帳號:guest(18.225.234.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佳瑋
作者(外文):Chen, Chia-Wei
論文名稱(中文):利用界面鈍化與階層式奈米結構增益黃銅礦光伏元件效能之研究
論文名稱(外文):Improvement of the Performance on Chalcopyrite Photovoltaics by Interface Passivation and Hierarchical Nanostructures
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):沈昌宏
謝東坡
陳貴賢
呂宗昕
口試委員(外文):Sheng, Chang-Hong
Hsieh, Tung-Po
Chen, Kuei-Hsien
Lu, Chung-Hsin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031901
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:銅銦鎵硒光伏元件黃銅礦光伏元件界面鈍化階層式奈米結構
外文關鍵詞:CIGS photovoltaicschalcopyrite photovoltaicsinterface passivationhierarchical nanostructures
相關次數:
  • 推薦推薦:0
  • 點閱點閱:440
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在減緩載子複合以及利用階層式奈米結構增進元件光吸收以提高黃銅礦光伏元件之效能。內文首先簡介太陽能產業現況發展及銅銦鎵硒光伏元件優勢,並於現有元件製程的基底上提出四大方向進行元件效能增益技術的研發。第一部分使用斜角蒸鍍系統沉積自組裝氧化鋁奈米結構於超薄銅銦鎵硒吸收層與鉬背電極的界面做為減緩背向複合的鈍化層,由於氧化鋁自身攜帶的負電荷能夠將銅銦鎵硒吸收層內產生之少數載子反彈回p-n接面,達成減緩背向複合的效果,而氧化鋁奈米結構的設計也能夠減緩前人研究中使用氧化鋁薄膜造成的電阻及缺鈉效應。此外,研究結果更發現此氧化鋁奈米結構後會造成後續沉積之銅銦鎵硒吸收層產生相變化,減緩後硒化製程製備之銅銦鎵硒薄膜常見的分相問題。整體而言,引入氧化鋁奈米結構後的超薄銅銦鎵硒元件效率能夠從2.83 %大幅提升至5.33 %。第二部分則引入電漿子奈米粒子至吸收層中,以期透過電漿子效應以及散射效應增強銅銦鎵硒層的吸收。實驗中使用金-二氧化矽核殼結構奈米粒子,避免在高溫硒化過程中金與銅、銦、鎵等前趨物產生合金反應。實驗結果顯示在使用最薄的二氧化矽做為保護殼的情況下,能夠在最少阻擋電漿子效應的情況下得到17~20 %的元件增益,而外部量子效率量測也顯示電漿子效應與散射效應皆對此元件光電流增益有所貢獻。在第三部分中,本論文使用一個簡易濕式系統進行p-n接面的界面調整。實驗中將製備好的銅銦鎵硒吸收層浸泡至一含三氯化鎵以及硫代乙醯胺的混合溶液中數十秒,清洗後進行後續元件製程。實驗結果顯示此一潤浸動作能夠減少p-n接面的界面缺陷,提高載子生命周期,使元件效率能夠從1.02 %提升到6.40 %。第四部分中,本論文使用二氧化鈦-二氧化矽核殼結構做為銅銦鎵硒元件之抗反射層。此核殼結構之有效折射率近似於透明導電層折射率與空氣折射率的幾何平均數,能夠大幅減少入射光的反射率。此外,二氧化矽折射率也近似於二氧化鈦折射率與空氣折射率的幾何平均數,更能減緩入射光被反射的可能性。此一抗反射層透過增加元件光電流而有效提升元件效率,效率增益高達10.75 %。綜述以上四大實驗方向分別從減緩載子複合以及提高元件光吸收,進而成功提升元件表現,相信必能對太陽能產業的研究與發展有所貢獻。
Chalcopyrite photovoltaics (PVs) possesses the great potential for industrial application, and scientists put a lot of effort into the improvement of the cell performance. In the first part of this thesis, we have proposed the self-assembled Al2O3 nanostructure (Al2O3 NS) using glancing angle deposition system (GLAD) and placed it at the interface between Cu(In,Ga)Se2/Mo. The negative charge surrounding the Al2O3 NS repels the electrons, in turn reducing the recombination at the rear surface. In addition, the most striking observation is the alleviation of the phase-separated Cu(In,Ga)Se2 film. With the optimization of the Al2O3 NS, we observe a significant enhancement in cell performance, yielding a power conversion efficiency (PCE) increase from 2.83 to 5.33%.
In the second part of this thesis, we have presented the findings of the research focusing on the combination of plasmonic effect and chalcopyrite PVs. We incorporated gold nanoparticles (Au NPs) encapsulated by a thin protective SiO2 shell in the chalcopyrite absorber-based PVs deposited via solution deposition techniques. The surface plasmonic resonance (SPR) induced field and increased optical path generated by the nanoparticles result in a significant enhancement in light absorption, resulting in the enhanced PCE in solution-processed rigid CuIn(S,Se)2 from 1.95 to 2.35%, and flexible Cu(In,Ga)Se2 PVs from 9.28 to 10.88%.
In the third part of this thesis, we have demonstrated a facile wet soaking process by dipping a Cu(In,Ga)Se2 thin film in a mixed aqueous solution containing GaCl3 and thioacetamide (C2H5NS) at 80˚C for several seconds to modify the p-n junction. The less defective Zn(O,S)/ Cu(In,Ga)Se2 p-n junction are confirmed by both temperature-dependent open circuit voltage (VOC) and time-resolved photoluminescence (TRPL). Therefore, the cell performance can be improved after the wet and light soaking processes, exhibiting the enhanced PCE from 1.02 to 6.40%.
In the fourth part of this thesis, we have developed a novel TiO2-SiO2 core-shell nanostructure (TiO2@SiO2 NS) via GLAD and Stöber method for Cu(In,Ga)Se2 PVs. It begins by laying out the optical simulation of the anti-reflective coating (ARC) via finite-difference time-domain (FDTD) for parameters optimization, and the following device fabrication is based on the simulated results. The reduction of reflectance leads to improved light absorption across a broad wavelength range, improving the PCE from 6.32 to 7.00% after introducing the TiO2@SiO2 NS as the ARC for Cu(In,Ga)Se2 PVs.
This dissertation provides several important opportunities to break the bottleneck of chalcopyrite PVs, which is beneficial for future practice.
摘要 i
Abstract iii
誌謝 v
Table of contents vii
List of figures xi
List of tables xxi
List of abbreviations and symbols xxiii
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 5
2.1 Cu(In,Ga)Se2 structure 6
2.1.1 Soda-lime glass (SLG) 6
2.1.2 Mo back electrode 6
2.1.3 Cu(In,Ga)Se2 absorber layer 7
2.1.4 Buffer layer 9
2.1.5 Window layer 10
2.1.6 Anti-reflective coating (ARC) 10
2.2 Motivations 11
2.2.1 Rear passivation techniques for ultra-thin Cu(In,Ga)Se2 TFPVs 11
2.2.2 Improved absorption via plasmonic nanoparticles 14
2.2.3 Modification of the p-n junction 15
2.2.4 Nanostructured anti-reflective coating for Cu(In,Ga)Se2 TFPVs 17
Chapter 3 Experimental Techniques 19
3.1 Cu(In,Ga)Se2 thin film preparation 19
3.2 Rear-passivated Cu(In,Ga)Se2 TFPVs 20
3.3 Plasmonic chalcopyrite TFPVs 21
3.3.1 Synthesis of Au@SiO2 nanoparticles 21
3.3.2 Fabrication of CuIn(S,Se)2 TFPVs on ridged substrates 22
3.3.3 Fabrication of Cu(In,Ga)Se2 TFPVs on flexible substrates 23
3.4 Modified p-n junction of the Cu(In,Ga)Se2 TFPVs 23
3.5 Nanostructured anti-reflective coating for Cu(In,Ga)Se2 TFPVs 24
3.6 Material characterization 24
3.7 Device characterization 25
3.8 Optical simulation 26
Chapter 4 Enhanced Performance of Cu(In,Ga)Se2 TFPVs with Nanostructured Al2O3 Passivation Layer 27
4.1 Preface 27
4.2 Results and discussion 28
4.2.1 Enhanced Cu(In,Ga)Se2 device performance with various coverages of Al2O3 NSs 28
4.2.2 Enhanced Cu(In,Ga)Se2 device performance with various thicknesses of Al2O3 NSs 36
4.2.3 Investigation of reduced recombination from the Al2O3 NS 43
4.3 Summary 48
Chapter 5 Enhanced Cell Efficiency in Solution-Processed Chalcopyrite TFPVs Utilizing Plasmonic Au@SiO2 NPs 50
5.1 Preface 50
5.2 Results and discussion 51
5.2.1 Plasmonic enhanced Au@SiO2-CuIn(S,Se)2 TFPVs on rigid substrates 51
5.2.2 Plasmonic enhanced Au@SiO2-Cu(In,Ga)Se2 devices on flexible substrates 61
5.3 Summary 63
Chapter 6 Enhanced Solar Performance of CBD-Zn(O,S)/Cu(In,Ga)Se2 TFPVs via Interface Engineering by Wet Soaking Process 65
6.1 Preface 65
6.2 Results and discussion 66
6.2.1 Material characterization 66
6.2.2 Device characterization 69
6.3 Summary 75
Chapter 7 Design of Novel TiO2@SiO2 Helical Nanostructured Anti-Reflective Coatings on Cu(In,Ga)Se2 TFPVs with Enhanced Cell Performance 76
7.1 Preface 76
7.2 Results and discussion 77
7.2.1 Optical simulation 78
7.2.2 Material characterization 82
7.2.3 Device characterization 85
7.3 Summary 90
Chapter 8 Conclusions 92
Reference 95

1. Foster, R. Japan photovoltaics market overview, Sandia National Laboratory, US Department of Energy: Livermore, CA, USA, 2005, pp 1-36.
2. Yu, H. J. J.; Popiolek, N.; Geoffron, P., Solar photovoltaic energy policy and globalization: A multiperspective approach with case studies of Germany, Japan, and China. Prog. Photovolt: Res. Appl. 2014, 24, 458-476.
3. Sayeef, S.; West, S.; Lindsay, S.; Sparkes, B.; Cavanagh, K. Solar Cities Data Analysis Report, 2013.
4. Pegels, A., Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38 (9), 4945-4954.
5. Comello, S.; Reichelstein, S., The U.S. investment tax credit for solar energy: Alternatives to the anticipated 2017 step-down. Renew. Sust. Energ. Rev. 2016, 55, 591-602.
6. Insights, M. E. Global Energy Perspective 2019: Reference Case, 2019.
7. Zhou, G.; Huang, L.; Li, W.; Zhu, Z., Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. Journal of Sensors 2014, 2014, 20.
8. Kozin, K.; Goryunov, A.; Manenti, F.; Rossi, F.; E Stolpovskiy, A. In Development of an Advanced Control System for a Chemical Vapor Deposition (CVD) Reactor for Polysilicon Production, 12th International Conference on Chemical & Process Engineering, 2015.
9. Kato, T.; Wu, J.; Hirai, Y.; Sugimoto, H.; Bermudez, V., Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S)2. IEEE J. Photovolt. 2018, 1-6.
10. Best Research-Cell Efficiencies https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf.
11. Shay, J. L.; Wagner, S.; Kasper, H. M., Efficient CuInSe2/CdS solar cells. Appl. Phys. Lett. 1975, 27 (2), 89-90.
12. Mickelsen, R. A.; Chen, W. S.; Hsiao, Y. R.; Lowe, V. E., Polycrystalline thin-film CuInSe2/CdZnS solar cells. IEEE Trans. Electron Devices 1984, 31 (5), 542-546.
13. Huang, C.-H.; Chuang, W.-J.; Lin, C.-P.; Jan, Y.-L.; Shih, Y.-C., Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes. Crystals 2018, 8 (7), 296.
14. Sun, Y.; Lin, S.; Li, W.; Cheng, S.; Zhang, Y.; Liu, Y.; Liu, W., Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells. Engineering 2017, 3 (4), 452-459.
15. Hsiao, K.-J.; Liu, J.-D.; Hsieh, H.-H.; Jiang, T.-S., Electrical impact of MoSe2 on CIGS thin-film solar cells. Physical Chemistry Chemical Physics 2013, 15 (41), 18174-18178.
16. Wang, S.-F.; Yang, H.-C.; Liu, C.-F.; Bor, H.-Y. Y., Characteristics of Bilayer Molybdenum Films Deposited Using RF Sputtering for Back Contact of Thin Film Solar Cells Adv. Mater. Sci. and Eng. 2014, 2014, 6.
17. Kim, B.; Min, B. K., Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy & Fuels 2018, 2 (8), 1671-1685.
18. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci. 2017, 10 (6), 1306-1319.
19. Hasoon, F. S.; Yan, Y.; Althani, H.; Jones, K. M.; Moutinho, H. R.; Alleman, J.; Al-Jassim, M. M.; Noufi, R., Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices. Thin Solid Films 2001, 387 (1), 1-5.
20. Ramanathan, K.; Hasoon, F. S.; Smith, S.; Young, D. L.; Contreras, M. A.; Johnson, P. K.; Pudov, A. O.; Sites, J. R., Surface treatment of CuInGaSe2 thin films and its effect on the photovoltaic properties of solar cells. J. Phys. Chem. Solids 2003, 64 (9), 1495-1498.
21. Abou-Ras, D.; Kostorz, G.; Romeo, A.; Rudmann, D.; Tiwari, A. N., Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells. Thin Solid Films 2005, 480-481, 118-123.
22. Nakada, T.; Mizutani, M., 18% Efficiency Cd-Free Cu(In,Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Jpn. J. Appl. Phys. 2002, 41, L165-L167.
23. Wu, T.-T.; Hu, F.; Huang, J.-H.; Chang, C.-H.; Lai, C.-C.; Yen, Y.-T.; Huang, H.-Y.; Hong, H.-F.; Wang, Z. M.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L., Improved Efficiency of a Large-Area Cu(In,Ga)Se2 Solar Cell by a Nontoxic Hydrogen-Assisted Solid Se Vapor Selenization Process. ACS Appl. Mater. Interfaces 2014, 6 (7), 4842-4849.
24. Repins, I.; Glynn, S.; Duenow, J.; Coutts, T.; Metzger, W.; Contreras, M. In Required material properties for high-efficiency CIGS modules, 2009.
25. Ciacci, L.; Werner, T. T.; Vassura, I.; Passarini, F., Backlighting the European Indium Recycling Potentials. J. Ind. Ecol. 2018, 23, 426-437.
26. Bradshaw Alex, M.; Reuter, B.; Hamacher, T., The Potential Scarcity of Rare Elements for the Energiewende. Green 2013, 3 (2), 93.
27. van Lare, C.; Yin, G.; Polman, A.; Schmid, M., Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. ACS Nano 2015, 9 (10), 9603-9613.
28. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865.
29. Thomas, S. R.; Chen, C.-W.; Date, M.; Wang, Y.-C.; Tsai, H.-W.; Wang, Z. M.; Chueh, Y.-L., Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Adv. 2016, 6 (65), 60643-60656.
30. Schmid, M., Review on Light Management by Nanostructures in Chalcopyrite Solar Cells. Semicond. Sci. Technol. 2017, 32.
31. Orgassa, K.; Schock, H. W.; Werner, J. H., Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells. Thin Solid Films 2003, 431-432, 387-391.
32. Čampa, A.; Krč, J.; Malmström, J.; Edoff, M.; Smole, F.; Topič, M., The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2007, 515 (15), 5968-5972.
33. Yin, G.; Knight, M. W.; van Lare, M.-C.; Solà Garcia, M. M.; Polman, A.; Schmid, M., Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts. Adv. Opt. Mater. 2017, 5 (5), 1600637.
34. Kotipalli, R.; Poncelet, O.; Li, G.; Zeng, Y.; Francis, L. A.; Vermang, B.; Flandre, D., Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model. Sol. Energy 2017, 157, 603-613.
35. Vermang, B.; Fjällström, V.; Pettersson, J.; Salomé, P.; Edoff, M., Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts. Sol. Energy Mater. Sol. Cells 2013, 117, 505-511.
36. Vermang, B.; Wätjen, J. T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Gunnarsson, R.; Pilch, I.; Helmersson, U.; Kotipalli, R.; Henry, F.; Flandre, D., Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2015, 582, 300-303.
37. Poncelet, O.; Kotipalli, R.; Vermang, B.; Macleod, A.; Francis, L. A.; Flandre, D., Optimisation of rear reflectance in ultra-thin CIGS solar cells towards >20% efficiency. Sol. Energy 2017, 146, 443-452.
38. Casper, P.; Hünig, R.; Gomard, G.; Kiowski, O.; Reitz, C.; Lemmer, U.; Powalla, M.; Hetterich, M., Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer. Phys. Status Solidi Rapid Res. Lett. 2016, 10 (5), 376-380.
39. Contreras, M. A.; Nakada, T.; Hongo, M.; Pudov, A. O.; Sites, J. R. In ZnO/ZnS(O,OH)/Cu(In,Ga)Se/sub 2//Mo solar cell with 18.6% efficiency, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003.
40. Kundu, S.; Olsen, L. C., Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis. Thin Solid Films 2005, 471 (1), 298-303.
41. Moon, D. G.; Yun, J. H.; Gwak, J.; Ahn, S.; Cho, A.; Shin, K.; Yoon, K.; Ahn, S., Cu(In,Ga)Se2 thin films without Ga segregation prepared by the single-step selenization of sputter deposited Cu-In-Ga-Se precursor layers. Energy Environ. Sci. 2012, 5 (12), 9914-9921.
42. Wada, T.; Hashimoto, Y.; Nishiwaki, S.; Satoh, T.; Hayashi, S.; Negami, T.; Miyake, H., High-efficiency CIGS solar cells with modified CIGS surface. Sol. Energy Mater. Sol. Cells 2001, 67 (1), 305-310.
43. Chang, Y.; Chen, C.; Wei, S.; Hsu, W.; Lai, C. In Interface modification by In-S soaking process on CIGS solar cells with CBD-ZNS buffer layer, 38th IEEE Photovoltaic Specialists Conference, 2012.
44. Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4 (10), 3779-3804.
45. Repins, I.; Glynn, S.; Duenow, J.; Coutts, T.; Metzger, W.; Contreras, M. In Required material properties for high-efficiency CIGS modules, Society of Photographic Instrumentation Engineers (SPIE) 2009 Solar Energy + Technology Conference, 2009.
46. Premoli, A.; Rastello, M. L., Minimax refining of optical multilayer systems. Appl. Opt. 1992, 31 (10), 1597-1605.
47. Southwell, W. H., Coating design using very thin high- and low-index layers. Appl. Opt. 1985, 24 (4), 457-460.
48. Rayleigh, L., On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proc. London Math. Soc. 1879, s1-11 (1), 51-56.
49. Kaminski, P. M.; Lisco, F.; Walls, J. M., Multilayer Broadband Antireflective Coatings for More Efficient Thin Film CdTe Solar Cells. IEEE J. Photovolt. 2014, 4 (1), 452-456.
50. PRIYADARSHINI, B. G.; SHARMA, A. K. J. B. o. M. S., Design of multi-layer anti-reflection coating for terrestrial solar panel glass. Bull. Mater. Sci. 2016, 39 (3), 683-689.
51. Badano, A.; Flynn, M. J.; Muka, E.; Compton, K. D.; Monsees, T. L. In Veiling glare point-spread function of medical imaging monitors, Medical Imaging '99, 1999.
52. Singh, R.; Narayanan Unni, K. N.; Solanki, A.; Deepak, Improving the contrast ratio of OLED displays: An analysis of various techniques. Opt. Mater. 2012, 34 (4), 716-723.
53. Farries, M. C.; Buus, J.; Kearley, M., Design and fabrication of two layer anti-reflection coatings for semiconductor optical amplifiers. Electron. Lett. 1990, 26 (19), 1626-1628.
54. Xiao, D.; Liao, T.; Liu, X.; Zhang, Z. E. D. K. I. R. D. A. N.; Hagan, D. In High Fabrication Tolerance Anti-Reflection Coating Based on Nano Pyramid Gratings, Frontiers in Optics 2013, 2013.
55. Escarré, J.; Söderström, K.; Despeisse, M.; Nicolay, S.; Battaglia, C.; Bugnon, G.; Ding, L.; Meillaud, F.; Haug, F.-J.; Ballif, C., Geometric light trapping for high efficiency thin film silicon solar cells. Sol. Energy Mater. Sol. Cells 2012, 98, 185-190.
56. Thomas, I. M., Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Opt. 1992, 31 (28), 6145-6149.
57. Mahadik, D. B.; Lakshmi, R. V.; Barshilia, H. C., High performance single layer nano-porous antireflection coatings on glass by sol–gel process for solar energy applications. Sol. Energy Mater. Sol. Cells 2015, 140, 61-68.
58. Sun, C.-H.; Jiang, P.; Jiang, B., Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92 (6), 061112.
59. Boden, S. A.; Bagnall, D. M., Optimization of moth-eye antireflection schemes for silicon solar cells. Prog. Photovoltaics 2010, 18 (3), 195-203.
60. Lee, Y.-J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P., ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells. Nano Lett. 2008, 8 (5), 1501-1505.
61. Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G., Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Adv. Mater. 2009, 21 (9), 973-978.
62. Duttagupta, S.; Ma, F.; Hoex, B.; Mueller, T.; Aberle, A. G., Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling. Energy Procedia 2012, 15, 78-83.
63. Zaidi, S. H.; Ruby, D. S.; Gee, J. M., Characterization of random reactive ion etched-textured silicon solar cells. IEEE Trans. Electron Devices 2001, 48 (6), 1200-1206.
64. Deinega, A.; Valuev, I.; Potapkin, B.; Lozovik, Y., Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A 2011, 28 (5), 770-777.
65. Deelen, J. v.; Omar, A.; Barink, M., Optical Design of Textured Thin-Film CIGS Solar Cells with Nearly-Invisible Nanowire Assisted Front Contacts. Materials 2017, 10 (4), 392.
66. Huang, Y.-F.; Chattopadhyay, S.; Jen, Y.-J.; Peng, C.-Y.; Liu, T.-A.; Hsu, Y.-K.; Pan, C.-L.; Lo, H.-C.; Hsu, C.-H.; Chang, Y.-H.; Lee, C.-S.; Chen, K.-H.; Chen, L.-C., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770.
67. Cai, J.; Qi, L., Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horizons 2015, 2 (1), 37-53.
68. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
69. Wang, L.-P.; Chiang, C.-C.; Wang, Y.-Y.; Yeh, T.-K.; Chen, W.-C.; Tsai, S.-Y., Flexible Cd-free Cu(In, Ga)Se2 solar cells with non-vacuum process. Surf. Coat. Technol. 2013, 231, 590-593.
70. Katsumi, K.; Tetsuro, N.; Ichiro, S.; Yasuhiko, S.; Yoshitugu, I.; Hiroshi, T., Application of Zn-Compound Buffer Layer for Polycrystalline C u I n S e 2 -Based Thin-Film Solar Cells. Jpn. J. Appl. Phys. 1996, 35 (8R), 4383.
71. Li, G.; Liu, W.; Liu, Y.; Lin, S.; Zhang, Y.; Zhou, Z.; He, Q.; Sun, Y., The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes. Sol. Energy Mater. Sol. Cells 2015, 139, 108-114.
72. Hergert, F.; Hock, R.; Weber, A.; Purwins, M.; Palm, J.; Probst, V., In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess. J. Phys. Chem. Solids 2005, 66 (11), 1903-1907.
73. Vermang, B.; Fjallstrom, V.; Gao, X.; Edoff, M., Improved Rear Surface Passivation of Cu(In,Ga)Se Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE Journal of Photovoltaics 2014, 4, 486-492.
74. Yoon, J.-H.; Seong, T.-Y.; Jeong, J.-h., Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Prog. Photovoltaics 2013, 21 (1), 58-63.
75. Kronik, L.; Cahen, D.; Schock, H. W., Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Adv. Mater. 1998, 10 (1), 31-36.
76. Balboul, M. R.; Rau, U.; Bilger, G.; Schmidt, M.; Schock, H. W.; Werner, J. H., Control of secondary phase segregations during CuGaSe2 thin-film growth. J. Vac. Sci. Technol. A 2002, 20 (4), 1247-1253.
77. Hergert, F.; Jost, S.; Hock, R.; Purwins, M.; Palm, J., A thermodynamical approach to the formation reactions of sodium-doped Cu(In,Ga)Se2. Thin Solid Films 2006, 511-512, 147-152.
78. Pethe, S. A. Optimization of process parameters for reduced thickness CIGSeS thin film solar cells. Doctoral Dissertation, University of Central Florida Orlando, Florida, 2010.
79. Britt, J.; Wiedeman, S.; Wendt, R.; Albright, S. Process Development for CIGS-Based Thin-Film Photovoltaic Modules, National Renewable Energy Lab, Golden, CO, US: 1999.
80. Raghuwanshi, M.; Cadel, E.; Duguay, S.; Arzel, L.; Barreau, N.; Pareige, P., Influence of Na on grain boundary and properties of Cu(In,Ga)Se2 solar cells. Prog. Photovoltaics 2017, 25 (5), 367-375.
81. Colombara, D.; Werner, F.; Schwarz, T.; Cañero Infante, I.; Fleming, Y.; Valle, N.; Spindler, C.; Vacchieri, E.; Rey, G.; Guennou, M.; Bouttemy, M.; Manjón, A. G.; Peral Alonso, I.; Melchiorre, M.; El Adib, B.; Gault, B.; Raabe, D.; Dale, P. J.; Siebentritt, S., Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. Nat. Commun. 2018, 9 (1), 826.
82. Abe, Y.; Minemoto, T.; Takakura, H., Origin of Crossover in Current Density–Voltage Characteristics of Cu(In,Ga)Se2Thin Film Solar Cell Fabricated Using Lift-Off Process. Jpn. J. Appl. Phys. 2011, 50 (4), 040201.
83. Li, W.; Li, W.; Feng, Y.; Yang, C., Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Sol. Energy 2019, 180, 207-215.
84. Hanket, G. M.; Shafarman, W. N.; McCandless, B. E.; Birkmire, R. W., Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S. J. Appl. Phys. 2007, 102 (7), -.
85. Hegedus, S. S.; Shafarman, W. N., Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications 2004, 12 (2-3), 155-176.
86. Cao, Q.; Gunawan, O.; Copel, M.; Reuter, K. B.; Chey, S. J.; Deline, V. R.; Mitzi, D. B., Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance. Adv. Energy Mater. 2011, 1 (5), 845-853.
87. Nakada, T.; Kobayashi, T.; Kumazawa, T.; Yamaguchi, H. In Impacts of post-treatments on cell performance of CIGS solar cells with Zn-compound buffer layers, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012.
88. Nakada, T.; Matsumoto, K.; Okumura, M. In Improved efficiency of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using wet process, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002.
89. Schulmeyer, T.; Kniese, R.; Hunger, R.; Jaegermann, W.; Powalla, M.; Klein, A., Influence of Cu(In,Ga)Se2 band gap on the valence band offset with CdS. Thin Solid Films 2004, 451–452 (0), 420-423.
90. Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517.
91. Kang, S. M.; Jang, S.; Lee, J.-K.; Yoon, J.; Yoo, D.-E.; Lee, J.-W.; Choi, M.; Park, N.-G., Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. Small 2016, 12 (18), 2443-2449.
92. Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F., Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2012, 12, 20.
93. Rajan, G.; Aryal, K.; Ashrafee, T.; Karki, S.; Ibdah, A.; Ranjan, V.; Collins, R. W.; Marsillac, S. In Optimization of anti-reflective coatings for CIGS solar cells via real time spectroscopic ellipsometry, PVSC 42, 2015.
94. Bae, H.-S.; Kim, C.; Rhee, I.; Jo, H.-J.; Kim, D.-H.; Hong, S., Enhancement of the CIGS solar cell’s efficiency by anti-reflection coating with Teflon AF. J. Korean Phys. Soc. 2014, 65, 1517-1519.
95. Rajan, G.; Ibdah, A.; Aryal, K.; Ashrafee, T.; Ranjan, V.; Pogue, E. A.; Rockett, A.; Collins, R. W.; Marsillac, S. In Optical enhancement of ultra-thin CIGS solar cells using multi-layered antireflection coatings, PVSC 40, 2014.
96. Shimazaki, K.; Imaizumi, M.; Kibe, K., SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu(In, Ga)Se2 thin-film solar cells for space applications. Thin Solid Films 2008, 516 (8), 2218-2224.
97. Li, D.; Wan, D.; Zhu, X.; Wang, Y.; Han, Z.; Han, S.; Shan, Y.; Huang, F., Broadband antireflection TiO2–SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 505-512.
98. Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M., Optical optimization of a multi-layer wideband anti-reflection coating using porous MgF2 for sub-micron-thick CIGS solar cells. Sol. Energy 2019, 177, 59-67.
99. Wang, Y.-C.; Lin, B.-Y.; Liu, P.-T.; Shieh, H.-P. D., Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se2 thin film solar cells. Opt. Express 2014, 22 (S1), A13-A20.
100. Han, S.-Y.; Pan, C.; Kim, D.-H.; Chang, C.-h., Low-cost & low-temperature curable solution-processed silica-based nanostructured antireflective coatings on CuIn1−xGaxSe2 thin film solar cells. RSC Adv. 2015, 5 (31), 24712-24717.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *