for Solid-State Lighting. J. Display Technol. 2013, 9, 459.
(5) Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R., Excitonic Singlet-Triplet Ratio in a Semiconducting Organic Thin Film. Phys. Rev. B 1999, 60, 14422.
(6) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest*, S. R., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices. Nature 1998, 395, 151.
(7) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234.
(8) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R., All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3, 18020.
(9) Song, D.; Zhao, S.; Luo, Y.; Aziz, H., Causes of Efficiency Roll-off in Phosphorescent Organic Light Emitting Devices: Triplet-Triplet Annihilation Versus Triplet-Polaron Quenching. Appl. Phys. Lett. 2010, 97, 243304.
(10) Masui, K.; Nakanotani, H.; Adachi, C., Analysis of Exciton Annihilation in High-Efficiency Sky-Blue Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence. Org. Electron. 2013, 14, 2721.
(11) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915.
(12) Ahn, D. H.; Lee, H.; Kim, S. W.; Karthik, D.; Lee, J.; Jeong, H.; Lee, J. Y.; Kwon, J. H., Highly Twisted Donor-Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device. ACS Appl. Mater. Interfaces 2019, 11, 14909.
(13) Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H., Diboron Compound-Based Organic Light-Emitting Diodes with High Efficiency and Reduced Efficiency Roll-Off. Nat. Photonics 2018, 12, 235.
(14) Zeng, W.; Lai, H. Y.; Lee, W. K.; Jiao, M.; Shiu, Y. J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K. T.; Wu, C. C.; Yang, C., Achieving Nearly 30% External Quantum Efficiency for Orange-Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8-Naphthalimide-Acridine Hybrids. Adv. Mater. 2018, 30.
(15) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs). Adv. Mater. 2010, 22, 572.
(16) Li, J.; Ding, D.; Tao, Y.; Wei, Y.; Chen, R.; Xie, L.; Huang, W.; Xu, H., A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. Adv. Mater. 2016, 28, 3122.
(17) Li, Y.; Li, X.-L.; Chen, D.; Cai, X.; Xie, G.; He, Z.; Wu, Y.-C.; Lien, A.; Cao, Y.; Su, S.-J., Design Strategy of Blue and Yellow Thermally Activated Delayed Fluorescence Emitters and Their All-Fluorescence White OLEDs with External Quantum Efficiency beyond 20%. Adv. Funct. Mater. 2016, 26, 6904.
(18) Liu, W.; Zheng, C. J.; Wang, K.; Zhang, M.; Chen, D. Y.; Tao, S. L.; Li, F.; Dong, Y. P.; Lee, C. S.; Ou, X. M.; Zhang, X. H., High Performance All Fluorescence White Organic Light Emitting Devices with a Highly Simplified Structure Based on Thermally Activated Delayed Fluorescence Dopants and Host. ACS Appl. Mater. Interfaces 2016, 8, 32984.
(19) Zhang, M.; Wang, K.; Zheng, C.-J.; Liu, W.; Lin, H.; Tao, S.-L.; Zhang, X.-H., Efficient, Color-Stable and High Color-Rendering-Index White Organic Light-Emitting Diodes Employing Full Thermally Activated Delayed Fluorescence System. Org. Electron. 2017, 50, 466.
(20) Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S. J., "Rate-Limited Effect" of Reverse Intersystem Crossing Process: the Key for Tuning Thermally Activated Delayed Fluorescence Lifetime and Efficiency Roll-Off of Organic Light Emitting Diodes. Chem. Sci. 2016, 7, 4264.
(21) Nishide, J.-i.; Nakanotani, H.; Hiraga, Y.; Adachi, C., High-Efficiency White Organic Light-Emitting Diodes Using Thermally Activated Delayed Fluorescence. Appl. Phys. Lett. 2014, 104, 233304.
(22) Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J., Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Adv. Mater. 2008, 20, 4189.
(23) Li, G.; Fleetham, T.; Li, J., Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter. Adv. Mater. 2014, 26, 2931.
(24) Udagawa, K.; Sasabe, H.; Igarashi, F.; Kido, J., Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Roll‐Off at High Brightness in Blue Phosphorescent OLEDs. Adv. Opt. Mater. 2015, 4, 86.
(25) Tang, X.; Liu, X.-Y.; Jiang, Z.-Q.; Liao, L.-S., High-Quality White Organic Light-Emitting Diodes Composed of Binary Emitters with Color Rendering Index Exceeding 80 by Utilizing Color Remedy Strategy. Adv. Funct. Mater. 2019, 29, 1807541.
(26) Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
(27) Kim, J. H.; Yun, J. H.; Lee, J. Y., Recent Progress of Highly Efficient Red and Near-Infrared Thermally Activated Delayed Fluorescent Emitters. Adv. Opt. Mater. 2018, 6, 1800255.
(28) Liu, X. K.; Chen, Z.; Qing, J.; Zhang, W. J.; Wu, B.; Tam, H. L.; Zhu, F.; Zhang, X. H.; Lee, C. S., Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex. Adv. Mater. 2015, 27, 7079.
(29) Wu, Z.; Yu, L.; Zhao, F.; Qiao, X.; Chen, J.; Ni, F.; Yang, C.; Ahamad, T.; Alshehri, S. M.; Ma, D., Precise Exciton Allocation for Highly Efficient White Organic Light-Emitting Diodes with Low Efficiency Roll-Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Adv. Opt. Mater. 2017, 5, 1700415.
(30) Liang, J.; Li, C.; Zhuang, X.; Ye, K.; Liu, Y.; Wang, Y., Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for High-Efficiency Hybrid Warm-White OLEDs with Stable High Color-Rendering Index. Adv. Funct. Mater. 2018, 28, 1707002.
(31) Wei, Q.; Ge, Z.; Voit, B., Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices. Macromol. Rapid Commun. 2018, 40, 1800570.
(32) Ban, X.; Zhu, A.; Zhang, T.; Tong, Z.; Jiang, W.; Sun, Y., Design of Encapsulated Hosts and Guests for Highly Efficient Blue and Green Thermally Activated Delayed Fluorescence OLEDs Based on a Solution-Process. Chem. Commun. 2017, 53, 11834.
(33) Jeon, S. K.; Park, H. J.; Lee, J. Y., Highly Efficient Soluble Blue Delayed Fluorescent and Hyperfluorescent Organic Light-Emitting Diodes by Host Engineering. ACS Appl. Mater. Interfaces 2018, 10, 5700.
(34) Jeon, S. K.; Park, H.-J.; Lee, J. Y., Blue-Shifted Emission Color and High Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes Using an Intermolecular Interaction Suppressing Host Decorated with Blocking Groups. J. Mater. Chem. C 2018, 6, 6778.
(35) Wada, Y.; Kubo, S.; Kaji, H., Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30, 1705641.
(36) Hung, M. K.; Tsai, K. W.; Sharma, S.; Wu, J. Y.; Chen, S. A., Acridan-Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence. Angew Chem Int Ed Engl 2019, 58, 11317.
(37) Ren, Z.; Nobuyasu, R. S.; Dias, F. B.; Monkman, A. P.; Yan, S.; Bryce, M. R., Pendant Homopolymer and Copolymers as Solution-Processable Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Macromolecules 2016, 49, 5452.
(38) Tsai, K. W.; Hung, M. K.; Mao, Y. H.; Chen, S. A., Solution‐Processed Thermally Activated Delayed Fluorescent OLED with High EQE as 31% Using High Triplet Energy Crosslinkable Hole Transport Materials. Adv. Funct. Mater. 2019, 29, 1901025.
(39) Ban, X.; Chen, F.; Zhao, Y.; Zhu, A.; Tong, Z.; Jiang, W.; Sun, Y., Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs-Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters. ACS Appl. Mater. Interfaces 2018, 10, 37335.
(40) Ban, X.; Chen, F.; Liu, Y.; Pan, J.; Zhu, A.; Jiang, W.; Sun, Y., Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes. Chem. Sci. 2019, 10, 3054.
(41) Gong, S.; Chang, Y.-L.; Wu, K.; White, R.; Lu, Z.-H.; Song, D.; Yang, C., High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chem. Mater. 2014, 26, 1463.
(42) Tao, Y.; Yang, C.; Qin, J., Organic Host Materials for Phosphorescent Organic Light-Emitting Diodes. Chem. Soc. Rev. 2011, 40, 2943.
(43) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue Organic Electrophosphorescence Using Exothermic Host–Guest Energy Transfer. Appl. Phys. Lett. 2003, 82, 2422.
(44) Kim, J. W.; You, S. I.; Kim, N. H.; Yoon, J. A.; Cheah, K. W.; Zhu, F. R.; Kim, W. Y., Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer. Sci Rep 2014, 4, 7009.
(45) Huang, S.-P.; Jen, T.-H.; Chen, Y.-C.; Hsiao, A.-E.; Yin, S.-H.; Chen, H.-Y.; Chen, S.-A., Effective Shielding of Triplet Energy Transfer to Conjugated Polymer by Its Dense Side Chains from Phosphor Dopant for Highly Efficient Electrophosphorescence. J. Am. Chem. Soc. 2008, 130, 4699.
(46) Su, S.-J.; Cai, C.; Kido, J., RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chem. Mater. 2011, 23, 274.
(47) Earmme, T.; Jenekhe, S. A., Solution-Processed, Alkali Metal-Salt-Doped, Electron-Transport Layers for High-Performance Phosphorescent Organic Light-Emitting Diodes. Adv. Funct. Mater. 2012, 22, 5126.
(48) Fu, Q.; Chen, J.; Shi, C.; Ma, D., Solution-Processed Small Molecules as Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2012, 4, 6579.
(49) Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C., A versatile thermally activated delayed fluorescence emitter for both highly efficient doped and non-doped organic light emitting devices. Chem. Commun. 2015, 51, 13662.
(50) Xie, G.; Luo, J.; Huang, M.; Chen, T.; Wu, K.; Gong, S.; Yang, C., Inheriting the Characteristics of TADF Small Molecule by Side-Chain Engineering Strategy to Enable Bluish-Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Light-Emitting Diodes. Adv. Mater. 2017, 29.
(51) Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F., Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139, 17739.
(52) Zeng, X.; Luo, J.; Zhou, T.; Chen, T.; Zhou, X.; Wu, K.; Zou, Y.; Xie, G.; Gong, S.; Yang, C., Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules 2018, 51, 1598.
(53) Hung, M. K.; Tsai, K. W.; Sharma, S.; Wu, J. Y.; Chen, S. A., Acridan-Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence. Angew. Chem. Int. Ed. Engl. 2019, DOI: 10.1002/anie.201904433.
(54) Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y., Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew. Chem. Int. Ed. Engl. 2015, 54, 13068.
(55) Li, C.; Nobuyasu, R. S.; Wang, Y.; Dias, F. B.; Ren, Z.; Bryce, M. R.; Yan, S., Solution-Processable Thermally Activated Delayed Fluorescence White OLEDs Based on Dual-Emission Polymers with Tunable Emission Colors and Aggregation-Enhanced Emission Properties. Adv. Opt. Mater. 2017, 5, 1700435.
(56) Joo, C. W.; Cho, H.; Kwon, B.-H.; Cho, N. S.; Kim, Y.; Kim, Y.-H.; Lee, J., Development of solution-processable blue/hybrid-white OLEDs based on thermally activated delayed fluorescence. J. Ind. Eng. Chem. 2018, 65, 35.
(57) Wu, J. Y.; Chen, S. A., Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing. ACS Appl. Mater. Interfaces 2018, 10, 4851.
(58) Li, W.; Zhao, J.; Li, L.; Du, X.; Fan, C.; Zheng, C.; Tao, S., Efficient solution-processed blue and white OLEDs based on a high-triplet bipolar host and a blue TADF emitter. Org. Electron. 2018, 58, 276.
(59) Liao, X.; Yang, X.; Cheng, J.; Li, Y.; Meng, X.; Li, J.; Pei, Q.; Li, L., Solution-Processed Warm White Organic Light-Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescence Dendrimer. ChemPlusChem 2018, 83, 274.
Chapter 8:
(1) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234.
(2) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R., All-Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3, 18020.
(3) Song, D.; Zhao, S.; Luo, Y.; Aziz, H., Causes of Efficiency Roll-off in Phosphorescent Organic Light Emitting Devices: Triplet-Triplet Annihilation Versus Triplet-Polaron Quenching. Appl. Phys. Lett. 2010, 97, 243304.
(4) Masui, K.; Nakanotani, H.; Adachi, C., Analysis of Exciton Annihilation in High-Efficiency Sky-Blue Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence. Org. Electron. 2013, 14, 2721.
(5) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915.
(6) Lee, D. R.; Kim, B. S.; Lee, C. W.; Im, Y.; Yook, K. S.; Hwang, S. H.; Lee, J. Y., Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 9625.
(7) Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C., Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Adv. Mater. 2016, 28, 6976.
(8) Moon, C. K.; Suzuki, K.; Shizu, K.; Adachi, C.; Kaji, H.; Kim, J. J., Combined Inter- and Intramolecular Charge-Transfer Processes for Highly Efficient Fluorescent Organic Light-Emitting Diodes with Reduced Triplet Exciton Quenching. Adv. Mater. 2017, 29, 1606448.
(9) Rajamalli, P.; Senthilkumar, N.; Huang, P. Y.; Ren-Wu, C. C.; Lin, H. W.; Cheng, C. H., New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. J Am. Chem. Soc. 2017, 139, 10948.
(10) Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H., Diboron Compound-Based Organic Light-Emitting Diodes with High Efficiency and Reduced Efficiency Roll-Off. Nat. Photonics 2018, 12, 235.
(11) Tsai, K. W.; Hung, M. K.; Mao, Y. H.; Chen, S. A., Solution‐Processed Thermally Activated Delayed Fluorescent OLED with High EQE as 31% Using High Triplet Energy Crosslinkable Hole Transport Materials. Adv. Funct. Mater. 2019, 29, 1901025.
(12) Ahn, D. H.; Lee, H.; Kim, S. W.; Karthik, D.; Lee, J.; Jeong, H.; Lee, J. Y.; Kwon, J. H., Highly Twisted Donor-Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device. ACS Appl. Mater. Interfaces 2019, 11, 14909.
(13) Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y., Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29, 1946.
(14) Wong, M. Y.; Zysman-Colman, E., Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
(15) Méhes, G.; Goushi, K.; Potscavage, W. J.; Adachi, C., Influence of Host Matrix on Thermally-Activated Delayed Fluorescence: Effects on Emission Lifetime, Photoluminescence Quantum Yield, and Device Performance. Org. Electron. 2014, 15, 2027.
(16) Dos Santos, P. L.; Ward, J. S.; Bryce, M. R.; Monkman, A. P., Using Guest-Host Interactions to Optimize the Efficiency of TADF OLEDs. J. Phys. Chem. Lett. 2016, 7, 3341.
(17) Etherington, M. K.; Gibson, J.; Higginbotham, H. F.; Penfold, T. J.; Monkman, A. P., Revealing the Spin-Vibronic Coupling Mechanism of Thermally Activated Delayed Fluorescence. Nat. Commun. 2016, 7, 13680.
(18) Xie, G.; Chen, D.; Li, X.; Cai, X.; Li, Y.; Chen, D.; Liu, K.; Zhang, Q.; Cao, Y.; Su, S. J., Polarity-Tunable Host Materials and Their Applications in Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 27920.
(19) Cotts, B. L.; McCarthy, D. G.; Noriega, R.; Penwell, S. B.; Delor, M.; Devore, D. D.; Mukhopadhyay, S.; De Vries, T. S.; Ginsberg, N. S., Tuning Thermally Activated Delayed Fluorescence Emitter Photophysics through Solvation in the Solid State. ACS Energy Lett. 2017, 2, 1526.
(20) Han, C.; Duan, C.; Yang, W.; Xie, M.; Xu, H., Allochroic Thermally Activated Delayed Fluorescence Diodes through Field-Induced Solvatochromic Effect. Sci. Adv. 2017, 3, e1700904.
(21) Haseyama, S.; Niwa, A.; Kobayashi, T.; Nagase, T.; Goushi, K.; Adachi, C.; Naito, H., Control of the Singlet-Triplet Energy Gap in a Thermally Activated Delayed Fluorescence Emitter by Using a Polar Host Matrix. Nanoscale Res. Lett. 2017, 12, 268.
(22) Hung, M. K.; Tsai, K. W.; Sharma, S.; Wu, J. Y.; Chen, S. A., Acridan-Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavy-Atom Effect for Highly Efficient Sky-Blue TADF Electroluminescence. Angew Chem. Int. Ed. Engl. 2019, 58, 11317
(23) Han, C.; Zhang, Z.; Ding, D.; Xu, H., Dipole-Dipole Interaction Management for Efficient Blue Thermally Activated Delayed Fluorescence Diodes. Chem 2018, 4, 2154.
(24) Nakanotani, H.; Masui, K.; Nishide, J.; Shibata, T.; Adachi, C., Promising Operational Stability of High-Efficiency Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Sci. Rep. 2013, 3, 2127.
(25) Kim, B. S.; Lee, J. Y., Engineering of Mixed Host for High External Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescence Device. Adv. Funct. Mater. 2014, 24, 3970.
(26) Kalinowski, J., Excimers and Exciplexes in Organic Electroluminescence. Mater. Sci.-Poland 2009, 27, 735.
(27) Jankus, V.; Data, P.; Graves, D.; McGuinness, C.; Santos, J.; Bryce, M. R.; Dias, F. B.; Monkman, A. P., Highly Efficient TADF OLEDs: How the Emitter-Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency. Adv. Funct. Mater. 2014, 24, 6178.
(28) Szu-Po Huang; Tzu-Hao Jen; Yen-Chun Chen; An-En Hsiao; Shu-Hui Yin; Hsiang-Yun Chen; Chen, S.-A., Effective Shielding of Triplet Energy Transfer to Conjugated Polymer by Its Dense Side Chains from Phosphor Dopant for Highly Efficient Electrophosphorescence. J. Am. Chem. Soc. 2008, 130, 4699.
(29) Tsai, W. L.; Huang, M. H.; Lee, W. K.; Hsu, Y. J.; Pan, K. C.; Huang, Y. H.; Ting, H. C.; Sarma, M.; Ho, Y. Y.; Hu, H. C.; Chen, C. C.; Lee, M. T.; Wong, K. T.; Wu, C. C., A Versatile Thermally Activated Delayed Fluorescence Emitter for Both Highly Efficient Doped and Non-doped Organic Light Emitting Devices. Chem. Commun. 2015, 51, 13662.
(30) Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; Murata, Y.; Adachi, C., Purely Organic Electroluminescent Material Realizing 100% Conversion from Electricity to Light. Nat. Commun. 2015, 6, 8476.
(31) Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y., Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew Chem. Int. Ed. Engl. 2015, 54, 13068.
(32) Chang, Y. T.; Sharma, S.; Hung, M. K.; Lee, Y. H.; Chen, S. A., Bipolar and Unipolar Silylene-Diphenylene sigma-pi Conjugated Polymer Route for Highly Efficient Electrophosphorescence. Sci Rep 2016, 6, 38404.
(33) Sun, D.; Yang, Z.; Sun, X.; Li, H.; Ren, Z.; Liu, J.; Ma, D.; Yan, S., Synthesis of Triphenylamine Based Polysiloxane as a Blue Phosphorescent host. Polym. Chem. 2014, 5, 5046.
(34) Sun, D.; Fu, Q.; Ren, Z.; Li, W.; Li, H.; Ma, D.; Yan, S., Carbazole-Based Polysiloxane Hosts for Highly Efficient Solution-Processed Blue Electrophosphorescent Devices. J. Mater. Chem. C 2013, 1, 5344.
(35) Bagnich, S. A.; Athanasopoulos, S.; Rudnick, A.; Schroegel, P.; Bauer, I.; Greenham, N. C.; Strohriegl, P.; Köhler, A., Excimer Formation by Steric Twisting in Carbazole and Triphenylamine-Based Host Materials. J. Phys. Chem. C 2015, 119, 2380.
(36) Evers, F.; Kobs, K.; Memming, R.; Terrell, D. R., Intramolecular Excimer Emission of Poly(N-vinylcarbazole) and rac- and meso-2,4-Di-N-carbazolylpentane. Model Substances for Its Syndiotactic and Isotactic Dyads. J. Am. Chem. Soc. 1983, 105, 5988.
(37) Chang, Y. T.; Sharma, S.; Hung, M. K.; Lee, Y. H.; Chen, S. A., Bipolar and Unipolar Silylene-Diphenylene sigma-pi Conjugated Polymer Route for Highly Efficient Electrophosphorescence. Sci. Rep. 2016, 6, 38404.
(38) Dyer-Smith, C.; Benson-Smith, J. J.; Bradley, D. D. C.; Murata, H.; Mitchell, W. J.; Shaheen, S. E.; Haque, S. A.; Nelson, J., The Effect of Ionization Potential and Film Morphology on Exciplex Formation and Charge Generation in Blends of Polyfluorene Polymers and Silole Derivatives. J. Phys. Chem. C 2009, 113, 14533.
(39) Kim, J. H.; An, B.-K.; Yoon, S.-J.; Park, S. K.; Kwon, J. E.; Lim, C.-K.; Park, S. Y., Highly Fluorescent and Color-Tunable Exciplex Emission from Poly(N-vinylcarbazole) Film Containing Nanostructured Supramolecular Acceptors. Adv. Funct. Mater. 2014, 24, 2746.
(40) Jhun, B. H.; Ohkubo, K.; Fukuzumi, S.; You, Y., Synthetic Control Over Intra- and Intermolecular Charge Transfer Can Turn on the Fluorescence Emission of Non-Emissive Coumarin. Journal of Materials Chemistry C 2016, 4, 4556.
(41) Graves, D.; Jankus, V.; Dias, F. B.; Monkman, A., Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex. Adv. Funct. Mater. 2014, 24, 2343.
(42) Kim, J. H.; An, B.-K.; Yoon, S.-J.; Park, S. K.; Kwon, J. E.; Lim, C.-K.; Park, S. Y., Highly Fluorescent and Color-Tunable Exciplex Emission from Poly(N-vinylcarbazole) Film Containing Nanostructured Supramolecular Acceptors. Adv. Funct. Mater. 2014, 24, 2746.
(43) Jhun, B. H.; Ohkubo, K.; Fukuzumi, S.; You, Y., Synthetic Control Over Intra- and Intermolecular Charge Transfer Can Turn on the Fluorescence Emission of Non-Emissive Coumarin. J. Mater. Chem. C 2016, 4, 4556.
(44) Graves, D.; Jankus, V.; Dias, F. B.; Monkman, A., Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex. Adv. Funct. Mater. 2014, 24, 2343.
(45) Tamai, Y.; Ohkita, H.; Benten, H.; Ito, S., Triplet Exciton Dynamics in Fluorene−Amine Copolymer Films. Chem. Mater. 2014, 26, 2733.
(46) Zhang, Q.; Kuwabara, H.; Potscavage, W. J., Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C., Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070.
(47) Sarma, M.; Wong, K. T., Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS Appl. Mater. Interfaces 2018, 10, 19279.
(48) Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Di Marco, P., Unusual Disparity in Electroluminescence and Photoluminescence Spectra of Vacuum-Evaporated Films of 1,1-Bis ((di-4-tolylamino) phenyl) Cyclohexane. Appl. Phys. Lett. 2000, 76, 2352.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 順式二苯乙烯之螺旋體衍生物於有機發光二極體與鈣鈦礦太陽能電池材料的應用
2. 硼摻雜型石墨烯電極與熱活化延遲螢光雙硼材料於有機發光二極體元件之應用
3. 有機發光二極體之研究: 聚電解質電子傳輸層對深藍光聚茀系高分子光色影響及利用交聯式電洞傳輸層達到紅綠藍高效率熱活化延遲螢光發光二極體
4. 設計與合成深藍與橘紅延遲螢光客體材料及與有機發光二極體元件之應用
5. 熱活化延遲放光與三重態-三重態激發子淬熄之有機發光材料及其於有機電致發光元件之應用
6. 設計與合成苯甲醯吡啶和嘧啶衍生物之熱活化延遲螢光材料及其於效率有機發光二極體之應用
7. 高效率和穩定雙硼熱活化延遲螢光有機發光二極體
8. 熱活化延遲螢光材料於螢光有機發光二極體元件之應用
9. 設計與合成紅色延遲螢光客體材料及於有機發光二極體元件之應用
10. 主體與熱活化延遲螢光客體分子間作用產生的發光物種以及其對光致與電致發光影響之研究
11. 設計與合成3,5-二氰基吡啶衍生物之高效率熱活化延遲螢光材料
12. 純藍光熱活化延遲螢光之分子設計及其在發光二極體之應用
13. 合成設計含亞氨基二苄雙硼衍生物應用於紅光有機發光二極體
14. 設計與合成具室溫有機餘暉之含硼五苯荑衍生物材料
15. 合成具有不同橋基雙硼分子與其熱活化延遲螢光性質探討
 
* *