|
1. Foster, R. Japan photovoltaics market overview, Sandia National Laboratory, US Department of Energy: Livermore, CA, USA, 2005, pp 1-36. 2. Yu, H. J. J.; Popiolek, N.; Geoffron, P., Solar photovoltaic energy policy and globalization: A multiperspective approach with case studies of Germany, Japan, and China. Prog. Photovolt: Res. Appl. 2014, 24, 458-476. 3. Sayeef, S.; West, S.; Lindsay, S.; Sparkes, B.; Cavanagh, K. Solar Cities Data Analysis Report, 2013. 4. Pegels, A., Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38 (9), 4945-4954. 5. Comello, S.; Reichelstein, S., The U.S. investment tax credit for solar energy: Alternatives to the anticipated 2017 step-down. Renew. Sust. Energ. Rev. 2016, 55, 591-602. 6. Insights, M. E. Global Energy Perspective 2019: Reference Case, 2019. 7. Zhou, G.; Huang, L.; Li, W.; Zhu, Z., Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. Journal of Sensors 2014, 2014, 20. 8. Kozin, K.; Goryunov, A.; Manenti, F.; Rossi, F.; E Stolpovskiy, A. In Development of an Advanced Control System for a Chemical Vapor Deposition (CVD) Reactor for Polysilicon Production, 12th International Conference on Chemical & Process Engineering, 2015. 9. Kato, T.; Wu, J.; Hirai, Y.; Sugimoto, H.; Bermudez, V., Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. IEEE J. Photovolt. 2018, 1-6. 10. Best Research-Cell Efficiencies https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf. 11. Shay, J. L.; Wagner, S.; Kasper, H. M., Efficient CuInSe2/CdS solar cells. Appl. Phys. Lett. 1975, 27 (2), 89-90. 12. Mickelsen, R. A.; Chen, W. S.; Hsiao, Y. R.; Lowe, V. E., Polycrystalline thin-film CuInSe2/CdZnS solar cells. IEEE Trans. Electron Devices 1984, 31 (5), 542-546. 13. Huang, C.-H.; Chuang, W.-J.; Lin, C.-P.; Jan, Y.-L.; Shih, Y.-C., Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes. Crystals 2018, 8 (7), 296. 14. Sun, Y.; Lin, S.; Li, W.; Cheng, S.; Zhang, Y.; Liu, Y.; Liu, W., Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells. Engineering 2017, 3 (4), 452-459. 15. Hsiao, K.-J.; Liu, J.-D.; Hsieh, H.-H.; Jiang, T.-S., Electrical impact of MoSe2 on CIGS thin-film solar cells. Physical Chemistry Chemical Physics 2013, 15 (41), 18174-18178. 16. Wang, S.-F.; Yang, H.-C.; Liu, C.-F.; Bor, H.-Y. Y., Characteristics of Bilayer Molybdenum Films Deposited Using RF Sputtering for Back Contact of Thin Film Solar Cells Adv. Mater. Sci. and Eng. 2014, 2014, 6. 17. Kim, B.; Min, B. K., Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy & Fuels 2018, 2 (8), 1671-1685. 18. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci. 2017, 10 (6), 1306-1319. 19. Hasoon, F. S.; Yan, Y.; Althani, H.; Jones, K. M.; Moutinho, H. R.; Alleman, J.; Al-Jassim, M. M.; Noufi, R., Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices. Thin Solid Films 2001, 387 (1), 1-5. 20. Ramanathan, K.; Hasoon, F. S.; Smith, S.; Young, D. L.; Contreras, M. A.; Johnson, P. K.; Pudov, A. O.; Sites, J. R., Surface treatment of CuInGaSe2 thin films and its effect on the photovoltaic properties of solar cells. J. Phys. Chem. Solids 2003, 64 (9), 1495-1498. 21. Abou-Ras, D.; Kostorz, G.; Romeo, A.; Rudmann, D.; Tiwari, A. N., Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells. Thin Solid Films 2005, 480-481, 118-123. 22. Nakada, T.; Mizutani, M., 18% Efficiency Cd-Free Cu(In,Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Jpn. J. Appl. Phys. 2002, 41, L165-L167. 23. Wu, T.-T.; Hu, F.; Huang, J.-H.; Chang, C.-H.; Lai, C.-C.; Yen, Y.-T.; Huang, H.-Y.; Hong, H.-F.; Wang, Z. M.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L., Improved Efficiency of a Large-Area Cu(In,Ga)Se2 Solar Cell by a Nontoxic Hydrogen-Assisted Solid Se Vapor Selenization Process. ACS Appl. Mater. Interfaces 2014, 6 (7), 4842-4849. 24. Repins, I.; Glynn, S.; Duenow, J.; Coutts, T.; Metzger, W.; Contreras, M. In Required material properties for high-efficiency CIGS modules, 2009. 25. Ciacci, L.; Werner, T. T.; Vassura, I.; Passarini, F., Backlighting the European Indium Recycling Potentials. J. Ind. Ecol. 2018, 23, 426-437. 26. Bradshaw Alex, M.; Reuter, B.; Hamacher, T., The Potential Scarcity of Rare Elements for the Energiewende. Green 2013, 3 (2), 93. 27. van Lare, C.; Yin, G.; Polman, A.; Schmid, M., Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. ACS Nano 2015, 9 (10), 9603-9613. 28. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865. 29. Thomas, S. R.; Chen, C.-W.; Date, M.; Wang, Y.-C.; Tsai, H.-W.; Wang, Z. M.; Chueh, Y.-L., Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Adv. 2016, 6 (65), 60643-60656. 30. Schmid, M., Review on Light Management by Nanostructures in Chalcopyrite Solar Cells. Semicond. Sci. Technol. 2017, 32. 31. Orgassa, K.; Schock, H. W.; Werner, J. H., Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells. Thin Solid Films 2003, 431-432, 387-391. 32. Čampa, A.; Krč, J.; Malmström, J.; Edoff, M.; Smole, F.; Topič, M., The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2007, 515 (15), 5968-5972. 33. Yin, G.; Knight, M. W.; van Lare, M.-C.; Solà Garcia, M. M.; Polman, A.; Schmid, M., Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts. Adv. Opt. Mater. 2017, 5 (5), 1600637. 34. Kotipalli, R.; Poncelet, O.; Li, G.; Zeng, Y.; Francis, L. A.; Vermang, B.; Flandre, D., Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model. Sol. Energy 2017, 157, 603-613. 35. Vermang, B.; Fjällström, V.; Pettersson, J.; Salomé, P.; Edoff, M., Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts. Sol. Energy Mater. Sol. Cells 2013, 117, 505-511. 36. Vermang, B.; Wätjen, J. T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Gunnarsson, R.; Pilch, I.; Helmersson, U.; Kotipalli, R.; Henry, F.; Flandre, D., Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2015, 582, 300-303. 37. Poncelet, O.; Kotipalli, R.; Vermang, B.; Macleod, A.; Francis, L. A.; Flandre, D., Optimisation of rear reflectance in ultra-thin CIGS solar cells towards >20% efficiency. Sol. Energy 2017, 146, 443-452. 38. Casper, P.; Hünig, R.; Gomard, G.; Kiowski, O.; Reitz, C.; Lemmer, U.; Powalla, M.; Hetterich, M., Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer. Phys. Status Solidi Rapid Res. Lett. 2016, 10 (5), 376-380. 39. Contreras, M. A.; Nakada, T.; Hongo, M.; Pudov, A. O.; Sites, J. R. In ZnO/ZnS(O,OH)/Cu(In,Ga)Se/sub 2//Mo solar cell with 18.6% efficiency, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003. 40. Kundu, S.; Olsen, L. C., Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis. Thin Solid Films 2005, 471 (1), 298-303. 41. Moon, D. G.; Yun, J. H.; Gwak, J.; Ahn, S.; Cho, A.; Shin, K.; Yoon, K.; Ahn, S., Cu(In,Ga)Se2 thin films without Ga segregation prepared by the single-step selenization of sputter deposited Cu-In-Ga-Se precursor layers. Energy Environ. Sci. 2012, 5 (12), 9914-9921. 42. Wada, T.; Hashimoto, Y.; Nishiwaki, S.; Satoh, T.; Hayashi, S.; Negami, T.; Miyake, H., High-efficiency CIGS solar cells with modified CIGS surface. Sol. Energy Mater. Sol. Cells 2001, 67 (1), 305-310. 43. Chang, Y.; Chen, C.; Wei, S.; Hsu, W.; Lai, C. In Interface modification by In-S soaking process on CIGS solar cells with CBD-ZNS buffer layer, 38th IEEE Photovoltaic Specialists Conference, 2012. 44. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4 (10), 3779-3804. 45. Repins, I.; Glynn, S.; Duenow, J.; Coutts, T.; Metzger, W.; Contreras, M. In Required material properties for high-efficiency CIGS modules, Society of Photographic Instrumentation Engineers (SPIE) 2009 Solar Energy + Technology Conference, 2009. 46. Premoli, A.; Rastello, M. L., Minimax refining of optical multilayer systems. Appl. Opt. 1992, 31 (10), 1597-1605. 47. Southwell, W. H., Coating design using very thin high- and low-index layers. Appl. Opt. 1985, 24 (4), 457-460. 48. Rayleigh, L., On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proc. London Math. Soc. 1879, s1-11 (1), 51-56. 49. Kaminski, P. M.; Lisco, F.; Walls, J. M., Multilayer Broadband Antireflective Coatings for More Efficient Thin Film CdTe Solar Cells. IEEE J. Photovolt. 2014, 4 (1), 452-456. 50. PRIYADARSHINI, B. G.; SHARMA, A. K. J. B. o. M. S., Design of multi-layer anti-reflection coating for terrestrial solar panel glass. Bull. Mater. Sci. 2016, 39 (3), 683-689. 51. Badano, A.; Flynn, M. J.; Muka, E.; Compton, K. D.; Monsees, T. L. In Veiling glare point-spread function of medical imaging monitors, Medical Imaging '99, 1999. 52. Singh, R.; Narayanan Unni, K. N.; Solanki, A.; Deepak, Improving the contrast ratio of OLED displays: An analysis of various techniques. Opt. Mater. 2012, 34 (4), 716-723. 53. Farries, M. C.; Buus, J.; Kearley, M., Design and fabrication of two layer anti-reflection coatings for semiconductor optical amplifiers. Electron. Lett. 1990, 26 (19), 1626-1628. 54. Xiao, D.; Liao, T.; Liu, X.; Zhang, Z. E. D. K. I. R. D. A. N.; Hagan, D. In High Fabrication Tolerance Anti-Reflection Coating Based on Nano Pyramid Gratings, Frontiers in Optics 2013, 2013. 55. Escarré, J.; Söderström, K.; Despeisse, M.; Nicolay, S.; Battaglia, C.; Bugnon, G.; Ding, L.; Meillaud, F.; Haug, F.-J.; Ballif, C., Geometric light trapping for high efficiency thin film silicon solar cells. Sol. Energy Mater. Sol. Cells 2012, 98, 185-190. 56. Thomas, I. M., Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Opt. 1992, 31 (28), 6145-6149. 57. Mahadik, D. B.; Lakshmi, R. V.; Barshilia, H. C., High performance single layer nano-porous antireflection coatings on glass by sol–gel process for solar energy applications. Sol. Energy Mater. Sol. Cells 2015, 140, 61-68. 58. Sun, C.-H.; Jiang, P.; Jiang, B., Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92 (6), 061112. 59. Boden, S. A.; Bagnall, D. M., Optimization of moth-eye antireflection schemes for silicon solar cells. Prog. Photovoltaics 2010, 18 (3), 195-203. 60. Lee, Y.-J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P., ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells. Nano Lett. 2008, 8 (5), 1501-1505. 61. Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G., Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Adv. Mater. 2009, 21 (9), 973-978. 62. Duttagupta, S.; Ma, F.; Hoex, B.; Mueller, T.; Aberle, A. G., Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling. Energy Procedia 2012, 15, 78-83. 63. Zaidi, S. H.; Ruby, D. S.; Gee, J. M., Characterization of random reactive ion etched-textured silicon solar cells. IEEE Trans. Electron Devices 2001, 48 (6), 1200-1206. 64. Deinega, A.; Valuev, I.; Potapkin, B.; Lozovik, Y., Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A 2011, 28 (5), 770-777. 65. Deelen, J. v.; Omar, A.; Barink, M., Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts. Materials 2017, 10 (4), 392. 66. Huang, Y.-F.; Chattopadhyay, S.; Jen, Y.-J.; Peng, C.-Y.; Liu, T.-A.; Hsu, Y.-K.; Pan, C.-L.; Lo, H.-C.; Hsu, C.-H.; Chang, Y.-H.; Lee, C.-S.; Chen, K.-H.; Chen, L.-C., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770. 67. Cai, J.; Qi, L., Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horizons 2015, 2 (1), 37-53. 68. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69. 69. Wang, L.-P.; Chiang, C.-C.; Wang, Y.-Y.; Yeh, T.-K.; Chen, W.-C.; Tsai, S.-Y., Flexible Cd-free Cu(In, Ga)Se2 solar cells with non-vacuum process. Surf. Coat. Technol. 2013, 231, 590-593. 70. Katsumi, K.; Tetsuro, N.; Ichiro, S.; Yasuhiko, S.; Yoshitugu, I.; Hiroshi, T., Application of Zn-Compound Buffer Layer for Polycrystalline C u I n S e 2 -Based Thin-Film Solar Cells. Jpn. J. Appl. Phys. 1996, 35 (8R), 4383. 71. Li, G.; Liu, W.; Liu, Y.; Lin, S.; Zhang, Y.; Zhou, Z.; He, Q.; Sun, Y., The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes. Sol. Energy Mater. Sol. Cells 2015, 139, 108-114. 72. Hergert, F.; Hock, R.; Weber, A.; Purwins, M.; Palm, J.; Probst, V., In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess. J. Phys. Chem. Solids 2005, 66 (11), 1903-1907. 73. Vermang, B.; Fjallstrom, V.; Gao, X.; Edoff, M., Improved Rear Surface Passivation of Cu(In,Ga)Se Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE Journal of Photovoltaics 2014, 4, 486-492. 74. Yoon, J.-H.; Seong, T.-Y.; Jeong, J.-h., Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Prog. Photovoltaics 2013, 21 (1), 58-63. 75. Kronik, L.; Cahen, D.; Schock, H. W., Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Adv. Mater. 1998, 10 (1), 31-36. 76. Balboul, M. R.; Rau, U.; Bilger, G.; Schmidt, M.; Schock, H. W.; Werner, J. H., Control of secondary phase segregations during CuGaSe2 thin-film growth. J. Vac. Sci. Technol. A 2002, 20 (4), 1247-1253. 77. Hergert, F.; Jost, S.; Hock, R.; Purwins, M.; Palm, J., A thermodynamical approach to the formation reactions of sodium-doped Cu(In,Ga)Se2. Thin Solid Films 2006, 511-512, 147-152. 78. Pethe, S. A. Optimization of process parameters for reduced thickness CIGSeS thin film solar cells. Doctoral Dissertation, University of Central Florida Orlando, Florida, 2010. 79. Britt, J.; Wiedeman, S.; Wendt, R.; Albright, S. Process Development for CIGS-Based Thin-Film Photovoltaic Modules, National Renewable Energy Lab, Golden, CO, US: 1999. 80. Raghuwanshi, M.; Cadel, E.; Duguay, S.; Arzel, L.; Barreau, N.; Pareige, P., Influence of Na on grain boundary and properties of Cu(In,Ga)Se2 solar cells. Prog. Photovoltaics 2017, 25 (5), 367-375. 81. Colombara, D.; Werner, F.; Schwarz, T.; Cañero Infante, I.; Fleming, Y.; Valle, N.; Spindler, C.; Vacchieri, E.; Rey, G.; Guennou, M.; Bouttemy, M.; Manjón, A. G.; Peral Alonso, I.; Melchiorre, M.; El Adib, B.; Gault, B.; Raabe, D.; Dale, P. J.; Siebentritt, S., Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. Nat. Commun. 2018, 9 (1), 826. 82. Abe, Y.; Minemoto, T.; Takakura, H., Origin of Crossover in Current Density–Voltage Characteristics of Cu(In,Ga)Se2Thin Film Solar Cell Fabricated Using Lift-Off Process. Jpn. J. Appl. Phys. 2011, 50 (4), 040201. 83. Li, W.; Li, W.; Feng, Y.; Yang, C., Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Sol. Energy 2019, 180, 207-215. 84. Hanket, G. M.; Shafarman, W. N.; McCandless, B. E.; Birkmire, R. W., Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S. J. Appl. Phys. 2007, 102 (7), -. 85. Hegedus, S. S.; Shafarman, W. N., Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications 2004, 12 (2-3), 155-176. 86. Cao, Q.; Gunawan, O.; Copel, M.; Reuter, K. B.; Chey, S. J.; Deline, V. R.; Mitzi, D. B., Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance. Adv. Energy Mater. 2011, 1 (5), 845-853. 87. Nakada, T.; Kobayashi, T.; Kumazawa, T.; Yamaguchi, H. In Impacts of post-treatments on cell performance of CIGS solar cells with Zn-compound buffer layers, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012. 88. Nakada, T.; Matsumoto, K.; Okumura, M. In Improved efficiency of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using wet process, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002. 89. Schulmeyer, T.; Kniese, R.; Hunger, R.; Jaegermann, W.; Powalla, M.; Klein, A., Influence of Cu(In,Ga)Se2 band gap on the valence band offset with CdS. Thin Solid Films 2004, 451–452 (0), 420-423. 90. Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. 91. Kang, S. M.; Jang, S.; Lee, J.-K.; Yoon, J.; Yoo, D.-E.; Lee, J.-W.; Choi, M.; Park, N.-G., Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. Small 2016, 12 (18), 2443-2449. 92. Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F., Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2012, 12, 20. 93. Rajan, G.; Aryal, K.; Ashrafee, T.; Karki, S.; Ibdah, A.; Ranjan, V.; Collins, R. W.; Marsillac, S. In Optimization of anti-reflective coatings for CIGS solar cells via real time spectroscopic ellipsometry, PVSC 42, 2015. 94. Bae, H.-S.; Kim, C.; Rhee, I.; Jo, H.-J.; Kim, D.-H.; Hong, S., Enhancement of the CIGS solar cell’s efficiency by anti-reflection coating with Teflon AF. J. Korean Phys. Soc. 2014, 65, 1517-1519. 95. Rajan, G.; Ibdah, A.; Aryal, K.; Ashrafee, T.; Ranjan, V.; Pogue, E. A.; Rockett, A.; Collins, R. W.; Marsillac, S. In Optical enhancement of ultra-thin CIGS solar cells using multi-layered antireflection coatings, PVSC 40, 2014. 96. Shimazaki, K.; Imaizumi, M.; Kibe, K., SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu(In, Ga)Se2 thin-film solar cells for space applications. Thin Solid Films 2008, 516 (8), 2218-2224. 97. Li, D.; Wan, D.; Zhu, X.; Wang, Y.; Han, Z.; Han, S.; Shan, Y.; Huang, F., Broadband antireflection TiO2–SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 505-512. 98. Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M., Optical optimization of a multi-layer wideband anti-reflection coating using porous MgF2 for sub-micron-thick CIGS solar cells. Sol. Energy 2019, 177, 59-67. 99. Wang, Y.-C.; Lin, B.-Y.; Liu, P.-T.; Shieh, H.-P. D., Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se2 thin film solar cells. Opt. Express 2014, 22 (S1), A13-A20. 100. Han, S.-Y.; Pan, C.; Kim, D.-H.; Chang, C.-h., Low-cost & low-temperature curable solution-processed silica-based nanostructured antireflective coatings on CuIn1−xGaxSe2 thin film solar cells. RSC Adv. 2015, 5 (31), 24712-24717.
|