|
(1) Archer, M. D.; Green, M. A.Clean Electricity from Photovoltaics; World Scientific, 2014; Vol. 4. (2) ISE Photovoltaics Report. ISE, Fraunhofer 2016. (3) Shockley, W.; Queisser, H. J.Detailed Balance Limit of Efficiency of P‐n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. (4) Richter, A.Silicon Solar Cells with Full-Area Passivated Rear Contacts: Influence of Wafer Resistivity on Device Performance on a 25% Efficiency Level. In Photovoltaic Science and Engineering Conference (PVSEC-26); Singapore, 2016. (5) Werner, T.Analyst Day. In SunPower Analyst Day; 2015. (6) First Solar Achieves yet Another Cell Conversion Efficiency World Record. First Sol. Press Release 2016. (7) Köntges, M.; Siebert, M.; Morlier, A.; Illing, R.; Bessing, N.; Wegert, F.Impact of Transportation on Silicon Wafer‐based Photovoltaic Modules. Prog. Photovoltaics Res. Appl. 2016, 24, 1085–1095. (8) Han, H.-V.; Lin, C.-C.; Tsai, Y.-L.; Chen, H.-C.; Chen, K.-J.; Yeh, Y.-L.; Lin, W.-Y.; Kuo, H.-C.; Yu, P.A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization. Sci. Rep. 2014, 4, 5734. (9) Kato, T.; (Atsugi Research Center; /Solar Frontier K.K.).Recent Research Progress of High-Efficiency CIGS Solar Cell in Solar Frontier. In 32nd EU PVSEC; 2016; pp. 20–24. (10) First Solar Hits Record 22.1% Conversion Efficiency for CdTe Solar Cell. Greentech Media 2016. (11) Sai, H.; Matsui, T.; Koida, T.; Matsubara, K.; Kondo, M.; Sugiyama, S.; Katayama, H.; Takeuchi, Y.; Yoshida, I.Triple-Junction Thin-Film Silicon Solar Cell Fabricated on Periodically Textured Substrate with a Stabilized Efficiency of 13.6%. Appl. Phys. Lett. 2015, 106, 213902. (12) Zhou, Y.; Zhu, K.Perovskite Solar Cells Shine in the Valley of the Sun. ACS Energy Lett. 2016, 1, 64–67. (13) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M.Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6, 242–247. (14) Kim, J.; Hiroi, H.; Todorov, T. K.; Gunawan, O.; Kuwahara, M.; Gokmen, T.; Nair, D.; Hopstaken, M.; Shin, B.; Lee, Y. S.High Efficiency Cu2ZnSn (S, Se) 4 Solar Cells by Applying a Double In2S3/CdS Emitter. Adv. Mater. 2014, 26, 7427–7431. (15) Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu, J.High‐Performance Graphene‐Based Hole Conductor‐Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small 2015, 11, 2269–2274. (16) AbuShama, J.; Noufi, R.; Johnston, S.; Ward, S.; Wu, X.Improved Performance in CuInSe2 and Surface-Modified CuGaSe2 Solar Cells. In Conference Record of the 31st IEEE Photovoltaic Specialists Conference (31st PVSC); 2005; pp. 299–302. (17) Ishizuka, S.; Yamada, A.; Fons, P. J.; Shibata, H.; Niki, S.Structural Tuning of Wide-Gap Chalcopyrite CuGaSe 2 Thin Films and Highly Efficient Solar Cells: Differences from Narrow-Gap Cu(In,Ga)Se 2. Prog. Photovoltaics Res. Appl. 2014, 821–829. (18) Green, M. A.; Ho-Baillie, A.; Snaith, H. J.The Emergence of Perovskite Solar Cells. Nat. Photonics 2014, 8, 506–514. (19) Tuttle, J. R.; Ward, J. S.; Duda, A.; Berens, T. A.; Contreras, M. A.; Ramanathan, K. R.; Tennant, A. L.; Keane, J.; Cole, E. D.; Emery, K.Thin Films for Photovoltaic and Related Device Applications; San Francisco, USA, 1996; Vol. 426. (20) Siebentritt, S.What Limits the Efficiency of Chalcopyrite Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1471–1476. (21) Contreras, M. A.; Mansfield, L. M.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.Improved Energy Conversion Efficiency in Wide Bandgap Cu(In, Ga)Se2 Solar Cells. In 37th IEEE Photovoltaic Specialists Conference(37thPVSC); IEEE, 2011; pp. 26–31. (22) Kessler, F.; Rudmann, D.Technological Aspects of Flexible CIGS Solar Cells and Modules. Sol. Energy 2004, 77, 685–695. (23) Kapur, V. K.; Singh, P.; Choudary, U.V.; Uno, F. M.; Elyash, L.; Meisel, S.Metallization Systems for Thin Film CuInSe2/CdS Solar Cells. In 17th Photovoltaic Specialists Conference; 1984; Vol. 1, pp. 777–780. (24) Raud, S.; Nicolet, M.-A.Study of the CuInSe2/Mo Thin Film Contact Stability. Thin Solid Films 1991, 201, 361–371. (25) Kamikawa‐Shimizu, Y.; Shimada, S.; Watanabe, M.; Yamada, A.; Sakurai, K.; Ishizuka, S.; Komaki, H.; Matsubara, K.; Shibata, H.; Tampo, H.Effects of Mo Back Contact Thickness on the Properties of CIGS Solar Cells. Phys. Status Solidi 2009, 206, 1063–1066. (26) Scofield, J. H.; Duda, A.; Albin, D.; Ballard, B. L.; Predecki, P. K.Sputtered Molybdenum Bilayer Back Contact for Copper Indium Diselenide-Based Polycrystalline Thin-Film Solar Cells. Thin Solid Films 1995, 260, 26–31. (27) Kadam, A. A.; Dhere, N. G.; Holloway, P.; Law, E.Study of Molybdenum Back Contact Layer to Achieve Adherent and Efficient CIGS2 Absorber Thin-Film Solar Cells. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2005, 23, 1197. (28) Kohara, N.; Nishiwaki, S.; Hashimoto, Y.; Negami, T.; Wada, T.Electrical Properties of the Cu (In, Ga)Se2/MoSe2/Mo Structure. Sol. Energy Mater. Sol. Cells 2001, 67, 209–215. (29) Naghavi, N.; Abou-Ras, D.; Allsop, N.; Barreau, N.; Bücheler, S.; Ennaoui, A.; Fischer, C.-H.; Guillen, C.; Hariskos, D.; Herrero, J.; et al.Buffer Layers and Transparent Conducting Oxides for Chalcopyrite Cu(In,Ga)(S,Se)2 Based Thin Film Photovoltaics: Present Status and Current Developments. Prog. Photovoltaics Res. Appl. 2010, 18, 411–433. (30) Negami, T.; Hashimoto, Y.; Nishiwaki, S.Cu (In, Ga) Se 2 Thin-Film Solar Cells with an Efficiency of 18%. Sol. energy Mater. Sol. cells 2001, 67, 331–335. (31) Rau, U.; Schmidt, M.Electronic Properties of ZnO/CdS/Cu (In, Ga) Se 2 Solar Cells—aspects of Heterojunction Formation. Thin Solid Films 2001, 387, 141–146. (32) Nagoya, Y.; Sang, B.; Fujiwara, Y.; Kushiya, K.; Yamase, O.Improved Performance of Cu (In, Ga) Se 2-Based Submodules with a Stacked Structure of ZnO Window Prepared by Sputtering. Sol. energy Mater. Sol. cells 2003, 75, 163–169. (33) Rau, U.; Schmidt, M.Electronic Properties of ZnO/CdS/Cu(In,Ga)Se2 Solar Cells — Aspects of Heterojunction Formation. Thin Solid Films 2001, 387, 141–146. (34) Hagiwara, Y.; Nakada, T.; Kunioka, A.Improved J Sc in CIGS Thin Film Solar Cells Using a Transparent Conducting ZnO: B Window Layer. Sol. Energy Mater. Sol. Cells 2001, 67, 267–271. (35) Gupta, A.; Compaan, A. D.All-Sputtered 14% CdS/CdTe Thin-Film Solar Cell with ZnO: Al Transparent Conducting Oxide. Appl. Phys. Lett. 2004, 85. (36) Sheu, J.-K.; Shu, K. W.; Lee, M.-L.; Tun, C.-J.; Chi, G.-C.Effect of Thermal Annealing on Ga-Doped ZnO Films Prepared by Magnetron Sputtering. J. Electrochem. Soc. 2007, 154, H521–H524. (37) Kusinski, G. J.; Jokisaari, J. R.; Noriega, R.; Goris, L.; Donovan, M.; Salleo, A.Transmission Electron Microscopy of Solution‐processed, Intrinsic and Al‐doped ZnO Nanowires for Transparent Electrode Fabrication. J. Microsc. 2010, 237, 443–449. (38) Calnan, S.; Tiwari, A. N.High Mobility Transparent Conducting Oxides for Thin Film Solar Cells. Thin Solid Films 2010, 518, 1839–1849. (39) Mohammadi, S.; Abdizadeh, H.; Golobostanfard, M. R.Opto-Electronic Properties of Molybdenum Doped Indium Tin Oxide Nanostructured Thin Films Prepared via Sol–gel Spin Coating. Ceram. Int. 2013, 39, 6953–6961. (40) Peng, C.-Y.; Hamasha, M. M.; VanHart, D.; Lu, S.; Westgate, C. R.Electrical and Optical Degradation Studies on AZO Thin Films under Cyclic Bending Conditions. Device Mater. Reliab. IEEE Trans. 2013, 13, 236–244. (41) Jackson, P.; Würz, R.; Rau, U.; Mattheis, J.; Kurth, M.; Schlötzer, T.; Bilger, G.; Werner, J. H.High Quality Baseline for High Efficiency, Cu (In1− X, Gax) Se2 Solar Cells. Prog. Photovoltaics Res. Appl. 2007, 15, 507–519. (42) Park, J. S.; Dong, Z.; Kim, S.; Perepezko, J. H.CuInSe2 Phase Formation during Cu2Se/In2Se3 Interdiffusion Reaction. J. Appl. Phys. 2000, 87, 3683. (43) Scheer, R.; Schock, H.-W.Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices; John Wiley & Sons, 2011. (44) Herberholz, R.; Rau, U.; Schock, H. W.; Haalboom, T.; Gödecke, T.; Ernst, F.; Beilharz, C.; Benz, K. W.; Cahen, D.Phase Segregation, Cu Migration and Junction Formation in Cu(In, Ga)Se 2. Eur. Phys. J. Appl. Phys. 1999, 6, 131–139. (45) Beilharz, C.Charakterisierung von Aus Der Schmelze Gezüchteten Kristallen in Den Systemen Kupfer-Indium-Selen Und Kupfer-Indium-Gallium-Selen Für Photovoltaische Anwendungen; Shaker, 1999. (46) Zhang, S. B.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H.Defect Physics of the CuInSe 2 Chalcopyrite Semiconductor. Phys. Rev. B 1998, 57, 9642–9656. (47) Yuan, Z.-K.; Chen, S.; Xie, Y.; Park, J.-S.; Xiang, H.; Gong, X.-G.; Wei, S.-H.Na-Diffusion Enhanced P-Type Conductivity in Cu(In,Ga)Se2 : A New Mechanism for Efficient Doping in Semiconductors. Adv. Energy Mater. 2016, 1601191. (48) Cao, Q.; Gunawan, O.; Copel, M.; Reuter, K. B.; Chey, S. J.; Deline, V. R.; Mitzi, D. B.Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance. Adv. Energy Mater. 2011, 1, 845–853. (49) Lany, S.; Zunger, A.Light- and Bias-Induced Metastabilities in Cu(In,Ga)Se2 Based Solar Cells Caused by the (VSe-VCu) Vacancy Complex. J. Appl. Phys. 2006, 100, 113725. (50) Hsu, C.-H.; Su, Y.-S.; Wei, S.-Y.; Chen, C.-H.; Ho, W.-H.; Chang, C.; Wu, Y.-H.; Lin, C.-J.; Lai, C.-H.Na-Induced Efficiency Boost for Se-Deficient Cu(In,Ga)Se 2 Solar Cells. Prog. Photovoltaics Res. Appl. 2015, 23, 1621–1629. (51) Wei, S.-H.; Zhang, S. B.; Zunger, A.Effects of Ga Addition to CuInSe2 on Its Electronic, Structural, and Defect Properties. Appl. Phys. Lett. 1998, 72, 3199. (52) Alonso, M. I.; Garriga, M.; Rincón, C. A. D.; Hernández, E.; León, M.Optical Functions of Chalcopyrite CuGaxIn1-xSe2 Alloys. Appl. Phys. A 2002, 74, 659–664. (53) Minoura, S.; Kodera, K.; Maekawa, T.; Miyazaki, K.; Niki, S.; Fujiwara, H.Dielectric Function of Cu (In, Ga) Se2-Based Polycrystalline Materials. J. Appl. Phys. 2013, 113, 63505. (54) Contreras, M. A.; Mansfield, L. M.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.Wide Bandgap Cu(In,Ga)Se 2 Solar Cells with Improved Energy Conversion Efficiency. Prog. Photovoltaics Res. Appl. 2012, 20, 843–850. (55) Sites, J. R.; Granata, J. E.; Hiltner, J. F.Losses due to Polycrystallinity in Thin-Film Solar Cells. Sol. Energy Mater. Sol. Cells 1998, 55, 43–50. (56) Seager, C. H.; Ginley, D. S.; Zook, J. D.Improvement of Polycrystalline Silicon Solar Cells with Grain‐boundary Hydrogenation Techniques. Appl. Phys. Lett. 1980, 36, 831–833. (57) Jaffe, J.; Zunger, A.Defect-Induced Nonpolar-to-Polar Transition at the Surface of Chalcopyrite Semiconductors. Phys. Rev. B 2001, 64, 241304. (58) Zhang, S. B.; Wei, S.-H.Reconstruction and Energetics of the Polar (112) and ( 1 ¯ 1 ¯ 2 ¯ ) versus the Nonpolar (220) Surfaces of CuInSe 2. Phys. Rev. B 2002, 65, 81402. (59) Jain, M.II-VI Semiconductor Compounds; World Scientific, 1993. (60) Persson, C.; Zunger, A.Anomalous Grain Boundary Physics in Polycrystalline C U I N S E 2 : The Existence of a Hole Barrier. Phys. Rev. Lett. 2003, 91, 266401. (61) Jiang, C.-S.; Noufi, R.; AbuShama, J. A.; Ramanathan, K.; Moutinho, H. R.; Pankow, J.; Al-Jassim, M. M.Local Built-in Potential on Grain Boundary of Cu(In,Ga)Se2 Thin Films. Appl. Phys. Lett. 2004, 84, 3477. (62) Jiang, C.-S.; Noufi, R.; Ramanathan, K.; AbuShama, J. A.; Moutinho, H. R.; Al-Jassim, M. M.Does the Local Built-in Potential on Grain Boundaries of Cu(In,Ga)Se2 Thin Films Benefit Photovoltaic Performance of the Device. Appl. Phys. Lett. 2004, 85, 2625. (63) Hetzer, M. J.; Strzhemechny, Y. M.; Gao, M.; Contreras, M. A.; Zunger, A.; Brillson, L. J.Direct Observation of Copper Depletion and Potential Changes at Copper Indium Gallium Diselenide Grain Boundaries. Appl. Phys. Lett. 2005, 86, 162105. (64) Azulay, D.; Millo, O.; Balberg, I.; Schock, H.-W.; Visoly-Fisher, I.; Cahen, D.Current Routes in Polycrystalline CuInSe2 and Cu(In,Ga)Se2 Films. Sol. energy Mater. Sol. cells 2007, 91, 85–90. (65) Shin, R. H.; Jo, W.; Kim, D.-W.; Yun, J. H.; Ahn, S.Local Current-Voltage Behaviors of Preferentially and Randomly Textured Cu(In, Ga)Se2 Thin Films Investigated by Conductive Atomic Force Microscopy. Appl. Phys. A 2011, 104, 1189–1194. (66) Mönig, H.; Smith, Y.; Caballero, R.; Kaufmann, C. A.; Lauermann, I.; Lux-Steiner, M. C.; Sadewasser, S.Direct Evidence for a Reduced Density of Deep Level Defects at Grain Boundaries of Cu (In,Ga)Se2 Thin Films. Phys. Rev. Lett. 2010, 105, 116802. (67) Yan, Y.; Jiang, C.-S.; Noufi, R.; Wei, S.-H.; Moutinho, H. R.; Al-Jassim, M. M.Electrically Benign Behavior of Grain Boundaries in Polycrystalline CuInSe 2 Films. Phys. Rev. Lett. 2007, 99, 235504. (68) Contreras, M. A.; Egaas, B.; Ramanathan, K.; Hiltner, J.; Swartzlander, A.; Hasoon, F.; Noufi, R.Progress toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-Film Solar Cells. Prog. Photovoltaics Res. Appl. 1999, 7, 311–316. (69) Chantana, J.; Watanabe, T.; Teraji, S.; Kawamura, K.; Minemoto, T.Effect of Crystal Orientation in Cu(In,Ga)Se2 Fabricated by Multi-Layer Precursor Method on Its Cell Performance. Appl. Surf. Sci. 2014, 314, 845–849. (70) Chaisitsak, S.; Yamada, A.; Konagai, M.Preferred Orientation Control of Cu(In1-xGax)Se2 (X ≈0.28) Thin Films and Its Influence on Solar Cell Characteristics. Jpn. J. Appl. Phys. 2002, 41, 507–513. (71) Contreras, M. A.; Jones, K. M.; Gedvilas, L.; Matson, R.Preferred Orientation in Polycrystalline Cu(In,Ga)Se2 and Its Effect on Absorber Thin-Films and Devices. 2000. (72) Kiss, J.; Gruhn, T.; Roma, G.; Felser, C.Theoretical Study on the Structure and Energetics of Cd Insertion and Cu Depletion of CuIn5Se8. J. Phys. Chem. C 2013, 117, 10892–10900. (73) Witte, W.; Abou-Ras, D.; Hariskos, D.Chemical Bath Deposition of Zn (O, S) and CdS Buffers: Influence of Cu (In, Ga) Se2 Grain Orientation. Appl. Phys. Lett. 2013, 102, 51607. (74) Scheer, R.Surface and Interface Properties of Cu-Chalcopyrite Semiconductors and Devices. Trends Vac. Sci. Technol. 1997, 2, 77–112. (75) Hanna, G.; Mattheis, J.; Laptev, V.; Yamamoto, Y.; Rau, U.; Schock, H. W.Influence of the Selenium Flux on the Growth of Cu(In,Ga)Se2 Thin Films. Thin Solid Films 2003, 431–432, 31–36. (76) Scofield, J. H.; Asher, S.; Albin, D.; Tuttle, J.; Contreras, M.; Niles, D.; Reedy, R.; Tennant, A.; Noufi, R.Sodium Diffusion, Selenization, and Microstructural Effects Associated with Various Molybdenum Back Contact Layers for CIS-Based Solar Cells. Proc. 1994 IEEE 1st World Conf. Photovolt. Energy Convers. - WCPEC (A Jt. Conf. PVSC, PVSEC PSEC) 1994, 1, 164–167. (77) Nakada, T.; Iga, D.; Ohbo, H.; Kunioka, A.Effects of Sodium on Cu(In,Ga)Se2-Based Thin Films and Solar Cells. Jpn. J. Appl. Phys. 1997, 36, 732–737. (78) Kronik, L.; Cahen, D.; Schock, H. W.Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Adv. Mater. 1998, 10, 31–36. (79) Rudmann, D.; daCunha, A. F.; Kaelin, M.; Kurdesau, F.; Zogg, H.; Tiwari, A. N.; Bilger, G.Efficiency Enhancement of Cu(In,Ga)Se2 Solar Cells due to Post-Deposition Na Incorporation. Appl. Phys. Lett. 2004, 84, 1129. (80) Rudmann, D.Effects of Sodium on Growth and Properties of Cu(In,Ga)Se2 Thin Films and Solar Cells, University of Basel, 2004. (81) Ishizuka, S.; Yamada, A.; Matsubara, K.; Fons, P.; Sakurai, K.; Niki, S.Alkali Incorporation Control in Cu(In,Ga)Se2 Thin Films Using Silicate Thin Layers and Applications in Enhancing Flexible Solar Cell Efficiency. Appl. Phys. Lett. 2008, 93, 124105. (82) Lammer, M.; Klemm, U.; Powalla, M.Sodium Co-Evaporation for Low Temperature Cu(In,Ga)Se2 Deposition. Thin Solid Films 2001, 387, 33–36. (83) Rudmann, D.; Bilger, G.; Kaelin, M.; Haug, F.-J.; Zogg, H.; Tiwari, A. N.Effects of NaF Coevaporation on Structural Properties of Cu(In,Ga)Se2 Thin Films. Thin Solid Films 2003, 431–432, 37–40. (84) Rudmann, D.; Bremaud, D.; Zogg, H.; Tiwari, A. N.Na Incorporation into Cu (In, Ga) Se2 for High-Efficiency Flexible Solar Cells on Polymer Foils. J. Appl. Phys. 2005, 97, 84903. (85) Ishizuka, S.; Yamada, A.; Islam, M. M.; Shibata, H.; Fons, P.; Sakurai, T.; Akimoto, K.; Niki, S.Na-Induced Variations in the Structural, Optical, and Electrical Properties of Cu(In,Ga)Se2 Thin Films. J. Appl. Phys. 2009, 106, 34908. (86) Stange, H.; Brunken, S.; Hempel, H.; Rodriguez-Alvarez, H.; Schäfer, N.; Greiner, D.; Scheu, A.; Lauche, J.; Kaufmann, C. A.; Unold, T.Effect of Na Presence during CuInSe2 Growth on Stacking Fault Annihilation and Electronic Properties. Appl. Phys. Lett. 2015, 107, 152103. (87) Niles, D. W.Na Impurity Chemistry in Photovoltaic CIGS Thin Films: Investigation with X-Ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1997, 15, 3044. (88) Contreras, M. A.; Egaas, B.; Dippo, P.; Webb, J.; Granata, J.; Ramanathan, K.; Asher, S.; Swartzlander, A.; Noufi, R.On the Role of Na and Modifications to Cu(In,Ga)Se/sub 2/ Absorber Materials Using Thin-MF (M=Na, K, Cs) Precursor Layers. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997; IEEE, 1997; pp. 359–362. (89) Schroeder, D. J.; Rockett, A. A.Electronic Effects of Sodium in Epitaxial CuIn1-xGaxSe2. J. Appl. Phys. 1997, 82, 4982–4985. (90) Wei, S.; Zhang, S. B.; Zunger, A.Effects of Na on the Electrical and Structural Properties of CuInSe2. J. Appl. Phys. 1999, 85. (91) Lany, S.; Zunger, A.Intrinsic D X Centers in Ternary Chalcopyrite Semiconductors. Phys. Rev. Lett. 2008, 100, 16401. (92) Sun, X.; Jiang, F.; Feng, J.Roles of Sodium Induced Defects in CuInSe2 by First Principles Calculation. Comput. Mater. Sci. 2009, 47, 31–34. (93) Chen, W. S.; Stewart, J. M.; Mickelsen, R. A.Polycrystalline Thin‐film Cu2− xSe/CdS Solar Cell. Appl. Phys. Lett. 1985, 46, 1095–1097. (94) Mickelsen, R. A.; Chen, W. S.High Photocurrent Polycrystalline Thin‐film CdS/CuInSe2 Solar Cella. Appl. Phys. Lett. 1980, 36, 371–373. (95) Mickelsen, R. A.; Chen, W. S.Methods for Forming Thin-Film Heterojunction Solar Cells from I-III-VI.sub.2 U.S. Patent No. 4,335,266, June15, 1982. (96) Tuttle, J. R.; Contreras, M.; Tennant, A.; Albin, D.; Noufi, R.High Efficiency Thin-Film Cu(In,Ga)Se2-Based Photovoltaic Devices: Progress towards a Universal Approach to Absorber Fabrication. In Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE; IEEE, 1993; pp. 415–421. (97) Contreras, M. A.; Tuttle, J.; Gabor, A.; Tennant, A.; Ramanathan, K.; Asher, S.; Franz, A.; Keane, J.; Wang, L.; Scofield, J.High Efficiency Cu(In,Ga)Se2-Based Solar Cells: Processing of Novel Absorber Structures. In Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference; IEEE, 1994; Vol. 1, pp. 68–75. (98) Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M.New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells beyond 20%. Prog. Photovoltaics Res. Appl. 2011, 19, 894–897. (99) Chirilă, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; et al.Potassium-Induced Surface Modification of Cu(In,Ga)Se2 Thin Films for High-Efficiency Solar Cells. Nat. Mater. 2013, 12, 1107–1111. (100) Chirilă, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A. R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; et al.Highly Efficient Cu(In,Ga)Se2 Solar Cells Grown on Flexible Polymer Films. Nat. Mater. 2011, 10, 857–861. (101) Jackson, P.; Hariskos, D.; Wuerz, R.; Wischmann, W.; Powalla, M.Compositional Investigation of Potassium Doped Cu(In,Ga)Se 2 Solar Cells with Efficiencies up to 20.8%. Phys. Status Solidi - Rapid Res. Lett. 2014, 8, 219–222. (102) Contreras, M. A.; Repins, I.; Metzger, W. K.; Romero, M.; Abou-Ras, D.Se Activity and Its Effect on Cu(In,Ga)Se2 Photovoltaic Thin Films. Phys. Status Solidi 2009, 206, 1042–1048. (103) Young Park, H.; Gwon Moon, D.; Ho Yun, J.; Ahn, S. K.; Yoon, K. H.; Ahn, S.Efficiency Limiting Factors in Cu(In,Ga)Se2 Thin Film Solar Cells Prepared by Se-Free Rapid Thermal Annealing of Sputter-Deposited Cu-In-Ga-Se Precursors. Appl. Phys. Lett. 2013, 103, 263903. (104) Islam, M. M.; Uedono, A.; Sakurai, T.; Yamada, A.; Ishizuka, S.; Matsubara, K.; Niki, S.; Akimoto, K.Impact of Se Flux on the Defect Formation in Polycrystalline Cu(In,Ga)Se2 Thin Films Grown by Three Stage Evaporation Process. J. Appl. Phys. 2013, 113, 64907. (105) Powalla, M.; Dimmler, B.Development of Large-Area CIGS Modules. Sol. energy Mater. Sol. cells 2003, 75, 27–34. (106) Lindahl, J.; Zimmermann, U.; Szaniawski, P.; Torndahl, T.; Hultqvist, A.; Salome, P.; Platzer-Bjorkman, C.; Edoff, M.Inline Cu(In,Ga)Se2 Co-Evaporation for High-Efficiency Solar Cells and Modules. IEEE J. Photovoltaics 2013, 3, 1100–1105. (107) Kushiya, K.; Tachiyuki, M.; Kase, T.Thin-Film Solar Cell Comprising Thin-Film Light Absorbing Layer of Chalcopyrite Multi-Element Compound Semiconductor U.S. Patent No. 5,981,868, November9, 1999. (108) Kapur, V. K.; Choudary, U.V; Chu, A. K. P.Process of Forming a Compound Semiconductive Material U.S. Patent No. 4, 581, 108, April8, 1986. (109) Jensen, C. L.; Tarrant, D. E.; Ermer, J. H.; Pollock, G. A.The Role of Gallium in CuInSe 2 Solar Cells Fabricated by a Two-Stage Method. In Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE; IEEE, 1993; pp. 577–580. (110) Kushiya, K.; Tanaka, Y.; Hakuma, H.; Goushi, Y.; Kijima, S.; Aramoto, T.; Fujiwara, Y.Interface Control to Enhance the Fill Factor over 0.70 in a Large-Area CIS-Based Thin-Film PV Technology. Thin Solid Films 2009, 517, 2108–2110. (111) Kushiya, K.Key near-Term R&D Issues for Continuous Improvement in CIS-Based Thin-Film PV Modules. Sol. Energy Mater. Sol. Cells 2009, 93, 1037–1041. (112) Nakamura, M.; Kouji, Y.; Chiba, Y.; Hakuma, H.; Kobayashi, T.; Nakada, T.Achievement of 19.7% Efficiency with a Small-Sized Cu (InGa)(SeS)2 Solar Cells Prepared by Sulfurization after Selenizaion Process with Zn-Based Buffer. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC); IEEE, 2013; pp. 849–852. (113) Nagoya, Y.; Kushiya, K.; Tachiyuki, M.; Yamase, O.Role of Incorporated Sulfur into the Surface of Cu (InGa) Se 2 Thin-Film Absorber. Sol. energy Mater. Sol. cells 2001, 67, 247–253. (114) Niki, S.; Contreras, M.; Repins, I.; Powalla, M.; Kushiya, K.; Ishizuka, S.; Matsubara, K.CIGS Absorbers and Processes. Prog. Photovoltaics Res. Appl. 2010, 18, 453–466. (115) Piekoszewski, J.; Loferski, J. J.; Beaulieu, R.; Beall, J.; Roessler, B.; Shewchun, J.RF-Sputtered CuInSe2 Thin Films. Sol. Energy Mater. 1980, 2, 363–372. (116) Thornton, J. A.; Lommasson, T. C.Magnetron Reactive Sputtering of Copper-Indium-Selenide. Sol. Cells 1986, 16, 165–180. (117) Shi, J. H.; Li, Z. Q.; Zhang, D. W.; Liu, Q. Q.; Sun, Z.; Huang, S. M.Fabrication of Cu(In, Ga)Se2 Thin Films by Sputtering from a Single Quaternary Chalcogenide Target. Prog. Photovoltaics Res. Appl. 2011, 19, 160–164. (118) Edoff, M.; Lindahl, J.; Wätjen, T.; Nyber, T.Gas Flow Sputtering of Cu (In, Ga) Se2 for Thin Film Solar Cells. In Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd; IEEE, 2015; pp. 1–5. (119) Frantz, J. A.; Bekele, R. Y.; Nguyen, V. Q.; Sanghera, J. S.; Bruce, A.; Frolov, S. V.; Cyrus, M.; Aggarwal, I. D.Cu(In,Ga)Se2 Thin Films and Devices Sputtered from a Single Target without Additional Selenization. Thin Solid Films 2011, 519, 7763–7765. (120) Chen, C.-H.; Shih, W.-C.; Chien, C.-Y.; Hsu, C.-H.; Wu, Y.-H.; Lai, C.-H.A Promising Sputtering Route for One-Step Fabrication of Chalcopyrite Phase Cu(In,Ga)Se2 Absorbers without Extra Se Supply. Sol. Energy Mater. Sol. Cells 2012, 103, 25–29. (121) Hsu, C.-H.; Ho, W.-H.; Yuan, W.-S.; Lai, C.-H.Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Post-Selenization by Post-Treatment of Alkali Metals. Adv. Energy Mater. 2017, (Accepted). (122) Ouyang, L.; Zhuang, D.; Zhao, M.; Zhang, N.; Li, X.; Guo, L.; Sun, R.; Cao, M.Cu(In,Ga)Se 2 Solar Cell with 16.7% Active-Area Efficiency Achieved by Sputtering from a Quaternary Target. Phys. Status Solidi 2015, 212, 1774–1778. (123) Lin, T.-Y.; Chen, C.-H.; Huang, W.-C.; Ho, W.-H.; Wu, Y.-H.; Lai, C.-H.Direct Probing Se Spatial Distribution in Cu(InxGa1-x)Se2 Solar Cells: A Key Factor to Achieve High Efficiency Performance. Nano Energy 2016, 19, 269–278. (124) Mori, N.Micro Area Analysis with JXA-8530 (FE-EPMA). JEOL News 2010, 45, 42–46. (125) Kiss, J.; Gruhn, T.; Roma, G.; Felser, C.Theoretical Study on the Diffusion Mechanism of Cd in the Cu-Poor Phase of CuInSe2 Solar Cell Material. J. Phys. Chem. C 2013, 117, 25933–25938. (126) Matsumori, H.; Nakada, T.Epitaxial Growth of CIGS Thin Films on Mo-Coated Sapphire Substrates. In 19th International Conference Ternary and Multinary Compound; Niigata, Japan, 2014; pp. P4-131. (127) Contreras, M. A.; Egaas, B.; King, D.; Swartzlander, A.; Dullweber, T.Texture Manipulation of CuInSe2 Thin Films. Thin Solid Films 2000, 361–362, 167–171. (128) Shin, D. H.; Shin, Y. M.; Kim, J. H.; Ahn, B. T.; Yoon, K. H.Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film. J. Electrochem. Soc. 2012, 159, B1. (129) Ahn, S.; Kim, K. H.; Yun, J. H.; Yoon, K. H.Effects of Selenization Conditions on Densification of Cu(In,Ga)Se2 (CIGS) Thin Films Prepared by Spray Deposition of CIGS Nanoparticles. J. Appl. Phys. 2009, 105, 113533. (130) Shin, B.; Zhu, Y.; Bojarczuk, N. A.; Jay Chey, S.; Guha, S.Control of an Interfacial MoSe2 Layer in Cu2ZnSnSe4 Thin Film Solar Cells: 8.9% Power Conversion Efficiency with a TiN Diffusion Barrier. Appl. Phys. Lett. 2012, 101, 53903. (131) Schroeder, D. J.; Rockett, A. A.Electronic Effects of Sodium in Epitaxial CuIn1−xGaxSe2. J. Appl. Phys. 1997, 82, 4982–4985. (132) Chen, C.-H.; Lin, T.-Y.; Hsu, C.-H.; Wei, S.-Y.; Lai, C.-H.Comprehensive Characterization of Cu-Rich Cu(In,Ga)Se2 Absorbers Prepared by One-Step Sputtering Process. Thin Solid Films 2013, 535, 122–126. (133) Salomé, P. M. P.; Fjällström, V.; Szaniawski, P.; Leitão, J. P.; Hultqvist, A.; Fernandes, P. A.; Teixeira, J. P.; Falcão, B. P.; Zimmermann, U.; daCunha, A. F.; et al.A Comparison between Thin Film Solar Cells Made from Co-Evaporated CuIn1-xGaxSe2 Using a One-Stage Process versus a Three-Stage Process. Prog. Photovoltaics Res. Appl. 2015, 23, 470–478. (134) Rampino, S.; Bissoli, F.; Gilioli, E.; Pattini, F.Growth of Cu(In,Ga)Se 2 Thin Films by a Novel Single-Stage Route Based on Pulsed Electron Deposition. Prog. Photovoltaics Res. Appl. 2013, 588–594. (135) Rockett, A.The Electronic Effects of Point Defects in Cu (InxGa1-x)Se2. 2000, 362, 330–337. (136) Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Lyman, C. E.; Lifshin, E.; Sawyer, L.; Michael, J. R.Scanning Electron Microscopy and X-Ray Microanalysis; Springer US: Boston, MA, 2003. (137) Stoney, G. G.The Tension of Metallic Films Deposited by Electrolysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1909, 82, 172–175. (138) Thornton, J. A.High Rate Thick Film Growth. Annu. Rev. Mater. Sci. 1977, 7, 239–260. (139) Mattox, D. M.Particle Bombardment Effects on Thin-Film Deposition: A Review. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1989, 7, 1105. (140) Segmüller, A.; Angilelo, J.; LaPlaca, S. J.Automatic X-Ray Diffraction Measurement of the Lattice Curvature of Substrate Wafers for the Determination of Linear Strain Patterns. J. Appl. Phys. 1980, 51, 6224. (141) Müller, K.-H.Stress and Microstructure of Sputter-Deposited Thin Films: Molecular Dynamics Investigations. J. Appl. Phys. 1987, 62, 1796. (142) Ayers, J.Heteroepitaxy of Semiconductors : Theory, Growth, and Characterization; CRC Press: Boca Raton, Florida, 2007. (143) Lee, S.; Koo, J.; Kim, S.; Kim, S.-H.; Cheon, T.; Oh, J. S.; Kim, S. J.; Kim, W. K.Characteristics of MoSe 2 Formation during Rapid Thermal Processing of Mo-Coated Glass. Thin Solid Films 2013, 535, 206–213. (144) Abou-Ras, D.; Kostorz, G.; Bremaud, D.; Kälin, M.; Kurdesau, F. V.; Tiwari, A. N.; Döbeli, M.Formation and Characterisation of MoSe2 for Cu(In,Ga)Se2 Based Solar Cells. Thin Solid Films 2005, 480–481, 433–438. (145) Oikkonen, L. E.; Ganchenkova, M. G.; Seitsonen, A. P.; Nieminen, R. M.Effect of Sodium Incorporation into CuInSe2 from First Principles. J. Appl. Phys. 2013, 114, 83503. (146) Contreras, M. A.; Tuttle, J. R.; Gabor, A.; Tennant, A.; Ramanathan, K.; Asher, S.; Franz, A.; Keane, J.; Wang, L.; Scofield, J.; et al.High Efficiency Cu(In,Ga)Se2-Based Solar Cells: Processing of Novel Absorber Structures. In Conference Record of the 24th IEEE Photovoltaics Specialists Conference (PVSC); Hawaii, December, 1994. (147) Powalla, M.; Dimmler, B.CIGS Solar Cells on the Way to Mass Production: Process Statistics of a 30cm×30cm Module Line. Sol. Energy Mater. Sol. Cells 2001, 67, 337–344. (148) Delahoy, A. E.; Chen, L.; Akhtar, M.; Sang, B.; Guo, S.New Technologies for CIGS Photovoltaics. Sol. Energy 2004, 77, 785–793. (149) Alberts, V.; Titus, J.; Birkmire, R. W.Material and Device Properties of Single-Phase Cu(In,Ga)(Se,S)2 Alloys Prepared by Selenization/sulfurization of Metallic Alloys. Thin Solid Films 2004, 451–452, 207–211. (150) Wu, T.-T.; Huang, J.-H.; Hu, F.; Chang, C.; Liu, W.-L.; Wang, T.-H.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L.Toward High Efficiency and Panel Size 30×40cm2 Cu(In,Ga)Se2 Solar Cell: Investigation of Modified Stacking Sequences of Metallic Precursors and Pre-Annealing Process without Se Vapor at Low Temperature. Nano Energy 2014, 10, 28–36. (151) Todorov, T. K.; Gunawan, O.; Gokmen, T.; Mitzi, D. B.Solution-Processed Cu(In,Ga)(S,Se) 2 Absorber Yielding a 15.2% Efficient Solar Cell. Prog. Photovoltaics Res. Appl. 2013, 21, 82–87. (152) Lincot, D.; Guillemoles, J. F.; Taunier, S.; Guimard, D.; Sicx-Kurdi, J.; Chaumont, A.; Roussel, O.; Ramdani, O.; Hubert, C.; Fauvarque, J. P.; et al.Chalcopyrite Thin Film Solar Cells by Electrodeposition. Sol. Energy 2004, 77, 725–737. (153) Kapur, V. K.; Bansal, A.; Le, P.; Asensio, O. I.Non-Vacuum Processing of CuIn1−xGaxSe2 Solar Cells on Rigid and Flexible Substrates Using Nanoparticle Precursor Inks. Thin Solid Films 2003, 431–432, 53–57. (154) Li, W.; Sun, Y.; Liu, W.; Zhou, L.Fabrication of Cu(In,Ga)Se2 Thin Films Solar Cell by Selenization Process with Se Vapor. Sol. Energy 2006, 80, 191–195. (155) Nishiwaki, S.; Kohara, N.; Negami, T.; Miyake, H.; Wada, T.Microstructure of Cu(In,Ga)Se 2 Films Deposited in Low Se Vapor Pressure. Jpn. J. Appl. Phys. 1999, 38, 2888–2892. (156) Zhang, S.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H.Defect Physics of the CuInSe2 Chalcopyrite Semiconductor. Phys. Rev. B 1998, 57, 9642–9656. (157) Islam, M. M.; Sakurai, T.; Ishizuka, S.; Yamada, A.; Shibata, H.; Sakurai, K.; Matsubara, K.; Niki, S.; Akimoto, K.Effect of Se/(Ga+In) Ratio on MBE Grown Cu(In,Ga)Se2 Thin Film Solar Cell. J. Cryst. Growth 2009, 311, 2212–2214. (158) Keller, J.; Schlesiger, R.; Riedel, I.; Parisi, J.; Schmitz, G.; Avellan, A.; Dalibor, T.Grain Boundary Investigations on Sulfurized Cu(In,Ga)(S,Se)2 Solar Cells Using Atom Probe Tomography. Sol. Energy Mater. Sol. Cells 2013, 117, 592–598. (159) Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.Atomic-Scale Distribution of Impurities in CuInSe2-Based Thin-Film Solar Cells. Ultramicroscopy 2011, 111, 552–556. (160) Drouin, D.; Couture, A. R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R.CASINO V2.42: A Fast and Easy-to-Use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. Scanning 2007, 29, 92–101. (161) Hegedus, S. S.; Shafarman, W. N.Thin-Film Solar Cells: Device Measurements and Analysis. Prog. Photovoltaics Res. Appl. 2004, 12, 155–176. (162) Im, J.; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.Composition-Control of Magnetron-Sputter-Deposited (BaxSr1−x)Ti1+yO3+z Thin Films for Voltage Tunable Devices. Appl. Phys. Lett. 2000, 76, 625. (163) Cahen, D.; Noufi, R.Defect Chemical Explanation for the Effect of Air Anneal on CdS/CuInSe2 Solar Cell Performance. Appl. Phys. Lett. 1989, 54, 558. (164) Liao, Y.-K.; Wang, Y.-C.; Yen, Y.-T.; Chen, C.-H.; Hsieh, D.-H.; Chen, S.-C.; Lee, C.-Y.; Lai, C.-C.; Kuo, W.-C.; Juang, J.-Y.; et al.Non-Antireflective Scheme for Efficiency Enhancement of Cu(In,Ga)Se2 Nanotip Array Solar Cells. ACS Nano 2013, 7, 7318–7329. (165) Tsuji, K.; Injuk, J.; Grieken, R.Van.X-Ray Spectrometry: Recent Technological Advances; John Wiley & Sons: West Sussex, England, 2004. (166) Servant, J.-M.; Meny, L.; Champigny, M.Energy Dispersion Quantitative X-Ray Microanalysis on a Scanning Electron Microscope. X-Ray Spectrom. 1975, 4, 99–107. (167) Donovan, J.High Sensitivity EPMA: Past, Present and Future. Microsc. Microanal. 2011, 17, 560–561. (168) Cahen, D.; Noufi, R.Free Energies and Enthalpies of Possible Gas Phase and Surface Reactions for Preparation of CuInSe2. J. Phys. Chem. Solids 1992, 53, 991–1005. (169) Aller, L. H.; Appenzeller, I.; Baschek, B.; Butler, K.; DeLoore, C.; Duerbeck, H. W.; ElEid, M. F.; Fink, H. H.; Herczeg, T.; Richtler, T.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology-New Series; 1996; Vol. 5a–5j. (170) Mills, K. C.Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides. 1974. (171) Berkowitz, J.Comment on the Composition of Selenium Vapor. J. Chem. Phys. 1968, 48, 5743. (172) Li, G.; Liu, W.; Liu, Y.; Lin, S.; Zhang, Y.; Zhou, Z.; He, Q.; Sun, Y.The Influence of Cracked Selenium Flux on CIGS Thin Film Growth and Device Performance Prepared by Two-Step Selenization Processes. Sol. Energy Mater. Sol. Cells 2015, 139, 108–114. (173) Sadewasser, S.Microscopic Characterization of Individual Grain Boundaries in Cu-III–VI2 Chalcopyrites. Thin Solid Films 2007, 515, 6136–6141. (174) Azulay, D.; Millo, O.; Balberg, I.; Schock, H.-W.; Visoly-Fisher, I.; Cahen, D.Current Routes in Polycrystalline CuInSe2 and Cu(In,Ga)Se2 Films. Sol. Energy Mater. Sol. Cells 2007, 91, 85–90. (175) Sakurai, T.; Islam, M. M.; Uehigashi, H.; Ishizuka, S.; Yamada, A.; Matsubara, K.; Niki, S.; Akimoto, K.Dependence of Se Beam Pressure on Defect States in CIGS-Based Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 227–230. (176) Rau, U.; Grabitz, P. O.; Werner, J. H.Resistive Limitations to Spatially Inhomogeneous Electronic Losses in Solar Cells. Appl. Phys. Lett. 2004, 85, 6010. (177) Hsu, C.-H.Effects of Se, Na, and K on Quaternary-Sputtered CIGS Thin Films, National Tsing Hua University, 2016. (178) Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M.Effects of Heavy Alkali Elements in Cu(In,Ga)Se2 Solar Cells with Efficiencies up to 22.6%. Phys. status solidi (RRL)-Rapid Res. Lett. 2016, 10, 583–586. (179) Granata, J. E.; Sites, J. R.; Asher, S.; Matson, R. J.Quantitative Incorporation of Sodium in CuInSe 2 and Cu (In, Ga) Se 2 Photovoltaic Devices. In Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE; IEEE, 1997; pp. 387–390. (180) Hanket, G. M.; Shafarman, W. N.; McCandless, B. E.; Birkmire, R. W.Incongruent Reaction of Cu–(InGa) Intermetallic Precursors in H2Se and H2S. J. Appl. Phys. 2007, 102, 74922. (181) Bothe, K.; Bauer, G. H.; Unold, T.Spatially Resolved Photoluminescence Measurements on Cu(In,Ga)Se2 Thin Films. Thin Solid Films 2002, 403–404, 453–456. (182) Eich, D.; Herber, U.; Groh, U.; Stahl, U.; Heske, C.; Marsi, M.; Kiskinova, M.; Riedl, W.; Fink, R.; Umbach, E.Lateral Inhomogeneities of Cu(In,Ga)Se2 Absorber Films. Thin Solid Films 2000, 361–362, 258–262. (183) Shiau, Y.-J.; Chiang, K.-M.; Lin, H.-W.Performance Enhancement of Metal Nanowire-Based Transparent Electrodes by Electrically Driven Nanoscale Nucleation of Metal Oxides. Nanoscale 2015, 7, 12698–12705. (184) Braunger, D.; Zweigart, S.; Schock, H. W.The Influence of Na and Ga on the Incorporation of the Chalcogen in Polycrystalline Cu(In,Ga)(S,Se)2 Thin-Films for Photovoltaic Applications. In 2nd World Conference of Photovoltaic Solar Energy Conversion, Vienna; 1998; Vol. 1113. (185) Braunger, D.; Hariskos, D.; Bilger, G.; Rau, U.; Schock, H. W.Influence of Sodium on the Growth of Polycrystalline Cu(In,Ga)Se2 Thin Films. Thin Solid Films 2000, 361–362, 161–166. (186) NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Refer- ence Database 20, Version 3.4 http://srdata.nist.gov/xps/. (187) Wagner, C. D.Chemical Shifts of Auger Lines, and the Auger Parameter. Faraday Discuss. Chem. Soc. 1975, 60, 291–300. (188) Seyama, H.; Soma, M.Bonding-State Characterization of the Constitutent Elements of Silicate Minerals by X-Ray Photoelectron Spectroscopy. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1985, 81, 485–495. (189) Barrie, A.; Street, F. J.An Auger and X-Ray Photoelectron Spectroscopic Study of Sodium Metal and Sodium Oxide. J. Electron Spectros. Relat. Phenomena 1975, 7, 1–31. (190) Sites, J. R.Quantification of Losses in Thin-Film Polycrystalline Solar Cells. Sol. Energy Mater. Sol. Cells 2003, 75, 243–251. (191) Gerthoffer, A.; Roux, F.; Emieux, F.; Faucherand, P.; Fournier, H.; Grenet, L.; Perraud, S.CIGS Solar Cells on Flexible Ultra-Thin Glass Substrates: Characterization and Bending Test. Thin Solid Films 2015, 592, 99–104. (192) Wuerz, R.; Eicke, A.; Frankenfeld, M.; Kessler, F.; Powalla, M.; Rogin, P.; Yazdani-Assl, O.CIGS Thin-Film Solar Cells on Steel Substrates. Thin Solid Films 2009, 517, 2415–2418. (193) Song, J.-G.; Park, K.; Park, J.; Kim, H.Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides. Appl. Microsc. 2015, 45, 119–125. (194) Beiley, Z. M.; McGehee, M. D.Modeling Low Cost Hybrid Tandem Photovoltaics with the Potential for Efficiencies Exceeding 20%. Energy Environ. Sci. 2012, 5, 9173–9179. (195) Bremner, S. P.; Levy, M. Y.; Honsberg, C. B.Analysis of Tandem Solar Cell Efficiencies under AM1.5G Spectrum Using a Rapid Flux Calculation Method. Prog. Photovoltaics Res. Appl. 2008, 16, 225–233. (196) Bailie, C. D.; Christoforo, M. G.; Mailoa, J. P.; Bowring, A. R.; Unger, E. L.; Nguyen, W. H.; Burschka, J.; Pellet, N.; Lee, J. Z.; Grätzel, M.; et al.Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and CIGS. Energy Environ. Sci. 2014, 8, 956–963.
|