帳號:guest(3.17.179.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宗育
作者(外文):Hsieh, Tsung-Yu
論文名稱(中文):以硝酸鉛水溶液系統製備鈣鈦礦太陽能電池之研究
論文名稱(外文):Lead Nitrate Aqueous Precursor-Based Perovskite Solar Cells
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):宮坂力
賴志煌
葉鎮宇
何國川
口試委員(外文):Miyasaka, Tsutomu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101032542
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:154
中文關鍵詞:鈣鈦礦太陽能電池低毒性製程硝酸鉛水溶液兩步法光物理分析
外文關鍵詞:Perovskite solar cellsLow-toxicity processLead nitrate aqueous precursortwo-step fabricationphotophysics analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究著墨於一高效能且低毒性的鈣鈦礦太陽能電池新製程技術開發。在此製程中,吾人選用水搭配銷酸鉛做為鈣鈦礦薄膜製備的前驅物,相較於傳統所使用的碘化鉛搭配二甲基甲醯氨,硝酸鉛水溶液系統完全避免了有毒溶劑的使用,對人體及環境危害較低,但在製程中也有較多困難需要被克服。
將硝酸鉛水溶液前驅物用於連續沉積法(sequential deposition)製備鈣鈦礦薄膜時發現,基板的潤濕性對於選轉塗布後的硝酸鉛薄膜形貌有顯著的影響,且發現硝酸鉛/水系統中的鈣鈦礦晶體生成速度明顯緩慢,此現象造成長時間浸泡步驟的必要性,但也由於晶體的熟化(ripening)過程使鈣鈦礦薄膜呈現不均勻分布。吾人在深入了解晶體的成長機制後發現,此長時間浸泡所導致的晶體熟化過程包含了溶解及再結晶兩步驟,其不僅會破壞薄膜的連續性,過度成長的晶體也造成表面過於粗糙,兩者皆會大幅降低元件的光電表現行為。
此外,吾人也對硝酸鉛/水系統中鈣鈦礦晶體生成緩慢的原因進行探討,發現其中硝酸根離子的去除為主要控制薄膜品質及晶體生成速率的關鍵。對此,吾人於原先的硝酸鉛/水系統製程進行相關優化:加入甲基碘化銨於浸泡溶液及導入多次循環浸泡法,此優化製程不僅成功避免了溶解-再結晶步驟所造成的不良影響,也能夠加速硝酸根離子的去除,使吾人成功製備出15.11%的高效率元件。
最後吾人使用瞬態雷射技術對元件進行光電行為探討,結果發現硝酸鉛/水系統製備之電池雖然有較長的再結合壽命(recombination lifetime),但也同時具有較高的缺陷密度,此現象顯示硝酸鉛/水系統製程中獨特的晶體生長行為可能有效降低缺陷的活性,減少再結合反應的發生,其也說明了使用硝酸鉛/水系統適用於製備高效率鈣鈦礦太陽能電池的原因。
This study aim for developing a low-toxicity process to prepared perovskite solar cells (PSC), where lead nitrate aqueous precursor instead of conventional PbI2/DMF precursor is selected. It involves four parts to progressively achieve a promising result. First, a process using Pb(NO3)2/water system to fabricate perovskite film is pioneeringly developed. Second, the perovskite crystal formation mechanism in sequential deposition is scrutinized to provide routes for further device optimization. Third, a process engineering tailored to the unique perovskite crystal formation is conducted. Finally, transient laser analysis is applied to take insight into device photoelectronic properties.
Chapter 2 describes the pioneering work on Pb(NO3)2/water-based perovskite preparation. We find that to obtain a uniform Pb(NO3)2, an additional surface modification before spin coating Pb(NO3)2 aqueous precursor was crucial to create a hydrophilic surface. A special two-step crystal conversion is discovered by time-trajectory XRD and UV-Vis analysis, which results in a slow crystal transformation from Pb(NO3)2 to CH3NH3PbI3, accompanying a film deterioration with generating coarsened crystals. In spite of the imperfect CH3NH3PbI3 morphology, efficient device of 12.58% power conversion efficiency is achieved.
Next in chapter 3, the formation of coarsened CH3NH3PbI3 crystals is investigated in traditional PbI2/DMF system. By tuning the dipping time of PbI2 substrate in CH3NH3I/2-propanol solution, the results of morphological, structural and optical changes indicate that the simple interfacial reaction is not the only mechanism controlling perovskite crystal formation and growth. The dissolution-recrystallization process dominates over simple interfacial reaction as dipping time prolonged. Moreover, the element mapping images evidences the thermodynamic preference of reducing surface energy, showing a material migration from inner TiO2 layer to outer surface by dissolution and recrystallization reaction.
With sufficient knowledge gained in chapter 3, we come back to pay attention to the root that caused the slow crystal conversion dynamics from Pb(NO3)2 to CH3NH3PbI3. By in-situ UV-vis investigations and a series of XRD measurements, the removal of NO3- is confirmed to be main role in slow process and perovskite crystal formation. Taking into account NO3- removal and dissolution-recrystallization mechanism, we modify previous process on preparing perovskite layer by adding two innovations: applying CH3NH3Cl in dipping bath and multiple-cycle dipping step. Consequently, the resultant perovskite film becomes a uniform and flawless, which boosts the device efficiency to 15.11%. The stability of full device was excellent over 55 days long-term test.
In the last chapter, a series of transient techniques are first used to scrutinize the relation between charge carrier recombination kinetics and energetic trap distribution in a device fabricated by using a low-toxicity Pb(NO3)2/water system. The results reveal a controversial photoelectronic property of long recombination lifetime in spite of a high trap density still presented. Based on this, we are able to propose a trap inactivation benefit from the unique material contribution in Pb(NO3)2/water system.
Contents
致謝 I
ABSTRACT II
摘要 IV
CONTENTS V
CONTENTS OF FIGURES IX
CONTENTS OF TABLES XIII
CHAPTER 1 INTRODUCTION 1
1.1 Evolution of Photovoltaic 1
1.2 Introduction of Perovskite Solar Cell 4
1.2.1 Historical Background 4
1.2.2 Development of Perovskite Solar Cells 6
1.2.2.1 Device Architectures 8
1.2.2.1.1 Mesoscopic cell structure 8
1.2.2.1.2 HTM (hole transport material)-free cell structure 10
1.2.2.1.3 Meso-superstructured cell 11
1.2.2.1.4 Planar cell structure 12
1.2.2.1.5 ETL (electron transport layer)-free cell structure 14
1.2.2.1.6 Inverted cell structure 15
1.2.2.2 Deposition process 16
1.2.2.2.1 One-step processes 17
Chloride inclusion and coordination engineering 18
Additives addition 19
Antisolvent-solvent extraction 20
1.2.2.2.2 Two-step processes 22
Sequential deposition 22
Two-step spin-coating process 24
Vacuum process 24
1.3 Motivation of this study 26
CHAPTER 2 EFFICIENT PEROVSKITE SOLAR CELL FABRICATED USING AN AQUEOUS LEAD NITRATE PRECURSOR 28
2.1 Introduction 29
2.2 Experimental 30
2.2.1 Synthesis of CH3NH3I 30
2.2.2 PSC fabrication 31
2.2.3 Characterization 33
2.3 Results and discussions 34
2.3.1 Preparation and characterization of perovskite film 34
2.3.2 Optimization of Pb(NO3)2 film 36
2.3.3 Evolution of crystal conversion 38
2.3.4 Device performances 44
2.4 Conclusion 46
CHAPTER 3 CRYSTAL GROWTH AND DISSOLUTION OF METHYLAMMONIUM LEAD IODIDE PEROVSKITE IN SEQUENTIAL DEPOSITION 47
3.1 Introduction 48
3.2 Experimental 50
3.2.1 Synthesis of CH3NH3I 50
3.2.2 Preparation of FTO/meso-TiO2/CH3NH3PbI3 Film 51
3.2.3 Fabrication of perovskite solar cells 52
3.2.4 Characterization of morphological, structural and spectroscopic properties 52
3.2.5 Current-voltage characterization of perovskite solar cells 53
3.3 Results and discussions 54
3.3.1 Evolution of CH3NH3PbI3 morphology 54
3.3.2 Evolution of CH3NH3PbI3 structure 59
3.3.3 Evolution of CH3NH3PbI3 optical properties 61
3.3.4 Evolution of device performance 62
3.3.5 Elemental mapping 66
3.3.6 Development of coarsening mechanism 68
3.4 Conclusion 71
CHAPTER 4 STABLE AND EFFICIENT PEROVSKITE SOLAR CELLS FABRICATED USING AQUEOUS LEAD NITRATE PRECURSOR: INTERPRETATION OF THE CONVERSION MECHANISM AND RENOVATION OF THE SEQUENTIAL DEPOSITION 72
4.1 Introduction 73
4.2 Experimental 76
4.2.2 Synthesis of MAI and MACl 76
4.2.3 Device fabrication 77
4.2.4 Characterisation 79
FE-SEM measurement 79
XRD measurement 79
UV-Vis spectroscopy 79
IPCE measurement 79
Time-resolved photoluminescence (TRPL) measurement 79
Current-voltage (JV) characterization 79
4.3 Results and discussions 81
4.3.1 Challenges on morphological flaws 81
4.3.2 Scrutiny of crystal growth mechanism 86
4.3.3 Process engineering 95
4.3.4 Device performance 99
4.3.5 Long-term stability 104
4.4 Conclusion 107
CHAPTER 5 STABLE AND EFFICIENT PEROVSKITE SOLAR CELLS FABRICATED USING AQUEOUS LEAD NITRATE PRECURSOR: INTERPRETATION OF THE CONVERSION MECHANISM AND RENOVATION OF THE SEQUENTIAL DEPOSITION 108
5.1 Introduction 109
5.2 Experiment 111
5.2.2 Perovskite solar cells fabrication 111
5.2.3 Characterization 113
Current-voltage (JV) measurement 113
Transient photovoltage (TPV) analysis 114
Transient photocurrent (TPC) analysis 115
5.2 Result and discussion 117
5.3.1 Device configuration and perovskite preparation 117
5.3.2 Device Current-voltage (JV) performance 118
5.3.3 Transient Photovoltage (TPV) analysis 121
5.3.4 Time-resolved photoluminescence (TRPL) 124
5.3.5 Differential capacitance 126
5.3.6 Photo-induced differential charging 129
5.3.7 Discussion 131
5.4 Conclusion 134
6. CONCLUSION AND OUTLOOK 135
7. BIBLIOGRAPHY 138
8. CV AND PUBLICATIONS 153
1 Lewis, N. S. Toward cost-effective solar energy use. science 315, 798-801 (2007).
2 Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature nanotechnology 10, 391-402 (2015).
3 Kagan, C., Mitzi, D. & Dimitrakopoulos, C. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945-947 (1999).
4 Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chemistry of materials 11, 3028-3030 (1999).
5 Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Applied physics letters 65, 676-678 (1994).
6 Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chemistry of materials 10, 403-411 (1998).
7 Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters 13, 1764-1769 (2013).
8 Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7, 982-988 (2014).
9 Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science 7, 399-407 (2014).
10 Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012).
11 Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).
12 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131, 6050-6051 (2009).
13 Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088-4093 (2011).
14 Li, W. et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A 1, 11735-11740 (2013).
15 Yella, A. et al. Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‐Sensitized Solar Cells: The Role of Benzene Spacers. Angewandte Chemie 126, 3017-3021 (2014).
16 Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2 (2012).
17 Kavan, L. & Grätzel, M. Highly efficient semiconducting TiO 2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta 40, 643-652 (1995).
18 Su, T.-S., Hsieh, T.-Y., Hong, C.-Y. & Wei, T.-C. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Scientific reports 5, 16098 (2015).
19 Su, T. S., Hsieh, T. Y. & Wei, T. C. Electrodeposited TiO2 Film with Mossy Nanostructure for Efficient Compact Layer in Scaffold‐Type Perovskite Solar Cell. Solar RRL 2, 1700120 (2018).
20 Wu, Y. et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express 7, 052301 (2014).
21 Chandiran, A. K. et al. Sub‐Nanometer Conformal TiO2 Blocking Layer for High Efficiency Solid‐State Perovskite Absorber Solar Cells. Advanced Materials 26, 4309-4312 (2014).
22 Yella, A., Heiniger, L.-P., Gao, P., Nazeeruddin, M. K. & Grätzel, M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano letters 14, 2591-2596 (2014).
23 Kavan, L., Tétreault, N., Moehl, T. & Grätzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. The Journal of Physical Chemistry C 118, 16408-16418 (2014).
24 Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics 8, 133-138 (2014).
25 Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society 137, 6730-6733 (2015).
26 Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters 5, 1511-1515 (2014).
27 Unger, E. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science 7, 3690-3698 (2014).
28 Jiang, Q., Sheng, X., Li, Y., Feng, X. & Xu, T. Rutile TiO2 nanowire-based perovskite solar cells. Chemical Communications 50, 14720-14723 (2014).
29 Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341-344 (2013).
30 Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 7, 486-491 (2013).
31 Yi, C., Li, X., Luo, J., Zakeeruddin, S. M. & Grätzel, M. Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films. Advanced Materials (2016).
32 Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234-1237 (2015).
33 Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376-1379 (2017).
34 Dymshits, A., Rotem, A. & Etgar, L. High voltage in hole conductor free organo metal halide perovskite solar cells. Journal of Materials Chemistry A 2, 20776-20781 (2014).
35 Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 134, 17396-17399 (2012).
36 Shi, J. et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters 104, 063901 (2014).
37 Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6, 1739-1743 (2013).
38 Bi, D. et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. Rsc Advances 3, 18762-18766 (2013).
39 Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. & Snaith, H. J. Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy & Environmental Science 7, 1142-1147 (2014).
40 Chen, W. et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy & Environmental Science 8, 629-640 (2015).
41 Kim, H.-S. et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature communications 4 (2013).
42 Chang, C.-Y. et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS applied materials & interfaces 7, 4955-4961 (2015).
43 Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014).
44 Halvani Anaraki, E. et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Letters 3, 773-778 (2018).
45 Feng, J. et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Advanced Materials 30, 1801418 (2018).
46 Liu, D., Yang, J. & Kelly, T. L. Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society 136, 17116-17122 (2014).
47 Ponseca Jr, C. S. et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society 136, 5189-5192 (2014).
48 Cao, D. H. et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a). APL Materials 2, 091101 (2014).
49 Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano letters 14, 4158-4163 (2014).
50 Ke, W. et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature communications 6 (2015).
51 Kim, J. H., Williams, S. T., Cho, N., Chueh, C. C. & Jen, A. K. Y. Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating. Advanced Energy Materials 5 (2015).
52 Jeng, J. Y. et al. CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells. Advanced Materials 25, 3727-3732 (2013).
53 Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442-1446 (2018).
54 Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photonics 8, 128-132 (2014).
55 You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature nanotechnology 11, 75 (2016).
56 Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944-948 (2015).
57 Williams, S. T. et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS nano 8, 10640-10654 (2014).
58 Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 24, 151-157 (2014).
59 Dualeh, A. et al. Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells. Advanced Functional Materials 24, 3250-3258 (2014).
60 Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013).
61 Dharani, S. et al. Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale 6, 13854-13860 (2014).
62 Tidhar, Y. et al. Crystallization of methyl ammonium lead halide perovskites: Implications for photovoltaic applications. Journal of the American Chemical Society 136, 13249-13256 (2014).
63 Yan, K. et al. Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society 137, 4460-4468 (2015).
64 Zuo, C. & Ding, L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6, 9935-9938 (2014).
65 Liang, P. W. et al. Additive enhanced crystallization of solution‐processed perovskite for highly efficient planar‐heterojunction solar cells. Advanced materials 26, 3748-3754 (2014).
66 Chueh, C.-C. et al. The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A 3, 9058-9062 (2015).
67 Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13, 897-903, (2014).
68 Xiao, M. et al. A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie 126, 10056-10061 (2014).
69 Zhou, Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A 3, 8178-8184 (2015).
70 Wakamiya, A. et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chemistry Letters 43, 711-713 (2014).
71 Wu, Y. et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy & Environmental Science 7, 2934-2938 (2014).
72 Xiao, Z. et al. Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Advanced Materials 26, 6503-6509 (2014).
73 Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology 9, 927-932 (2014).
74 Li, G., Ching, K. L., Ho, J. Y., Wong, M. & Kwok, H. S. Identifying the Optimum Morphology in High‐Performance Perovskite Solar Cells. Advanced Energy Materials 5 (2015).
75 Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 136, 622-625 (2013).
76 Chen, C. W. et al. Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials 26, 6647-6652 (2014).
77 Lee, Y. et al. Graphene Photodetectors: High–Performance Perovskite–Graphene Hybrid Photodetector. Advanced Materials 27, 188-188 (2015).
78 Aharon, S., Cohen, B. E. & Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. The Journal of Physical Chemistry C 118, 17160-17165 (2014).
79 Aldibaja, F. K. et al. Effect of different lead precursors on perovskite solar cell performance and stability. Journal of Materials Chemistry A 3, 9194-9200 (2015).
80 Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature communications 6 (2015).
81 Wang, F., Yu, H., Xu, H. & Zhao, N. HPbI3: A New Precursor Compound for Highly Efficient Solution‐Processed Perovskite Solar Cells. Advanced Functional Materials 25, 1120-1126 (2015).
82 Balaji, G. et al. CH3NH3PbI3 from non-iodide lead salts for perovskite solar cells via the formation of PbI2. Physical Chemistry Chemical Physics 17, 10369-10372 (2015).
83 Grätzel, M. The light and shade of perovskite solar cells. Nature materials 13, 838-842 (2014).
84 Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. & Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics 8, 489-494 (2014).
85 Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 7, 3061-3068 (2014).
86 Kumar, M. H. et al. Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 26, 7122-7127 (2014).
87 Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N. & Mhaisalkar, S. G. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters 6, 898-907 (2015).
88 Wang, J.-D. et al. Dimethylformamide-induced liver damage among synthetic leather workers. Archives of Environmental Health: An International Journal 46, 161-166 (1991).
89 Fleming, L. E., Shalat, S. L. & Redlich, C. A. Liver injury in workers exposed to dimethylformamide. Scandinavian journal of work, environment & health, 289-292 (1990).
90 Moore, D. T., Sai, H., Tan, K. W., Estroff, L. A. & Wiesner, U. Impact of the organic halide salt on final perovskite composition for photovoltaic applications. APL Materials 2, 081802 (2014).
91 Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photonics 9, 106-112 (2015).
92 Wang, K., Liu, C., Du, P., Zheng, J. & Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy & Environmental Science 8, 1245-1255 (2015).
93 Ahn, N. et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society 137, 8696-8699 (2015).
94 Zhou, Z. et al. Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. Angewandte Chemie International Edition 54, 9705-9709 (2015).
95 Wu, C.-G. et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy & Environmental Science 8, 2725-2733 (2015).
96 Pellet, N. et al. Mixed‐Organic‐Cation Perovskite Photovoltaics for Enhanced Solar‐Light Harvesting. Angewandte Chemie International Edition 53, 3151-3157 (2014).
97 Schlipf, J. et al. A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering. The journal of physical chemistry letters 6, 1265-1269 (2015).
98 Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 7, 2619-2623 (2014).
99 Fu, Y. et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. Journal of the American Chemical Society 137, 5810-5818 (2015).
100 Yang, J., Siempelkamp, B. D., Liu, D. & Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS nano 9, 1955-1963 (2015).
101 Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519-522 (2015).
102 Dong, Q. et al. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967-970 (2015).
103 Wang, Y., Zhang, Y., Zhang, P. & Zhang, W. High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Physical Chemistry Chemical Physics 17, 11516-11520 (2015).
104 D'innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature communications 5, 3586 (2014).
105 Xing, G. et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344-347 (2013).
106 Kogo, A., Ikegami, M. & Miyasaka, T. A SnOx–brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. Chemical Communications 52, 8119-8122 (2016).
107 Lin, S. Y., Su, T. S., Hsieh, T. Y., Lo, P. C. & Wei, T. C. Efficient Plastic Perovskite Solar Cell with a Low‐Temperature Processable Electrodeposited TiO2 Compact Layer and a Brookite TiO2 Scaffold. Advanced Energy Materials (2017).
108 Malinauskas, T. et al. Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy & Environmental Science 9, 1681-1686 (2016).
109 Gratia, P. et al. A Methoxydiphenylamine‐Substituted Carbazole Twin Derivative: An Efficient Hole‐Transporting Material for Perovskite Solar Cells. Angewandte Chemie International Edition 54, 11409-11413 (2015).
110 Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science 9, 1655-1660 (2016).
111 Leguy, A. l. M. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chemistry of Materials 27, 3397-3407 (2015).
112 Song, Z. et al. Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System. Advanced Energy Materials 6 (2016).
113 Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through snf2–pyrazine complex. J. Am. Chem. Soc 138, 3974-3977 (2016).
114 Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nature materials 15, 247-251 (2016).
115 Babayigit, A. et al. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Scientific reports 6, 18721 (2016).
116 Hsieh, T.-Y., Wei, T.-C., Wu, K.-L., Ikegami, M. & Miyasaka, T. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications 51, 13294-13297 (2015).
117 Gardner, K. L. et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Advanced Energy Materials 6 (2016).
118 Noel, N. K. et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy & Environmental Science 10, 145-152 (2017).
119 Xiao, Y. et al. Preparation of high performance perovskite-sensitized nanoporous titanium dioxide photoanodes by in situ method for use in perovskite solar cells. Journal of Materials Chemistry A 2, 16531-16537 (2014).
120 Xiao, Y., Han, G., Li, Y., Li, M. & Wu, J. Electrospun lead-doped titanium dioxide nanofibers and the in situ preparation of perovskite-sensitized photoanodes for use in high performance perovskite solar cells. Journal of Materials Chemistry A 2, 16856-16862 (2014).
121 Chen, H., Wei, Z., Zheng, X. & Yang, S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216-226 (2015).
122 Huang, J.-h. et al. Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Scientific reports 5 (2015).
123 Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society 137, 1530-1538 (2015).
124 You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters 105, 183902 (2014).
125 Chiang, C.-H., Nazeeruddin, M. K., Grätzel, M. & Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science 10, 808-817 (2017).
126 Hsieh, T.-Y., Huang, C.-K., Su, T.-S., Hong, C.-Y. & Wei, T.-C. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance. ACS Applied Materials & Interfaces 9, 8623-8633 (2017).
127 Zhou, Y. et al. Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. Journal of Materials Chemistry A 3, 9249-9256 (2015).
128 Xu, Y. et al. Efficient Hybrid Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from Two-Step Spin Coating Method. ACS applied materials & interfaces 7, 2242-2248 (2015).
129 Docampo, P. et al. Solution deposition‐conversion for planar heterojunction mixed halide perovskite solar cells. Advanced Energy Materials 4 (2014).
130 Lee, J.-W. et al. The role of grain boundaries in perovskite solar cells. Materials Today Energy (2017).
131 Seol, D. J., Lee, J. W. & Park, N. G. On the Role of Interfaces in Planar‐Structured HC(NH2)2PbI3 Perovskite Solar Cells. ChemSusChem 8, 2414-2419 (2015).
132 Ahn, N., Kang, S. M., Lee, J.-W., Choi, M. & Park, N.-G. Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. Journal of Materials Chemistry A 3, 19901-19906 (2015).
133 Dong, X. et al. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. Journal of Materials Chemistry A 3, 5360-5367 (2015).
134 Yu, H. et al. The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite. Advanced Functional Materials 24, 7102-7108 (2014).
135 Wu, N., Shi, C., Ying, C., Zhang, J. & Wang, M. PbICl: a new precursor solution for efficient planar perovskite solar cell by vapor-assisted solution process. Applied Surface Science 357, 2372-2377 (2015).
136 Fan, L. et al. Elucidating the role of chlorine in perovskite solar cells. Journal of Materials Chemistry A 5, 7423-7432 (2017).
137 Li, W., Fan, J., Li, J., Mai, Y. & Wang, L. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. Journal of the American Chemical Society 137, 10399-10405 (2015).
138 Wetzelaer, G. J. A. et al. Trap‐assisted non‐radiative recombination in organic–inorganic perovskite solar cells. Advanced Materials 27, 1837-1841 (2015).
139 Zuo, L. et al. Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J. Am. Chem. Soc 138, 15710-15716 (2016).
140 Bi, D. et al. Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells. ChemSusChem 10, 1624-1630 (2017).
141 Sum, T. C. & Mathews, N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy & Environmental Science 7, 2518-2534 (2014).
142 Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters 14, 2584-2590 (2014).
143 Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters 14, 5561-5568 (2014).
144 Jena, A. K., Ikegami, M. & Miyasaka, T. Severe Morphological Deformation of Spiro-OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature. ACS Energy Letters 2, 1760-1761 (2017).
145 Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206-209 (2016).
146 Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chemical Society Reviews 46, 6088-6098 (2017).
147 Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497 (2018).
148 Palma, A. L. et al. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE Journal of Photovoltaics 7, 1674-1680 (2017).
149 Qiu, W. et al. Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science 9, 484-489 (2016).
150 Chen, H. et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92 (2017).
151 Di Giacomo, F. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells 181, 53-59 (2018).
152 Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature communications 8, 15684 (2017).
153 Stoichkov, V. et al. Outdoor performance monitoring of perovskite solar cell mini-modules: Diurnal performance, observance of reversible degradation and variation with climatic performance. Solar Energy 170, 549-556 (2018).
154 Jokar, E. et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 11, 2353-2362 (2018).
155 Jain, S. M. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free,(CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614-624 (2018).
156 Shinde, D. V. et al. Enhanced efficiency and stability of an aqueous lead-nitrate-based organometallic perovskite solar cell. ACS applied materials & interfaces 9, 14023-14030 (2017).
157 Feng, Y. et al. Solution-processed perovskite solar cells using environmentally friendly solvent system. Thin Solid Films 636, 639-643 (2017).
158 Sveinbjörnsson, K. et al. Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications. Sustainable Energy & Fuels 2, 606-615 (2018).
159 Hsieh, T.-Y., Su, T.-S., Ikegami, M., Wei, T.-C. & Miyasaka, T. Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy (2018).
160 Reynal, A. et al. Interfacial charge recombination between e−−TiO2 and the I−/I3− electrolyte in ruthenium heteroleptic complexes: dye molecular structure− open circuit voltage relationship. Journal of the American Chemical Society 130, 13558-13567 (2008).
161 Marin-Beloqui, J. M., Lanzetta, L. & Palomares, E. Decreasing charge losses in perovskite solar cells through mp-TiO2/MAPI interface engineering. Chemistry of Materials 28, 207-213 (2016).
162 O’Regan, B. C. et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. Journal of the American Chemical Society 137, 5087-5099 (2015).
163 Du, T. et al. Elucidating the Origins of Subgap Tail States and Open‐Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials 28, 1801808 (2018).
164 Wheeler, S. et al. Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry C 121, 13496-13506 (2017).
165 Ravishankar, S. et al. Surface polarization model for the dynamic hysteresis of perovskite solar cells. The Journal of Physical Chemistry Letters 8, 915-921 (2017).
166 Calado, P. et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nature communications 7, 13831 (2016).
167 Sanchez, R. S. et al. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. The journal of physical chemistry letters 5, 2357-2363 (2014).
168 Montcada, N. r. F. et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Letters 2, 182-187 (2016).
169 Neukom, M., Züfle, S., Jenatsch, S. & Ruhstaller, B. Opto-electronic characterization of third-generation solar cells. Science and Technology of advanced MaTerialS 19, 291-316 (2018).
170 Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy & Environmental Science 9, 3472-3481 (2016).
171 Pockett, A. et al. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. The Journal of Physical Chemistry C 119, 3456-3465 (2015).
172 Jiang, F. et al. Synergistic Effect of PbI2 Passivation and Chlorine Inclusion Yielding High Open‐Circuit Voltage Exceeding 1.15 V in Both Mesoscopic and Inverted Planar CH3NH3PbI3 (Cl)‐Based Perovskite Solar Cells. Advanced Functional Materials 26, 8119-8127 (2016).
173 Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science 11, 702-713 (2018).
174 Meggiolaro, D., Mosconi, E. & De Angelis, F. Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. ACS Energy Letters 2, 2794-2798 (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *