帳號:guest(3.133.146.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉韋廷
作者(外文):Liu, Wei-Ting
論文名稱(中文):二氧化錫/三氧化二銦異質結構氧缺陷調控及光催化性質之研究
論文名稱(外文):Enhanced Hydrogen Production by Controlling Oxygen Vacancies in the SnO2-x/In2O3-y Heterostructure as Photocatalyst
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):鄭晃忠
吳文偉
呂明諺
陳智彥
口試委員(外文):Cheng, Huang-Chung
Wu, Wen-Wei
Lu, Ming-Yen
Chen, Chih-Yen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031904
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:83
中文關鍵詞:臨場電子顯微鏡二氧化錫三氧化二銦異質結構水分解產氫氧缺陷光催化反應
外文關鍵詞:SnO2/In2O3 heterostructureWater splittingPhotocatalytic reactionsOxygen vacancyIn situ TEM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:187
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
有效率的使用金屬氧化物異質結構作為光水解產氫反應之催化劑的研究近來日益增長,而文獻上氧缺陷在增強光電化學反應效率的上亦為一個關鍵因子。有關氧缺陷數量多寡與合成材料時真空條件之關聯性的研究甚少。本研究透過在不同真空條件之系統下合成二氧化錫/三氧化二銦異質結構作為光水解產氫之催化劑,探討不同真空條件合成出之異質結構對於產氫效率之影響。
二氧化錫/三氧化二銦之異質結構可藉由爐管系統(底壓:100 Pa)合成或透過超高真空臨場電子顯微鏡(底壓: 5 x 10-8 Pa)成長且異質結構合成時之微結構變化可藉由熱力學及清晰的直接觀察影像來解釋。在超高真空系統下所合成出之二氧化錫/三氧化二銦之異質結構利用X射線光電子光譜及螢光光譜分析後,可歸納出異質結構內部氧缺陷數量在超高真空製程下可被減少。進一步使用兩種不同真空製程條件之異質結構作為光催化劑進行光水解產氫實驗,產氫效能的結果顯示使用超高真空系統製程之異質結構有最佳表現,並將此結果歸納於異質結構內部有較多氧空缺所致。
這些結果顯示利用異質結構作為光催化劑有助於提升光水解產氫之效能。此外,在適當的條件下使用超高真空系統合成異質結構,可以增加異質結構內部氧缺陷的數目,亦有助於提升光水解產氫的效能。
Photocatalyic water splitting with metal oxide heterostructure as photocatalysts has been a valuable and efficient hydrogen production method in recent years. Previous studies have shown that oxygen vacancies formed in photoelectrochemical reactions play an important part in the efficiency enhancement. However, the relation between the oxygen vacancy formation and the vacuum level of synthesis system has not been investigated. In this work, SnO2-x/In2O3-y heterostructures, as water splitting photocatalysts, were prepared in the synthesis systems with different vacuum levels. A series of in situ transmission electron microscope (TEM) observation had been carried out, observing the detailed changes during SnO2-x/In2O3-y heterostructures formation, basically following the thermodynamic rules. X-ray photoelectron spectroscopy, photoluminescence measurements and in situ TEM observations indicate that the amount of oxygen vacancies increase in SnO2-x/In2O3-y heterostructures synthesized in ultra-high vacuum (UHV) system compared to SnO2-x/In2O3-y heterostructures formed in a low vacuum furnace. The observed 25~30% higher hydrogen production efficiency in SnO2-x/In2O3-y heterostructures formed in UHV comparing with SnO2-x/In2O3-y heterostructures formed in furnace ambient is attributed to presence of the more abundant oxygen vacancies. The results indicate that an optimized heterostructured photocatalyst can be designed by controlling the vacuum level in the synthesis process.
Contents
Abstract I
摘要 II
Contents III
Acknowledgments VII
Chapter 1 Introduction 1
1.1 Overview of Nanotechnology 1
1.2 Heterostructure 2
1.2.1 Overview of Heterostructure 2
1.2.2 Axial Heterostructure Nanowires 3
1.2.3 Radial Heterostructure Nanowires 4
1.3 In situ Transmission Electron Microscopy 6
1.3.1 Transmission Electron Microscopy (TEM) 6
1.3.2 In situ Transmission Electron Microscopy 8
1.4 The Gibbs Free Energy 9
1.5 Photocatalytic Water Splitting 10
1.6 Scope and Organization of the Thesis 12
Chapter 2 Experimental Section 13
2.1 Experimental Procedures 13
2.1.1 Synthesis of SnO2 Nanowires 14
2.1.2 Fabrication of SnO2-x/ In2O3-y Heterostructure in Furnace Ambient 16
2.1.3 Fabrication of SnO2-x/ In2O3-y Heterostructure under UHV condition 16
2.1.4 Measurement of Optical Properties with Different Defects Level SnO2-x/ In2O3-y Heterostructure Devices 18
2.1.5 Measurement of Hydrogen Production Efficiency in SnO2-x/ In2O3-y Heterostructure 18
2.2 Experimental Details 19
2.2.1 Furnace Setup 19
2.2.2 Three-axis Oil Hydraulic Micromanipulator 19
2.2.3 Electron Beam Evaporation System 20
2.2.4 X-ray Diffractometer 21
2.2.5 Scanning Electron Microscope (SEM) 21
2.2.6 Transmission Electron Microscope (TEM) 22
2.2.7 UHV in situ TEM System 22
2.2.8 Energy Dispersive X-ray Spectrometer (EDS) 23
2.2.9 X-ray Photoelectron Spectroscopy (XPS) 23
2.2.10 Photoluminescence System (PL) 24
2.2.11 Gas Chromatography (GC) 24
Chapter 3 Fabrication of SnO2-x/ In2O3-y Heterostructure under Different Vacuum Level Conditions 26
3.1 Introduction and Motivation 26
3.2 Results and Discussion 28
3.2.1 Analysis of SnO2 Nanowires 28
3.2.2 Synthesizing SnO2-x/In2O3-y Heterostructures in Furnace Ambient and under UHV in situ TEM 32
3.3 Summary and Conclusions 43
Chapter 4 Optical Properties of SnO2-x/ In2O3-y Heterostructure under Different Vacuum Level Conditions 44
4.1 Introduction and Motivation 44
4.2 Results and Discussion 45
4.2.1 The PL Measurements 45
4.2.2 The XPS analysis 48
4.3 Summary and Conclusions 50
Chapter 5 Water Splitting with SnO2-x/ In2O3-y Heterostructures 51
5.1 Introduction and Motivation 51
5.2 Results and Discussion 53
5.2.1 Hydrogen Production by SnO2-x/ In2O3-y Heterostructures with Different Amount of Oxygen Vacancy 53
5.2.2 Hydrogen Production with Large-Area Thin Film SnO2-x/ In2O3-y Heterostructures 58
5.3 Summary and Conclusions 64
Chapter 6 Summary and Conclusions 65
6.1 Fabrication of SnO2-x/ In2O3-y Heterostructure under Different Vacuum Level Conditions 65
6.2 Optical Properties of SnO2-x/ In2O3-y Heterostructure under Different Vacuum Level Conditions 67
6.3 Water Splitting with SnO2-x/ In2O3-y Heterostructures Synthesized under Different Vacuum Conditions 68
Chapter 7 Future Prospects 69
7.1 Observation of Phase Transformation in Real Time and Control the Phase Formation in SnO2-x/ In2O3-y Heterostructures 69
7.2 SnO2-x/ In2O3-y Heterostructures for Lithium Ion Battery Electrode 72
References 73

References
1. Feynman, R. P. “There’s plenty of room at the bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
2. Taniguchi, N.; ARAKAWA, C.; KOBAYASHI, T. In On the basic concept of'nano-technology', Proceedings of the International Conference on Production Engineering, 1974-8, 一般社団法人日本機械学会: 1974; 18-23.
3. Tersoff, J. Theory of Semiconductor Heterojunctions - the Role of Quantum Dipoles. Physical Review B 1984, 30, 4874-4877.
4. Roul, B.; Kumar, M.; Rajpalke, M. K.; Bhat, T. N.; Krupanidhi, S. B. Binary group III-nitride based heterostructures: band offsets and transport properties. Journal of Physics D-Applied Physics 2015, 48.
5. Shik, A.; Chen, C. Y.; Pitanti, A.; Tredicucci, A.; Ercolani, D.; Sorba, L.; Beltram, F.; Ruda, H. E. Electrical properties and band diagram of InSb-InAs nanowire type-III heterojunctions. Journal of Applied Physics 2013, 113, 104307.
6. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15, 353-389.
7. Lu, W.; Lieber, C. M. Semiconductor nanowires. Journal of Physics D-Applied Physics 2006, 39, R387-R406.
8. Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Letters 2007, 7, 1817-1822.
9. Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247-1250.
10. Liu, H. L.; She, G. W.; Huang, X.; Qi, X. P.; Mu, L. X.; Meng, X. M.; Shi, W. S. Synthesis and magnetic properties of Mn4Si7 and Si-Mn4Si7 axial aeterostructure nanowire arrays. Journal of Physical Chemistry C 2013, 117, 2377-2381.
11. Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
12. Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Letters 2005, 5, 2287-2291.
13. Zhang, G. Q.; Wang, W.; Li, X. G. Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Advanced Materials 2008, 20, 3654-3656.
14. Cao, Y. Y.; Ouyang, G.; Wang, C. X.; Yang, G. W. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure. Nano Letters 2013, 13, 436-443.
15. Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57-61.
16. Hsu, C. W.; Chou, L. J. Bipolar resistive switching of single gold-in-Ga2O3 nanowire. Nano Letters 2012, 12, 4247-4253.
17. Hsieh, C. H.; Chang, M. T.; Chien, Y. J.; Chou, L. J.; Chen, L. J.; Chen, C. D. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires. Nano Letters 2008, 8, 3288-3292.
18. Robinson, A. L. Electron microscope inventors share Nobel Physics prize. Science 1986, 234, 821-823.
19. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; Chang, W. H.; Suenaga, K.; Li, L. J. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
20. Lu, Y. J.; Kim, J.; Chen, H. Y.; Wu, C. H.; Dabidian, N.; Sanders, C. E.; Wang, C. Y.; Lu, M. Y.; Li, B. H.; Qiu, X. G.; Chang, W. H.; Chen, L. J.; Shvets, G.; Shih, C. K.; Gwo, S. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450-453.
21. Kubel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microscopy and Microanalysis 2005, 11, 378-400.
22. Sidek, H. B. M.; Jo, Y. K.; Kim, T. W.; Hwang, Y. K.; Chang, J. S.; Hwang, S. J. Enhancement of the water adsorptivity of metal-organic frameworks upon hybridization with layered double hydroxide nanosheets. Journal of Physical Chemistry C 2017, 121, 15008-15016.
23. Logic Roadmap. http://www.techinsights.com/techservices/TechInsights-Logic-Roadmap-2016.pdf 2016.
24. Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society 2001, 123, 3165-3166.
25. Lin, Y. C.; Chen, Y.; Xu, D.; Huang, Y. Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Letters 2010, 10, 4721-4726.
26. Rackauskas, S.; Jiang, H.; Wagner, J. B.; Shandakov, S. D.; Hansen, T. W.; Kauppinen, E. I.; Nasibulin, A. G. In situ study of noncatalytic metal oxide nanowire growth. Nano Letters 2014, 14, 5810-5813.
27. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Physical Review Letters 2006, 96.
28. Xu, T.; Sun, L. T. Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247-3262.
29. Hsin, C. L.; Huang, C. W.; Chen, J. Y.; Liao, K. C.; Liu, P. L.; Wu, W. W.; Chen, L. J. Direct observation of sublimation behaviors in one-dimensional In2Se3/In2O3 nanoheterostructures. Analytical Chemistry 2015, 87, 5584-5588.
30. Lu, K. C.; Wu, W. W.; Wu, H. W.; Tanner, C. M.; Chang, J. P.; Chen, L. J.; Tu, K. N. In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Letters 2007, 7, 2389-2394.
31. Lin, Y. C.; Lu, K. C.; Wu, W. W.; Bai, J. W.; Chen, L. J.; Tu, K. N.; Huang, Y. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Letters 2008, 8, 913-918.
32. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321, 1066-1069.
33. Swalin, R. A. Thermodynamics of solids. 2nd ed.; J. Wiley: New York: 1972.
34. Bard, A. J.; Fox, M. A. Artificial photosynthesis - solar splitting of water to hydrogen and oxygen. Accounts of Chemical Research 1995, 28, 141-145.
35. Gupta, U.; Rao, C. N. R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 2017, 41, 49-65.
36. Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nature Materials 2017, 16, 646-652.
37. Ma, D. D.; Shi, J. W.; Zou, Y. J.; Fan, Z. Y.; Ji, X.; Niu, C. M. Highly Efficient Photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Applied Materials & Interfaces 2017, 9, 25377-25386.
38. Saraswat, S. K.; Rodene, D. D.; Gupta, R. B. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews 2018, 89, 228-248.
39. Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. W.; Shi, C.; Wen, X. D.; Ma, D. Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 2017, 544, 80-83.
40. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nature Photonics 2012, 6, 511-518.
41. Zhang, P.; Zhang, J. J.; Gong, J. L. Tantalum-based semiconductors for solar water splitting. Chemical Society Reviews 2014, 43, 4395-4422.
42. Tang, J. S.; Wang, C. Y.; Hung, M. H.; Jiang, X. W.; Chang, L. T.; He, L.; Liu, P. H.; Yang, H. J.; Tuan, H. Y.; Chen, L. J.; Wang, K. L. Ferromagnetic germanide in Ge nanowire transistors for spintronics application. ACS Nano 2012, 6, 5710-5717.
43. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
44. Mei, L.; Chen, Y. J.; Ma, J. M. Gas Sensing of SnO2 Nanocrystals Revisited: Developing ultra-sensitive sensors for detecting the H2S leakage of biogas. Scientific Reports 2014, 4.
45. Wang, C.; Wang, X. M.; Xu, B. Q.; Zhao, J. C.; Mai, B. X.; Peng, P.; Sheng, G. Y.; Fu, H. M. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology a-Chemistry 2004, 168, 47-52.
46. Wu, X. H.; Xu, Z. M.; Zhao, F.; Xu, X. H.; Liu, B. B.; Sun, T. Y.; Liu, S. S.; Zhao, W. N.; Ma, Z. C. Transparent bipolar resistive switching memory devices based on Mn doped SnO2 films. Journal of Alloys and Compounds 2014, 602, 175-179.
47. Shchukin, D.; Poznyak, S.; Kulak, A.; Pichat, P. TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water. Journal of Photochemistry and Photobiology a-Chemistry 2004, 162, 423-430.
48. Granqvist, C. G.; Hultaker, A. Transparent and conducting ITO films: new developments and applications. Thin Solid Films 2002, 411, 1-5.
49. Hoel, C. A.; Mason, T. O.; Gaillard, J. F.; Poeppelmeier, K. R. Transparent conducting oxides in the ZnO-In2O3-SnO2 System. Chemistry of Materials 2010, 22, 3569-3579.
50. Choi, S. J.; Jang, B. H.; Lee, S. J.; Min, B. K.; Rothschild, A.; Kim, I. D. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Applied Materials & Interfaces 2014, 6, 2588-2597.
51. Lang, O.; Pettenkofer, C.; Sanchez-Royo, J. F.; Segura, A.; Klein, A.; Jaegermann, W. Thin film growth and band lineup of In2O3 on the layered semiconductor InSe. Journal of Applied Physics 1999, 86, 5687-5691.
52. Agoston, P.; Albe, K.; Nieminen, R. M.; Puska, M. J. Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO. Physical Review Letters 2009, 103.
53. Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S. C.; Shen, Y.; Tong, Y. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports 2013, 3, 1021.
54. Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces 2012, 4, 4024-4030.
55. Wang, J. C.; Liu, P.; Fu, X. Z.; Li, Z. H.; Han, W.; Wang, X. X. Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir 2009, 25, 1218-1223.
56. Cavicchi, R.; Tarlov, M.; Semancik, S. Preparation of well-ordered, oxygen-rich SnO2(110) surfaces via oxygen plasma treatment. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1990, 8, 2347-2352.
57. Shau-Chieh, W. Electromigration behaviors of Ag nanowires and complete replacement of ZnO nanowires via atomic diffusion. National Tsing Hua University PhD Thesis 2014.
58. Hudak, B. M.; Chang, Y.-J.; Yu, L.; Li, G.; Edwards, D. N.; Guiton, B. S. Real-time observation of the solid–liquid–vapor dissolution of individual tin (IV) oxide nanowires. ACS Nano 2014, 8, 5441-5448.
59. Chen, L. J.; Wu, W. W. In situ TEM investigation of dynamical changes of nanostructures. Materials Science & Engineering R-Reports 2010, 70, 303-319.
60. He, J. H.; Wu, T. H.; Hsin, C. L.; Li, K. M.; Chen, L. J.; Chueh, Y. L.; Chou, L. J.; Wang, Z. L. Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2006, 2, 116-120.
61. Luo, S. H.; Fan, J. Y.; Liu, W. L.; Zhang, M.; Song, Z. T.; Lin, C. L.; Wu, X. L.; Chu, P. K. Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 2006, 17, 1695-1699.
62. Franzen, S.; Rhodes, C.; Cerruti, M.; Gerber, R. W.; Losego, M.; Maria, J. P.; Aspnes, D. E. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Optics Letters 2009, 34, 2867-2869.
63. Ross, M. B.; Schatz, G. C. Aluminum and indium plasmonic nanoantennas in the ultraviolet. Journal of Physical Chemistry C 2014, 118, 12506-12514.
64. Kim, J. S.; Ho, P. K. H.; Thomas, D. S.; Friend, R. H.; Cacialli, F.; Bao, G. W.; Li, S. F. Y. X-ray photoelectron spectroscopy of surface-treated indium-tin oxide thin films. Chemical Physics Letters 1999, 315, 307-312.
65. Shi, S. P.; Gao, D. Q.; Xu, Q.; Yang, Z. L.; Xue, D. S. Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Advances 2014, 4, 45467-45472.
66. Lu, X. H.; Wang, G. M.; Zhai, T.; Yu, M. H.; Gan, J. Y.; Tong, Y. X.; Li, Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Letters 2012, 12, 1690-1696.
67. Lu, X. H.; Huang, X.; Xie, S. L.; Zheng, D. Z.; Liu, Z. Q.; Liang, C. L.; Tong, Y. X. Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties. Langmuir 2010, 26, 7569-7573.
68. Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S. Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17, 2960-2986.
69. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 2010, 110, 6503-6570.
70. Wu, B. H.; Liu, W. T.; Chen, T. Y.; Perng, T. P.; Huang, J. H.; Chen, L. J. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy 2016, 27, 412-419.
71. Liu, P. H.; Wen, M. C.; Tan, C. S.; Navlani-Garcia, M.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Chen, L. J. Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2-xS nanowires decorated by Pd nanoparticles. Nano Energy 2017, 31, 57-63.
72. Guerrero-Araque, D.; Acevedo-Pena, P.; Ramirez-Ortega, D.; Lartundo-Rojas, L.; Gomez, R. SnO2-TiO2 structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology 2017, 92, 1531-1539.
73. Cheng, C.; Amini, A.; Zhu, C.; Xu, Z. L.; Song, H. S.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Scientific Reports 2014, 4.
74. Zhu, L.; Hong, M.; Ho, G. W. Hierarchical assembly of SnO2/ZnO nanostructures for enhanced photocatalytic performance. Scientific Reports 2015, 5, 11609.
75. Li, M. Y.; Hu, Y.; Xie, S. L.; Huang, Y. C.; Tong, Y. X.; Lu, X. H. Heterostructured ZnO/SnO2-x nanoparticles for efficient photocatalytic hydrogen production. Chemical Communications 2014, 50, 4341-4343.
76. Zhang, Z. Y.; Shao, C. L.; Li, X. H.; Zhang, L.; Xue, H. M.; Wang, C. H.; Liu, Y. C. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity. Journal of Physical Chemistry C 2010, 114, 7920-7925.
77. Lin, W. C.; Yang, W. D.; Huang, I. L.; Wu, T. S.; Chung, Z. J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx Catalyst. Energy & Fuels 2009, 23, 2192-2196.
78. Liu, Y.; Kang, Z. H.; Chen, Z. H.; Shafiq, I.; Zapien, J. A.; Bello, I.; Zhang, W. J.; Lee, S. T. Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations. Crystal Growth & Design 2009, 9, 3222-3227.
79. Zhang, Q.; Liu, P.; Miao, C. J.; Chen, Z. W.; Wu, C. M. L.; Shek, C. H. Formation of orthorhombic SnO2 originated from lattice distortion by Mn-doped tetragonal SnO2. RSC Advances 2015, 5, 39285-39290.
80. Shek, C. H.; Lai, J. K. L.; Lin, G. M.; Zheng, Y. F.; Liu, W. H. Nanomicrostructure, chemical stability and abnormal transformation in ultrafine particles of oxidized tin. Journal of Physics and Chemistry of Solids 1997, 58, 13-17.
81. Wang, C.-Y.; Chen, L.-J. Nanothermometers for transmission electron microscopy - fabrication and characterization. European Journal of Inorganic Chemistry 2010, 2010, 4298-4303.
82. Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi, K. J.; Park, J. G. Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for li ion battery electrodes. Nano Letters 2007, 7, 3041-3045.
83. Yang, H.; Song, T.; Lee, S.; Han, H.; Xia, F.; Devadoss, A.; Sigmund, W.; Paik, U. Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability. Electrochimica Acta 2013, 91, 275-281.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *