帳號:guest(3.143.5.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳楷荏
作者(外文):Chen, Kai-Jen.
論文名稱(中文):超分子材料的光誘導機械運動
論文名稱(外文):Photoinduced Mechanical Motions of Supramolecular Materials
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):王潔
鄭彥如
劉振良
游進陽
口試委員(外文):Wang, Jane
Cheng, Yen-Ju
Liu, Cheng-Liang
Yu, Chin-Yang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101030602
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:311
中文關鍵詞:超分子晶體準輪烷分子機械光誘導行為
外文關鍵詞:SupramolecularCrystalPseudorotaxaneMolecular MachinePhotoinduced Motions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文主要描述了超分子材料的光致機械運動和光化學反應。
在第二章,由外部刺激引起的晶體相變化已被用於檢測固態特性的物理變化,本研究呈現了藉由聚焦雷射光所控制含二茂鐵的準輪烷晶體之機械轉換,經由簡單控制445 nm雷射光的開關可以驅動晶體外型的膨脹和收縮。照射雷射光引起的晶體膨脹將會在30 ℃室溫下沿a、b和c三軸有全維度的伸長,然而比起在105 ℃下加熱,將導致晶體c軸的縮短。可逆地膨脹收縮行為伴隨快速反向(收縮)過程是此機械轉換的優點。對應於受雷射光照射時晶體尺寸的變化,單晶X射線晶體學揭示了分子的詳細結構變化。這種由雷射光照射晶體引起的分子結構變化行為被用於遠程物體控制,像是微球傳輸和電路中的微開關。
在第三章節聚焦在具機動性的準輪烷所組成的分子機器,並討論分子機器回應外部刺激將入射能量轉換成機械運動的行為。這項研究討論受熱和光激發回應的晶體動態行為,並涵蓋了由含有二茂鐵或二茂釕基團的軸分子穿過醚環分子(DB24C8)所形成的準輪烷晶體。其中含有二茂釕的準輪烷晶體在86 ℃下表現出晶體熱相變化,此相變溫度遠低於含二茂鐵的準輪烷晶體(128 ℃)。在不同溫度下所量測的單晶X射線晶體結果揭示了結構變化的細節,並表明龐大的二茂釕在準輪烷結構中提供變形以促進軸分子的扭曲且有效的降低熱相變化溫度。另外,將混合的二茂鐵和二茂釕準輪烷晶體於85 ℃下接受405 nm的聚焦雷射光照射,此光機械轉換能有效提供相變時晶體自身重量6,400倍的力量。
在第四章節主要討論含有雙二茂鐵或二茂鐵基團的軸分子穿過醚環分子(DB24C8或DB24C8-Br4)所形成的準輪烷晶體的光誘導力學行為。當一個含雙二茂鐵的準輪烷晶體接受445 nm的聚焦雷射光照射,此光機械轉換能提供晶體自身重量高達2,900倍的力量。
在第五章我們將討論各式各樣以二茂鐵為基準所設計的新型準輪烷分子的合成、晶體堆疊、光/熱誘導的反應。二茂鐵甲胺準輪烷晶體(5-1H)和以它的甲苯基、苯基、乙基和甲基衍生物當作軸分子並且與醚環分子(DB24C8)相互作用形成的晶體(1, 5-1Phe, 5-1Eth and 5-1Me) 或與四溴醚環分子(DB24C8-Br4)相互作用形成的晶體(5-2Tol, 5-2Phe, 5-2Eth, 5-2Me and 5-2H) 或者與小醚環分(DB18C6)作用形成的晶體(5-3Me and 5-3H)被拿來相互比較並探索結構修飾可能對光和熱誘導的反應性所產生的影響。單晶X射線晶體學被用來確定這些衍生物的分子堆疊結構。透過照射445 nm聚焦雷射,因為含有較短軸分子的準輪烷晶體在445 nm處具有更高的光敏性,因此可以實現最有效的光誘導機械運動,其中以晶體膨脹率來看: 5-1H > 5-1Me > 5-1Eth > 5-1Phe > 1。除此之外,5-1H與5-3Me 的多形態晶體透過差示掃描量熱儀(DSC)呈現了相當不同的熱相變化溫度。
第六章我們主要用二苯乙烯和二茂鐵基研究了晶體的光誘導行為。單晶X射線晶體學說明了此類化合物當中,只有中性晶體和具有Cl-基團作為陰離子的晶體在兩個芳香環之間才表現出π-π相互作用,若將陰離子交換成BF4-和PF6-將會擾亂這分子間的交互作用。另外我們討論此類化合物在固體和溶液狀態下由355 nm紫外光誘導的[2 + 2]環加成反應。藉由紫外光照射[(FcMAS)·H]+(Cl)-化合物的二甲基亞碸溶液,將能透過核磁共振氫譜觀察到新形成的環丁烷訊號峰。除此之外,藉由445 nm聚焦雷射光照射所誘導的晶體膨脹和收縮行為也與含有二茂鐵的準輪烷晶體進行比較,此類晶體的光誘導力學行為約為二茂鐵準輪烷晶體的1.7倍大。此外,這些晶體顯示出由1030 nm飛秒雷射光照射引起的二次諧波產生(SHG)現象,此長波長雷射光(1030 nm)通過這些晶體後能將波長有效縮短至515 nm (頻率加倍)。
在第七章中描述了包含以二茂鐵作為客體發色團和以聚甲基丙烯酸丁酯高分子(PBMA)作為主體基質的光誘導致動器。透過開關445 nm聚光雷射,此參雜了二茂鐵的PBMA高分子膜展現出體積的膨脹和收縮。若將此膜與由乙酰纖維素組成的商業膠帶相黏,更可達到一個可控制彎曲運動的高分子致動器。另外,這張雙層膜被製作成一個桌型的微型機械(0.7 mg),並且透過雷射光的開關能夠舉起一個重10.5 mg 的物體。此外,將具有金塗層的高分子膜與一電路相接,此高分子膜的膨脹縮小行為可被用作可逆的光激發開關。同樣的方法被用來製成添加了其他發光團的高分子膜 (例如: coumarin 343、rhodamine 6G、sudan blue II 和 solvent green 3),這些彩色的高分子膜能夠受445-nm、520-nm 和 655-nm的雷射光激發產生相對應的機械運動。除此之外,這張參雜了二茂鐵的PBMA高分子膜具有光激發自我修復的功能。最後,藉由小角度X射線繞射技術,我們能觀察到高分子膜隨雷射光照射的型態變化。
未來展望與建議會在第八章被探討,最後在附錄部分會詳列所有的實驗方法與流程。
In this thesis, photoinduced mechanical motions and photochemical reactions of supramolecular materials are described.
In chapter 2, crystalline phase transitions caused by external stimuli have been used to detect physical changes in the solid state properties. This study presents the mechanical switching of crystals of ferrocene-containing pseudorotaxane controlled by focused laser light. The expansion and contraction of the crystals can be driven by turning on and off laser light at 445 nm. The irradiation-induced expansion of the crystal involves elongation along the a, b and c axes at 30 °C, whereas heating of the crystal at 105 °C causes the shortening of c axis. The expansions reversibly occur and have the advantage of a rapid relaxation (reverse) process. Single-crystal X-ray crystallography reveals the detailed structural changes of the molecules, corresponding to a change in the size of the crystals upon laser irradiation. This molecular crystal behavior induced by laser irradiation, is demonstrated for the remote control of objects, namely, microparticle transport and microswitching in an electric circuit.
In Chapter 3, molecular machines and switches composed of flexible pseudorotaxanes respond to external stimuli, transducing incident energy into mechanical motions. This study presents thermo- and photoresponsive dynamic pseudorotaxane crystals composed of axle molecules containing ferrocene or ruthenocene groups threaded through dibenzo[24]crown-8 ether rings. The ruthenocene-containing pseudorotaxane exhibits a crystal-to-crystal thermal phase transition at 86 °C, which is much lower than that of the ferrocene-containing pseudorotaxane (128 °C). Single crystal X-ray crystallography at various temperatures reveals the details of the structural changes, and shows that the bulky ruthenocene provides distortion in the pseudorotaxane structure to facilitate twisting of the axle molecule. A mixed ferrocene and ruthenocene pseudorotaxane crystal is applied to photomechanical conversion under 405 nm laser irradiation at 85 °C and provides a lifting force 6,400-times the weight of the crystal itself upon phase transition.
In Chapter 4, photoresponsive dynamic pseudorotaxane crystals composed of axle molecules containing biferrocene or ferrocene groups threaded through a dibenzo[24]crown-8 ether ring are described. A biferrocene-containing pseudorotaxane crystal is used for photomechanical conversion under 445-nm laser irradiation and provides a lifting force that is 2900-times the weight of the crystal itself.
In Chapter 5, synthesis, crystal packing, photo- and thermallyinduced reactions of various pseudorotaxane crystals are described. Ferrocenylmethylamine-based pseudorotaxane crystal (5-1H) and its tolyl, phenyl, ethyl and methyl derivatives composed of axle and dibenzo[24]crown-8 ether (DB24C8) ring molecule (1, 5-1Phe, 5-1Eth and 5-1Me) or a tetrabromo-substituted DB24C8-Br4 ring molecule (5-2Tol, 5-2Phe, 5-2Eth, 5-2Me and 5-2H) or a smaller DB18C6 ring molecule (5-3Me and 5-3H) are compared to explore the effect that a structurally modification can have on the photo- and thermallyinduced reactivity. The structure of the derivatives were determined using single-crystal X-ray crystallography. Efficient photoinduced mechanical motion can be achieved by pseudorotaxane with shorter axle molecules, which has a higher photosensitivity at 445 nm (The expansion ratio induced by 445 nm laser: 5-1H > 5-1Me > 5-1Eth > 5-1Phe > 1). In addition, the polymorphous crystals of 5-1H and 5-3Me have different thermal phase transition temperature observed via differential scanning calorimetry (DSC).
In Chapter 6, we investigated the dynamic photoresponse of crystals with stilbene and ferrocenyl groups. Single-crystal X-ray crystallography of the molecules shows that only neutral crystal and a crystal with a Cl- group as counter anion exhibit central-to-central π-π interaction between two aromatic rings in which this alignment would be disturbed by exchanging the counter anions to BF4- and PF6-. The [2 + 2] cycloaddition reaction induced by 355 nm UV irradiation was discussed in both solid and solution state. After UV irradiation to a solution of [(FcMAS)·H]+(Cl)- in DMSO-d6, 1H NMR spectrum shows peaks corresponding to the cyclobutane group. The expansion and contraction of crystals induced by 445 nm laser irradiation is compared to ferrocene containing pseudorotaxane crystal. The photo-mechanical conversion efficiency is over 1.7 times higher than our previous results. Moreover, these crystals show interesting secondary harmonic generation (SHG) phenomenon induced by 1030 nm femtosecond laser irradiation, and the frequency is doubled to 515 nm via these crystals.
In Chapter 7, facile photoresponsive actuators comprising of ferrocene as a guest chromophore and poly(butyl methacrylate) (PBMA) as a host matrix are described. The ferrocene-doped PBMA film shows mechanical expansion and contraction by turning on and off a 445-nm laser. The photoresponsive film is attached with a commercial sticky tape composed of acetylcellulose, exhibiting a bending motions controlled by turning on and off the laser. The double-layer film is applied to fabricate a table-shaped lifting machine (0.7 mg), lifting a 10.5 mg object up and down by turning on and off the laser. The mechanical force provided by the double-layer film is also recorded. Furthermore, the film with gold-coating is applied to an electric circuit, serving as reversible photoresponsive switch. This film preparation technique is applied to other chromophores (e.g. coumarin 343, rhodamine 6G, sudan blue II and solvent green 3) to control motion of the films independently using 445-nm, 520-nm and 655-nm lasers. The ferrocene-doped films show photoinduced healing from mechanical damages. Finally, morphology changes in the film accompanied by the photoirradiation are observed by the small angle X-ray scattering technique.
In Chapter 8, experimental methods are described. In Chapter 9, some suggestions for future prospect are described.
Table of contents
Abstract I
摘要 IV
Table of contents IX
Summary of Complexes: XII
List of Tables XV
List of Figures XVI
Chapter 1 Introduction and aim 1
1.1 Supramolecular chemistry 1
1.2 Molecular machines 2
1.2.2 First step towards a molecular motor 4
1.2.3 First molecular motor was built 8
1.3 Movement of molecules in solid state 12
1.3.1 Stimulus-responsive mechanical motion in solid state 12
1.3.2 Crystalline molecular machine 16
1.3.3 Photo-responsive mechanical effect in crystal state 19
1.4 Aim of the work 22
Chapter 2 Rapid and reversible photoinduced switching of a rotaxane crystal 29
2.1 Introduction 29
2.2 Photoinduced structural changes 30
2.3 Effect of laser irradiation and temperature 34
2.4 Molecular structure 38
2.5 Microparticle transport and force 44
2.6 Switching for electric circuit 47
2.7 Conclusion 49
Chapter 3 Dynamic pseudorotaxane crystals containing metallocene complexes 50
3.1 Introduction 50
3.2 Thermally induced phase transition 53
3.3 Thermal properties of mixed crystals 58
3.4 Photoinduced structural changes 67
3.5 Photomechanical conversion 71
3.6 Conclusion 76
Chapter 4 Photoinduced Mechanical Motions of Biferrocene Containing Pseudorotaxane Crystals 77
4.1 Introduction 77
4.2 Molecular structures 80
4.3 Optical properties 84
4.4 Photoinduced structural change 87
4.5 Photo-mechanical conversion 90
4.6 Discussion 92
4.7 Conclusion 93
Chapter 5 Photo- and thermally induced phase transition of ferrocene-based pseudorotaxane crystals. 94
5.1 Introduction 94
5.2 Solid state characterization and optical property 97
5.3 Thermal phase transition 104
5.4 Discussion and conclusion 107
Chapter 6 Structural-reactivity correlations and mechanistic deformation of ferrocenyl-stilbene derivatives in solutions and crystals. 109
6.1 Introduction 109
6.2 Synthesis and solid state characterization 111
6.3 Solid state [2 + 2] photocycloaddition of polymorphism 116
6.4 Solution state [2 + 2] photocycloaddition 131
6.5 Mechanical motion induced by light 142
6.6 Nonlinear optical property 144
6.7 Conclusion and suggestion for improvement 148
Chapter 7 Facile photoresponsive actuators comprising of ferrocene as a chromophore and poly(butyl methacrylate) as a soft-polymer 150
7.1 Introduction 150
7.2 Photoinduced expansion of film 153
7.3 Photoinduced 3D deformation 156
7.4 Electric switch controlled by light irradiation 158
7.5 Multi-wavelength absorption 159
7.6 Self-healing 163
7.7 Small angle X-ray scattering (SAXS) 166
7.8 Conclusion 168
Chapter 8 Suggestion for future works 170
8.1 Thermal phase transition of polymorphous crystals of 5-1H 170
8.2 Thermal phase transition of axle molecule. 171
References 172
Appendix 183
Experimental section for Chapter 2 183
A.1 General methods 183
A.2 Experimental methods 183
Experimental section for Chapter 3 186
A.3 General methods 186
A.4 Experimental methods 186
A.5 Preparation of [ruthenocenylmethyl(4-methylphenyl) ammonium DB24C8]+(PF6)- pseudorotaxane crystal 188
A.6 X-ray single crystallography 210
A.7 General methods 214
A.8 Experimental methods 215
A.9 Preparation of biferrocene-containing pseudorotaxane crystal 216
A.10 X-ray single crystallography 237
Experimental section for Chapter 5 240
A.11 General methods 240
A.12 Experimental methods 241
A.13 Preparation of ferrocene-containing pseudorotaxane crystals 242
A.14 X-ray single crystallography 276
Experimental section for Chapter 6 284
A.15 General methods 284
A.16 Experimental methods 285
A.17 Preparation of ferrocene-containing stilbene crystals 287
A.18 X-ray single crystallography 303
Experimental section for Chapter 7 307
A.19 General methods 307
A.20 Experimental methods 308
List of publications 310
List of presentations 310
Honor/ Achievements 311


References

1. J.-M. Lehn, Angew. Chem. Int. Ed., 1988, 27, 89-112.
2. K. L. Wolf and R. Wolff, Angew. Chem. Int. Ed., 1949, 61, 191-201.
3. O. Kahn, Acc. Chem. Res., 2000, 33, 647-657.
4. D. Pijper, M. G. M. Jongejan, A. Meetsma and B. L. Feringa, J. Am. Chem. Soc., 2008, 130, 4541-4552.
5. L. Stricker, E.-C. Fritz, M. Peterlechner, N. L. Doltsinis and B. J. Ravoo, J. Am. Chem. Soc., 2016, 138, 4547-4554.
6. O. Roling, L. Stricker, J. Voskuhl, S. Lamping and B. J. Ravoo, Chem. Commun., 2016, 52, 1964-1966.
7. B. Gomez-Lor, E. Gutiérrez-Puebla, M. Iglesias, M. A. Monge, C. Ruiz-Valero and N. Snejko, Inorg. Chem., 2002, 41, 2429-2432.
8. E. V. Anslyn, J. Org. Chem., 2007, 72, 687-699.
9. R. Haag, Angew. Chem. Int. Ed., 2004, 43, 278-282.
10. J. D. Badjić, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart, Science, 2004, 303, 1845-1849.
11. M. Schliwa and G. Woehlke, Nature, 2003, 422, 759-765.
12. G. Du, E. Moulin, N. Jouault, E. Buhler and N. Giuseppone, Angew. Chem. Int. Ed., 2012, 51, 12504-12508.
13. E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433-4434.
14. T. J. Hubin and D. H. Busch, Coord. Chem. Rev., 2000, 200–202, 5-52.
15. M. Cesario, C. O. Dietrich-Buchecker, J. Guilhem, C. Pascard and J. P. Sauvage, Chem. Commun., 1985, DOI: 10.1039/C39850000244, 244-247.
16. P. L. Anelli, N. Spencer and J. F. Stoddart, J. Am. Chem. Soc., 1991, 113, 5131-5133.
17. J. Bauer, L. Hou, J. C. M. Kistemaker and B. L. Feringa, J. Org. Chem., 2014, 79, 4446-4455.
18. T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst and B. L. Feringa, Nature, 2011, 479, 208-211.
19. R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer and B. L. Feringa, Nature, 2006, 440, 163-163.
20. C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke and J. F. Stoddart, Nat. Nanotech., 2015, 10, 547-553.
21. S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga and P. Fischer, Nat. Mater., 2016, 15, 647-653.
22. J. Lee, S. Oh, J. Pyo, J.-M. Kim and J. H. Je, Nanoscale, 2015, 7, 6457-6461.
23. J.-a. Lv, W. Wang, J. Xu, T. Ikeda and Y. Yu, Macromol. Rapid Commun., 2014, 35, 1266-1272.
24. N. Hosono, T. Kajitani, T. Fukushima, K. Ito, S. Sasaki, M. Takata and T. Aida, Science, 2010, 330, 808-811.
25. F. Cheng, R. Yin, Y. Zhang, C.-C. Yen and Y. Yu, Soft Matter., 2010, 6, 3447-3449.
26. Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145-145.
27. Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi and A. Harada, Nat. Commun., 2012, 3, 1270.
28. D. Kim, H. S. Lee and J. Yoon, Sci. Rep., 2016, 6, 20921.
29. C. Yang, W. Wang, C. Yao, R. Xie, X.-J. Ju, Z. Liu and L.-Y. Chu, Sci. Rep., 2015, 5, 13622.
30. L. Zhang, I. Desta and P. Naumov, Chem. Commun., 2016, 52, 5920-5923.
31. L. Zhang, S. Chizhik, Y. Wen and P. Naumov, Adv. Funct. Mater., 2016, 26, 1040-1053.
32. C. Ke, Nat. Nanotech., 2017, 12, 504.
33. O. M. Wani, H. Zeng and A. Priimagi, Nat. Commun., 2017, 8, 15546.
34. T.-A. V. Khuong, J. E. Nuñez, C. E. Godinez and M. A. Garcia-Garibay, Acc. Chem. Res., 2006, 39, 413-422.
35. V. N. Vukotic, K. J. Harris, K. Zhu, R. W. Schurko and S. J. Loeb, Nat. Chem., 2012, 4, 456-460.
36. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2012, 124, 925-928.
37. E. Uchida, R. Azumi and Y. Norikane, Nat. Commun., 2015, 6, 7310.
38. H. J. Shepherd, I. y. A. Gural’skiy, C. M. Quintero, S. Tricard, L. Salmon, G. Molnár and A. Bousseksou, Nat. Commun., 2013, 4, 2607.
39. R. Medishetty, A. Husain, Z. Bai, T. Runčevski, R. E. Dinnebier, P. Naumov and J. J. Vittal, Angew. Chem. Int. Ed., 2014, 53, 5907-5911.
40. R. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov and J. J. Vittal, Chem. Mater., 2015, 27, 1821-1829.
41. X. Guo, J. Zhou, M. A. Siegler, A. E. Bragg and H. E. Katz, Angew. Chem. Int. Ed., 2015, 54, 4782-4786.
42. T. Taniguchi, J. Fujisawa, M. Shiro, H. Koshima and T. Asahi, Chem. Eur. J., 2016, 22, 7950-7958.
43. O. S. Bushuyev, T. Friscic and C. J. Barrett, CrystEngComm, 2016, 18, 7204-7211.
44. F. Terao, M. Morimoto and M. Irie, Angew. Chem. Int. Ed., 2012, 51, 901-904.
45. M. Morimoto and M. Irie, J. Am. Chem. Soc., 2010, 132, 14172-14178.
46. D. Kitagawa and S. Kobatake, Chem. Commun., 2015, 51, 4421-4424.
47. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890-6891.
48. Y. Norikane, S. Tanaka and E. Uchida, CrystEngComm, 2016, 18, 7225-7228.
49. P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda and P. Naumov, Chem. Commun., 2016, 52, 13941-13954.
50. H. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun and R. Lu, Angew. Chem. Int. Ed., 2017, 56, 9463-9467.
51. H. Koshima, H. Uchimoto, T. Taniguchi, J. Nakamura, T. Asahi and T. Asahi, CrystEngComm, 2016, 18, 7305-7310.
52. S.-i. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano and H. Tokoro, Nat. Chem., 2011, 3, 564-569.
53. R. M. van der Veen, O.-H. Kwon, A. Tissot, A. Hauser and A. H. Zewail, Nat. Chem., 2013, 5, 395-402.
54. S. Chorazy, R. Podgajny, W. Nogas, W. Nitek, M. Koziel, M. Rams, E. Juszynska-Galazka, J. Zukrowski, C. Kapusta, K. Nakabayashi, T. Fujimoto, S.-i. Ohkoshi and B. Sieklucka, Chem. Commun., 2014, 50, 3484-3487.
55. M. Hoshino, E. Uchida, Y. Norikane, R. Azumi, S. Nozawa, A. Tomita, T. Sato, S.-i. Adachi and S.-y. Koshihara, J. Am. Chem. Soc., 2014, 136, 9158-9164.
56. B. P. Krishnan and K. M. Sureshan, J. Am. Chem. Soc., 2015, 137, 1692-1696.
57. D. Das, T. Jacobs and L. J. Barbour, Nat. Mater., 2010, 9, 36-39.
58. Z.-S. Yao, M. Mito, T. Kamachi, Y. Shiota, K. Yoshizawa, N. Azuma, Y. Miyazaki, K. Takahashi, K. Zhang, T. Nakanishi, S. Kang, S. Kanegawa and O. Sato, Nat. Chem., 2014, 6, 1079-1083.
59. M. K. Panda, T. Runčevski, S. Chandra Sahoo, A. A. Belik, N. K. Nath, R. E. Dinnebier and P. Naumov, Nat. Commun., 2014, 5.
60. S. Takamizawa and Y. Miyamoto, Angew. Chem. Int. Ed., 2014, 53, 6970-6973.
61. W. Cai, A. Gładysiak, M. Anioła, V. J. Smith, L. J. Barbour and A. Katrusiak, J. Am. Chem. Soc., 2015, 137, 9296-9301.
62. C. Shi, X. Zhang, Y. Cai, Y.-F. Yao and W. Zhang, Angew. Chem. Int. Ed., 2015, 54, 6206-6210.
63. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778-781.
64. H. Koshima, K. Takechi, H. Uchimoto, M. Shiro and D. Hashizume, Chem. Commun., 2011, 47, 11423-11425.
65. D. Kitagawa, H. Nishi and S. Kobatake, Angew. Chem. Int. Ed., 2013, 52, 9320-9322.
66. N. K. Nath, M. K. Panda, S. C. Sahoo and P. Naumov, CrystEngComm, 2014, 16, 1850-1858.
67. M. Horie, T. Sassa, D. Hashizume, Y. Suzaki, K. Osakada and T. Wada, Angew. Chem. Int. Ed., 2007, 46, 4983-4986.
68. M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai and K. Osakada, J. Am. Chem. Soc., 2012, 134, 17932-17944.
69. C. W. Siders and A. Cavalleri, Science, 2003, 300, 591-592.
70. H. Ito, M. Muromoto, S. Kurenuma, S. Ishizaka, N. Kitamura, H. Sato and T. Seki, Nat. Commun., 2013, 4.
71. L. Zhang, H. Liang, J. Jacob and P. Naumov, Nat. Commun., 2015, 6.
72. H. Koshima, R. Matsuo, M. Matsudomi, Y. Uemura and M. Shiro, Cryst. Growth Des., 2013, 13, 4330-4337.
73. C. S. Vogelsberg and M. A. Garcia-Garibay, Chem. Soc. Rev., 2012, 41, 1892-1910.
74. X. Jiang, B. Rodríguez-Molina, N. Nazarian and M. A. Garcia-Garibay, J. Am. Chem. Soc., 2014, 136, 8871-8874.
75. C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis and R. Di Leonardo, Nat. Commun., 2015, 6, 7855.
76. S. Kassem, A. T. L. Lee, D. A. Leigh, A. Markevicius and J. Solà, Nat. Chem., 2016, 8, 138-143.
77. ZhangY, KersellH, StefakR, EcheverriaJ, IancuV, U. G. E. Perera, LiY, DeshpandeA, K. F. Braun, JoachimC, RapenneG and S. W. Hla, Nat Nano, 2016, 11, 706-712.
78. S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L. Nussbaumer, Chem. Rev., 2015, 115, 10081-10206.
79. C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke and J. F. Stoddart, Nat Nano, 2015, 10, 547-553.
80. B. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D’Souza, A. E. Fernandes and D. A. Leigh, Science, 2013, 339, 189-193.
81. A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart and B. A. Grzybowski, Chem. Soc. Rev., 2012, 41, 19-30.
82. C. J. Bruns and J. F. Stoddart, Acc. Chem. Res., 2014, 47, 2186-2199.
83. K. Iwaso, Y. Takashima and A. Harada, Nat. Chem., 2016, 8, 625-632.
84. A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida and S. I. Stupp, Nat. Chem., 2015, 7, 281-294.
85. K. Zhu, C. A. O'Keefe, V. N. Vukotic, R. W. Schurko and S. J. Loeb, Nat. Chem., 2015, 7, 514-519.
86. A. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A. M. Z. Slawin, J. F. Stoddart, J.-P. Sauvage and O. M. Yaghi, Angew. Chem. Int. Ed., 2012, 51, 2160-2163.
87. Y. Han, G.-F. Huo, J. Sun, J. Xie, C.-G. Yan, Y. Zhao, X. Wu, C. Lin and L. Wang, Sci. Rep., 2016, 6, 28748.
88. M. K. Panda, R. Centore, M. Causà, A. Tuzi, F. Borbone and P. Naumov, Sci. Rep., 2016, 6, 29610.
89. T. Shima, T. Muraoka, N. Hoshino, T. Akutagawa, Y. Kobayashi and K. Kinbara, Angew. Chem. Int. Ed., 2014, 53, 7173-7178.
90. R. Centore, M. Jazbinsek, A. Tuzi, A. Roviello, A. Capobianco and A. Peluso, CrystEngComm, 2012, 14, 2645-2653.
91. N. K. Nath, T. Runčevski, C.-Y. Lai, M. Chiesa, R. E. Dinnebier and P. Naumov, J. Am. Chem. Soc., 2015, 137, 13866-13875.
92. T. Seki, K. Sakurada, M. Muromoto and H. Ito, Chem. Sci., 2015, 6, 1491-1497.
93. S. C. Sahoo, S. B. Sinha, M. S. R. N. Kiran, U. Ramamurty, A. F. Dericioglu, C. M. Reddy and P. Naumov, J. Am. Chem. Soc., 2013, 135, 13843-13850.
94. P. Naumov, S. C. Sahoo, B. A. Zakharov and E. V. Boldyreva, Angew. Chem. Int. Ed., 2013, 52, 9990-9995.
95. P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath and E. Boldyreva, Chem. Rev., 2015, 115, 12440-12490.
96. P. Commins, I. T. Desta, D. P. Karothu, M. K. Panda and P. Naumov, Chem. Commun., 2016, DOI: 10.1039/C6CC06235K.
97. A. G. Shtukenberg, Y. O. Punin, A. Gujral and B. Kahr, Angew. Chem. Int. Ed., 2014, 53, 672-699.
98. D.-D. Han, Y.-L. Zhang, J.-N. Ma, Y.-Q. Liu, B. Han and H.-B. Sun, Adv. Mater., 2016, 28, 8328-8343.
99. O. Sato, Nat. Chem., 2016, 8, 644-656.
100. S.-Q. Su, T. Kamachi, Z.-S. Yao, Y.-G. Huang, Y. Shiota, K. Yoshizawa, N. Azuma, Y. Miyazaki, M. Nakano, G. Maruta, S. Takeda, S. Kang, S. Kanegawa and O. Sato, Nat. Commun., 2015, 6, 8810.
101. A. Yangui, M. Sy, L. Li, Y. Abid, P. Naumov and K. Boukheddaden, Sci. Rep., 2015, 5, 16634.
102. J.-K. Sun, W. Li, C. Chen, C.-X. Ren, D.-M. Pan and J. Zhang, Angew. Chem. Int. Ed., 2013, 52, 6653-6657.
103. M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Chem. Rev., 2014, 114, 12174-12277.
104. K.-J. Chen, Y.-C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat. Commun., 2016, 7, 13321.
105. C. Yang, X. Wang and M. A. Omary, Angew. Chem. Int. Ed., 2009, 48, 2500-2505.
106. L. Zhang, H. Liang, J. Jacob and P. Naumov, Nat. Commun., 2015, 6, 7429.
107. M. Ma, L. Guo, D. G. Anderson and R. Langer, Science (New York, N.Y.), 2013, 339, 186-189.
108. B. L. Feringa, Angew. Chem. Int. Ed., 2017, 56, 11060-11078.
109. J. T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks, E. Moulin, O. Schiffmann, D. Dattler, D. P. Funeriu and N. Giuseppone, Nat. Nanotech., 2017, 12, 540.
110. S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa and D. A. Leigh, Chem. Soc. Rev., 2017, 46, 2592-2621.
111. K. Iwaso, Y. Takashima and A. Harada, Nat. Chem., 2016, 8, 625-632.
112. L. Zhang, V. Marcos and D. A. Leigh, Proc. Natl. Acad. Sci. U.S.A., 2018, DOI: 10.1073/pnas.1712788115.
113. M. R. Wilson, J. Solà, A. Carlone, S. M. Goldup, N. Lebrasseur and D. A. Leigh, Nature, 2016, 534, 235.
114. A. Goujon, G. Mariani, T. Lang, E. Moulin, M. Rawiso, E. Buhler and N. Giuseppone, J. Am. Chem. Soc., 2017, 139, 4923-4928.
115. I. H. Park, R. Medishetty, J. Y. Kim, S. S. Lee and J. J. Vittal, Angew. Chem. Int. Ed., 2014, 53, 5591-5595.
116. K. Zhu, C. A. O'Keefe, V. N. Vukotic, R. W. Schurko and S. J. Loeb, Nat. Chem., 2015, 7, 514-519.
117. D. A. Leigh, V. Marcos, T. Nalbantoglu, I. J. Vitorica-Yrezabal, F. T. Yasar and X. Zhu, J. Am. Chem. Soc., 2017, 139, 7104-7109.
118. H. K. Bisoyi and Q. Li, Chem. Rev., 2016, 116, 15089-15166.
119. Y. Liu, B. Xu, S. Sun, J. Wei, L. Wu and Y. Yu, Adv. Mater., 2017, 29, 1604792.
120. A. H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme, E. W. Meijer, R. L. B. Selinger and D. J. Broer, Nature, 2017, 546, 632-636.
121. M. Wei, Y. Gao, X. Li and M. J. Serpe, Polym. Chem., 2017, 8, 127-143.
122. Q. Lin, X. Hou and C. Ke, Angew. Chem. Int. Ed., 2017, 129, 4523-4528.
123. H. Nakai, K. Matsuba, M. Akimoto, T. Nozaki, T. Matsumoto, K. Isobe, M. Irie and S. Ogo, Chem. Commun., 2016, 52, 4349-4352.
124. S. Saha and G. R. Desiraju, J. Am. Chem. Soc., 2017, 139, 1975-1983.
125. S. Chizhik, A. Sidelnikov, B. Zakharov, P. Naumov and E. Boldyreva, Chem. Sci., 2018, 9, 2319-2335.
126. L. Zhu, R. O. Al-Kaysi and C. J. Bardeen, Angew. Chem. Int. Ed., 2016, 55, 7073-7076.
127. R. O. Al-Kaysi, F. Tong, M. Al-Haidar, L. Zhu and C. J. Bardeen, Chem. Commun., 2017, 53, 2622-2625.
128. K.-J. Chen, P.-L. Chen and M. Horie, Sci. Rep., 2017, 7, 14195.
129. S.-C. Cheng, K.-J. Chen, Y. Suzaki, Y. Tsuchido, T.-S. Kuo, K. Osakada and M. Horie, J. Am. Chem. Soc., 2018, 140, 90-93.
130. L. E. Wilson, C. Hassenrück, R. F. Winter, A. J. P. White, T. Albrecht and N. J. Long, Angew. Chem. Int. Ed., 2017, 129, 6942-6946.
131. M. Satoshi, K. Masa‐aki, S. Ryota and N. Hiroshi, Chem. Eur. J., 2013, 19, 17314-17327.
132. L. E. Wilson, C. Hassenrück, R. F. Winter, A. J. P. White, T. Albrecht and N. J. Long, European Journal of Inorganic Chemistry, 2017, 2017, 496-504.
133. M. Singh, S. Bhandary, R. Bhowal and D. Chopra, CrystEngComm, 2018, 20, 2253-2257.
134. J. J. Wie, M. R. Shankar and T. J. White, Nat. Commun., 2016, 7, 13260.
135. T. Minami, H. Sato and S. Matsumoto, CrystEngComm, 2018, 20, 2644-2647.
136. D. Kitagawa, K. Kawasaki, R. Tanaka and S. Kobatake, Chem. Mater., 2017, 29, 7524-7532.
137. G. Liu, J. Liu, X. Ye, L. Nie, P. Gu, X. Tao and Q. Zhang, Angew. Chem. Int. Ed., 2017, 56, 198-202.
138. G. Poonam, K. D. Prasad, A. Ejaz, N. Panče and N. N. K., Angew. Chem. Int. Ed., 2018, 0.
139. A. Hirano, T. Hashimoto, D. Kitagawa, K. Kono and S. Kobatake, Cryst. Growth Des., 2017, 17, 4819-4825.
140. A. S. J., L. Federico, I. Supitchaya, M. Benjamin, K. Tibor, F. S. P. and K. Nathalie, Angew. Chem. Int. Ed., 2017, 56, 3261-3265.
141. L. Z. F. T. R. O. A. K. C. J. Bardeen, in Photomechanical Materials, Composites, and Systems, wiley, 2017, DOI: doi:10.1002/9781119123279.ch7.
142. P. Commins, A. Natarajan, C.-K. Tsai, S. I. Khan, N. K. Nath, P. Naumov and M. A. Garcia-Garibay, Cryst. Growth Des., 2015, 15, 1983-1990.
143. N. Farahani, K. Zhu, C. A. O'Keefe, R. W. Schurko and S. J. Loeb, ChemPlusChem, 2016, 81, 836-841.
144. Y. Zheng, H. Sato, P. Wu, H. J. Jeon, R. Matsuda and S. Kitagawa, Nat. Commun., 2017, 8, 100.
145. S. Poplata, A. Tröster, Y.-Q. Zou and T. Bach, Chem. Rev., 2016, 116, 9748-9815.
146. R. Remy and C. G. Bochet, Chem. Rev., 2016, 116, 9816-9849.
147. S. Yamazaki, H. Sugiura, S. Ohashi, K. Ishizuka, R. Saimu, Y. Mikata and A. Ogawa, J. Org. Chem., 2016, 81, 10863-10886.
148. A. D. G., E. A. M., G. G. M. A., G. P. T., S. J. Fraser, W. A. J. P. and W. D. J., Angew. Chem. Int. Ed., 2003, 42, 1126-1132.
149. Y. Michito, T. Yoshihisa, K. Takahiro and F. Makoto, Angew. Chem. Int. Ed., 2002, 41, 1347-1349.
150. V. Ramamurthy and J. Sivaguru, Chem. Rev., 2016, 116, 9914-9993.
151. B. Bibal, C. Mongin and D. M. Bassani, Chem. Soc. Rev., 2014, 43, 4179-4198.
152. S. C. Coote and T. Bach, J. Am. Chem. Soc., 2013, 135, 14948-14951.
153. Y.-F. Han, G.-X. Jin and F. E. Hahn, J. Am. Chem. Soc., 2013, 135, 9263-9266.
154. T. Doi, H. Kashida and H. Asanuma, Organic & Biomolecular Chemistry, 2015, 13, 4430-4437.
155. M. Pattabiraman, A. Natarajan, L. S. Kaanumalle and V. Ramamurthy, Organic Letters, 2005, 7, 529-532.
156. V. Darcos, K. Griffith, X. Sallenave, J.-P. Desvergne, C. Guyard-Duhayon, B. Hasenknopf and D. M. Bassani, Photochemical & Photobiological Sciences, 2003, 2, 1152-1161.
157. E. N. Ushakov and S. P. Gromov, Russian Chemical Reviews, 2015, 84, 787.
158. L. Tao, Z. Chao, H. Mao‐Yong, Z. Lei‐Min, Y. Bing, Y. Chen, X. Hongyan, M. Qing‐Yuan, R. Vaidhyanathan, T. Chen‐Ho and W. Li‐Zhu, Angew. Chem. Int. Ed., 2017, 129, 15609-15612.
159. T. Reem, P. S. H., L. C. Tessa and B. A. B., Angew. Chem. Int. Ed., 2015, 54, 11521-11525.
160. D. M. Bassani, V. Darcos, S. Mahony and J.-P. Desvergne, J. Am. Chem. Soc., 2000, 122, 8795-8796.
161. A. Tröster, R. Alonso, A. Bauer and T. Bach, J. Am. Chem. Soc., 2016, 138, 7808-7811.
162. R. Medishetty and J. J. Vittal, Metal-Organic Frameworks for Photochemical Reactions, 2013.
163. K. Biradha and R. Santra, Chem. Soc. Rev., 2013, 42, 950-967.
164. H. Ying‐Feng, J. Guo‐Xin, D. C. G. and H. F. Ekkehardt, Angew. Chem. Int. Ed., 2015, 54, 4958-4962.
165. D. P. Ericson, Z. P. Zurfluh-Cunningham, R. H. Groeneman, E. Elacqua, E. W. Reinheimer, B. C. Noll and L. R. MacGillivray, Cryst. Growth Des., 2015, 15, 5744-5748.
166. J.-M. Chen, Y.-X. Hou, Q.-K. Zhou, H. Zhang and D. Liu, CrystEngComm, 2017, 19, 2603-2607.
167. Q. Fan, X. Duan and H. Yan, CrystEngComm, 2018, 20, 1151-1157.
168. J. J. Vittal and H. S. Quah, Dalton Transactions, 2017, 46, 7120-7140.
169. R. Medishetty, Z. Bai, H. Yang, M. W. Wong and J. J. Vittal, Cryst. Growth Des., 2015, 15, 4055-4061.
170. C. Yang, G. Fukuhara, A. Nakamura, Y. Origane, T. Mori, T. Wada and Y. Inoue, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 433-437.
171. F. F. Li, L. Zhang, L. L. Gong, C. S. Yan, H. Y. Gao and F. Luo, Dalton Transactions, 2017, 46, 338-341.
172. J. W. Chung, Y. You, H. S. Huh, B.-K. An, S.-J. Yoon, S. H. Kim, S. W. Lee and S. Y. Park, J. Am. Chem. Soc., 2009, 131, 8163-8172.
173. M. K. Mishra, A. Mukherjee, U. Ramamurty and G. R. Desiraju, IUCrJ, 2015, 2, 653-660.
174. P. In‐Hyeok, C. Anjana, Z. Zhenjie, L. S. Sung, Z. M. J. and V. J. J., Angew. Chem. Int. Ed., 2014, 53, 414-419.
175. P. In‐Hyeok, M. Raghavender, L. Hyeong‐Hwan, M. C. Evania, Q. H. Sheng, L. S. Sung and V. J. J., Angew. Chem. Int. Ed., 2015, 54, 7313-7317.
176. R. Medishetty, I.-H. Park, S. S. Lee and J. J. Vittal, Chem. Commun., 2016, 52, 3989-4001.
177. I.-H. Park, A. Chanthapally, H.-H. Lee, H. S. Quah, S. S. Lee and J. J. Vittal, Chem. Commun., 2014, 50, 3665-3667.
178. I.-H. Park, R. Medishetty, S. S. Lee and J. J. Vittal, Chem. Commun., 2014, 50, 6585-6588.
179. R. Mandal, M. Garai and K. Biradha, Cryst. Growth Des., 2017, 17, 5061-5064.
180. H. Masaki, S. Yasuzo, S. Fusae and N. Hachiro, Journal of Polymer Science Part A-1: Polymer Chemistry, 1969, 7, 743-752.
181. L.-y. Liao, Y.-b. Li, X.-m. Zhang, Y.-f. Geng, J.-y. Zhang, J.-l. Xie, Q.-d. Zeng and C. Wang, The Journal of Physical Chemistry C, 2014, 118, 15963-15969.
182. M. Schraub, H. Gray and N. Hampp, Macromolecules, 2011, 44, 8755-8762.
183. L. Shi, L. Zhiping, N. Kiyohiko, K. Ken‐ichiro and T. Tamotsu, Chemistry – An Asian Journal, 2009, 4, 294-301.
184. B. Pal, B.-C. Lin, M. V. C. dela Cerna, C.-P. Hsu and C.-H. Lin, J. Org. Chem., 2016, 81, 6223-6234.
185. C.-T. Chien, T.-C. Chiang, M. Watanabe, T.-H. Chao, Y. J. Chang, Y.-D. Lin, H.-K. Lee, C.-Y. Liu, C.-H. Tu, C.-H. Sun and T. J. Chow, Tetrahedron Letters, 2013, 54, 903-906.
186. K. K. Hoon, L. J. Woo, L. Junseung, G. M. Jeong and K. J. Nyoung, Advanced Synthesis & Catalysis, 2014, 356, 3363-3369.
187. R. Medishetty, J. K. Zareba, D. Mayer, M. Samoc and R. A. Fischer, Chem. Soc. Rev., 2017, 46, 4976-5004.
188. M. Liu, H. S. Quah, S. Wen, J. Wang, P. S. Kumar, G. Eda, J. J. Vittal and W. Ji, J. Mater. Chem. C, 2017, 5, 2936-2941.
189. H. S. Quah, V. Nalla, K. Zheng, C. A. Lee, X. Liu and J. J. Vittal, Chem. Mater., 2017, 29, 7424-7430.
190. H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji and J. J. Vittal, Nat. Commun., 2015, 6, 7954.
191. W.-Y. Wang, N.-N. Ma, S.-L. Sun and Y.-Q. Qiu, Phys. Chem. Chem. Phys., 2014, 16, 4900-4910.
192. A. Didier, European Journal of Inorganic Chemistry, 2017, 2017, 6-29.
193. Z. Jiang, M. Xu, F. Li and Y. Yu, J Am Chem Soc, 2013, 135, 16446-16453.
194. C. Qin, Y. Feng, W. Luo, C. Cao, W. Hu and W. Feng, Journal of Materials Chemistry A, 2015, 3, 16453-16460.
195. D. Kim, H. S. Lee and J. Yoon, Sci Rep, 2016, 6, 20921.
196. D. D. Han, Y. L. Zhang, J. N. Ma, Y. Q. Liu, B. Han and H. B. Sun, Adv Mater, 2016, 28, 8328-8343.
197. H. Cheng, J. Liu, Y. Zhao, C. Hu, Z. Zhang, N. Chen, L. Jiang and L. Qu, Angew. Chem. Int. Ed., 2013, 52, 10482-10486.
198. B. Li, T. Du, B. Yu, J. van der Gucht and F. Zhou, Small, 2015, 11, 3494-3501.
199. J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang and M. Zhu, Sci. Adv., 2015, 1, e1500533.
200. M. Wang, X. Tian, R. H. A. Ras and O. Ikkala, Adv. Mater. Interf, 2015, 2, 1500080.
201. H. Arazoe, D. Miyajima, K. Akaike, F. Araoka, E. Sato, T. Hikima, M. Kawamoto and T. Aida, Nat. Mater., 2016, 15, 1084.
202. M. Weng, P. Zhou, L. Chen, L. Zhang, W. Zhang, Z. Huang, C. Liu and S. Fan, Adv. Funct. Mater., 2016, 26, 7244-7253.
203. Y. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata and T. Aida, Nat Mater, 2015, 14, 1002-1007.
204. Y. Hu, J. S. Kahn, W. Guo, F. Huang, M. Fadeev, D. Harries and I. Willner, J Am Chem Soc, 2016, 138, 16112-16119.
205. D. Morales, E. Palleau, M. D. Dickey and O. D. Velev, Soft Matter, 2014, 10, 1337-1348.
206. C. Yang, W. Wang, C. Yao, R. Xie, X. J. Ju, Z. Liu and L. Y. Chu, Sci Rep, 2015, 5, 13622.
207. O. Kim, H. Kim, U. H. Choi and M. J. Park, Nat Commun, 2016, 7, 13576.
208. J. Mu, C. Hou, B. Zhu, H. Wang, Y. Li and Q. Zhang, Sci Rep, 2015, 5, 9503.
209. E. Lee, D. Kim, H. Kim and J. Yoon, Sci Rep, 2015, 5, 15124.
210. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett and T. Ikeda, Angew Chem Int Ed Engl, 2008, 47, 4986-4988.
211. J. Lee, S. Oh, J. Pyo, J. M. Kim and J. H. Je, Nanoscale, 2015, 7, 6457-6461.
212. M. D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C. M. Quintero, L. Nicu, H. J. Shepherd and A. Bousseksou, Coord. Chem. Rev., 2016, 308, Part 2, 395-408.
213. S. Iamsaard, S. J. Asshoff, B. Matt, T. Kudernac, J. J. Cornelissen, S. P. Fletcher and N. Katsonis, Nat Chem, 2014, 6, 229-235.
214. H. Arazoe, D. Miyajima, K. Akaike, F. Araoka, E. Sato, T. Hikima, M. Kawamoto and T. Aida, Nat Mater, 2016, 15, 1084-1089.
215. S. Guo, K. Matsukawa, T. Miyata, T. Okubo, K. Kuroda and A. Shimojima, J Am Chem Soc, 2015, 137, 15434-15440.
216. O. S. Bushuyev, T. A. Singleton and C. J. Barrett, Adv Mater, 2013, 25, 1796-1800.
217. J. Wei and Y. Yu, Soft Matter., 2012, 8, 8050-8059.
218. J. A. Lv, W. Wang, J. Xu, T. Ikeda and Y. Yu, Macromol. Rapid Commun., 2014, 35, 1266-1272.
219. D. Kitagawa and S. Kobatake, Chem Commun (Camb), 2015, 51, 4421-4424.
220. L. Florea, D. Diamond and F. Benito-Lopez, Macromol. Mater. Eng., 2012, 297, 1148-1159.
221. W. Francis, A. Dunne, C. Delaney, L. Florea and D. Diamond, Sensors and Actuators B: Chemical, 2017, 250, 608-616.
222. R. R. Kohlmeyer and J. Chen, Angew Chem Int Ed Engl, 2013, 52, 9234-9237.
223. E. Wang, M. S. Desai and S. W. Lee, Nano Lett, 2013, 13, 2826-2830.
224. M. Wang, B. P. Lin and H. Yang, Nat Commun, 2016, 7, 13981.
225. L. Liu, M. H. Liu, L. L. Deng, B. P. Lin and H. Yang, J Am Chem Soc, 2017, 139, 11333-11336.
226. X. Xia, H. Yu, L. Wang and Z. ul-Abdin, RSC Adv., 2016, 6, 105296-105316.
227. O. S. Bushuyev, M. Aizawa, A. Shishido and C. J. Barrett, Macromol. Rapid Commun., 2018, 39.
228. K. J. Chen, Y. C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat Commun, 2016, 7, 13321.
229. K. J. Chen, P. L. Chen and M. Horie, Sci Rep, 2017, 7, 14195.
230. S. C. Cheng, K. J. Chen, Y. Suzaki, Y. Tsuchido, T. S. Kuo, K. Osakada and M. Horie, J Am Chem Soc, 2018, 140, 90-93.
231. S. R. Trenor, A. R. Shultz, B. J. Love and T. E. Long, Chem. Rev., 2004, 104, 3059-3078.
232. H. Yoo, H. W. Bahng, M. R. Wasielewski and D. Kim, Phys Chem Chem Phys, 2012, 14, 2001-2007.
233. H. Yu, C. Dong, W. Zhou, T. Kobayashi and H. Yang, Small, 2011, 7, 3039-3045.
234. L. Zhang, H. Liang, J. Jacob and P. Naumov, Nat Commun, 2015, 6, 7429.
235. Y. Bai, Y. Chen, Q. Wang and T. Wang, Journal of Materials Chemistry A, 2014, 2, 9169-9177.
236. S. J. Garcia, European Polymer Journal, 2014, 53, 118-125.
237. S. Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun and W. Hayes, Chem. Soc. Rev., 2010, 39, 1973-1985.
238. D. Y. Wu, S. Meure and D. Solomon, Progress in Polymer Science, 2008, 33, 479-522.
239. D. W. Schaefer and R. S. Justice, Macromolecules, 2007, 40, 8501-8517.
240. G. Bushell, Y. Yan, D. Woodfield, J. Raper and R. Amal, Adv. Colloid Interface Sci., 2002, 95, 1-50.
241. M. Horie, Y. Suzaki and K. Osakada, Inorg. Chem., 2005, 44, 5844-5853.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *