帳號:guest(13.58.11.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王嘉瑋
作者(外文):Wang, Jia-Wei
論文名稱(中文):以偏極化觀測探討IC5146恆星形成區介於分子雲到原恆星核尺度的磁場
論文名稱(外文):Polarimetric Observations of Magnetic Field from Cloud to Core Scale in the IC5146 Star-Forming Regions
指導教授(中文):賴詩萍
指導教授(外文):Lai, Shih-Ping
口試委員(中文):江瑛貴
陳文屏
呂浩宇
顏士韋
口試委員(外文):Jiang, Ing-Guey
Chen, Wen-Ping
Liu, Hauyu
Yen, Hsi-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:101025801
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:130
中文關鍵詞:星際介質(IC5146)偏極星際磁場星際介質-結構星際介質-分子雲
外文關鍵詞:ISM: individual objects (IC5146)PolarizationISM: magnetic fieldsISM: structureISM: clouds
相關次數:
  • 推薦推薦:0
  • 點閱點閱:248
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
過去數十年的天文觀測,揭示了恆星主要形成於帶有磁場和紊流的分子雲中。然而,磁場如何影響恆星形成的過程仍然並未被了解。恆星形成理論認為磁場有助於平衡分子雲內的重力、降低恆星形成的速率、並能協助年輕恆星移除角動量。儘管如此,由於觀測上的困難,這些理論上的預測很少能被觀測驗證。IC5146分子雲是一個知名的恆星形成區域,擁有著處於各種不同演化階段的原恆星。過去數年赫歇爾(Herschel)太空望遠鏡發現,IC5146分子雲主要由細緻的絲狀結構所組成,而年輕恆星的空間分部符合這些絲狀結構,顯示了恆星應該是從這些絲狀結構中形成的,而且恆星形成很可能是由大尺度的紊流所觸發。然而,這些分析缺少了磁場的資訊,而磁場又可能是影響恆星形成的重要因素。因此,本篇論文的主要目標即為探討磁場在這樣一個充滿紊流的恆星形成區中,在恆星形成的程序中,扮演著怎麼樣的角色。我們在過去數年進行了可見光、紅外線、次毫米波的偏極化觀測,藉由觀測塵埃輻射的偏極方向來描繪磁場的結構。有了這些觀測資料,我們首先分析了分子雲中的偏極效率和雲氣密度的關係,證實我們的偏極化觀測真的能追溯分子雲內部的磁場。其次,我們發現觀測數據描繪出的磁場結構相當均勻,不符合紊流主宰的模型預測,而我們估算出的大尺度磁場強度也足以支撐分子雲的重力。直到次秒差距尺度,在最緻密的絲狀結構與原恆星核中,重力的強度才逐漸能克服磁場,以此觸發恆星的形成。以上我們的發現,大部分都支持假定強磁場的恆星演化模型,這些模型預期大尺度的磁場能夠支撐大尺度的分子雲結構,而在緻密區域磁場會逐漸消散,因而重力能進一步主導以產生恆星。
Observations over the last few decades have revealed that stars predominately form within magnetized and turbulent filamentary clouds. How magnetic fields regulate star formation, however, is still poorly understood. Theoretical works have suggested that magnetic fields could be important in supporting molecular clouds, suppressing the star formation rate, and removing angular momentum. Nonetheless, measurements of magnetic field morphologies and strength are still too rare to test these theories. The IC5146 cloud is a well-known star-forming region with young stellar objects in a variety of evolutionary stage. Recent Herschel telescope has revealed that the IC5146 cloud is composed of a filamentary cloud, and the spatial distribution of young stars is consistent with these filaments. This suggests that the filaments are the birth sites of young stars, possibly triggered by the large scale MHD turbulence. However, these analysis lacks of the information of magnetic fields, and it would be critical to understand what the role of magnetic fields is in the turbulent star-forming region. The main goal of this thesis is to investigate the role of the magnetic fields while the filamentary clouds (pc scales) evolve to cores (sub-parsec scales). We performed optical, near-infrared, and sub-millimeter polarization observations to probe the magnetic fields over the IC5146 cloud from few pc to 0.1 pc scale. With these observed data, we analyzed how polarization efficiency varies with the density, and show that our polarization data can really trace the magnetic field within the cloud. In addition, we found that the pc scale magnetic field is almost uniform, and the magnetic fields is sufficiently strong to support the gravity. However, the gravity gradually overcomes the support of magnetic field within the dense filaments and cores at sub-parsec scale. These features favor the strong magnetic field star formation theory, which expects a magnetic field important in supporting and regulating the star formation until magnetic fields are dissipated.
Contents
摘要 1
Abstract 2
List of Figures 6
List of Tables 9
Chapter 1. Introduction: B-fields in Molecular Clouds 10
1.1. Theoretical Background 10
1.1.1 Strong B-field Model 10
1.1.2 Weak B-field Model 10
1.2 Observational Results 11
2. Multiwavelength Polarimetry of the Filamentary Cloud IC5146 I. Dust Properties 13
2.1. Introduction 13
2.2 Observations and Data Reduction 16
2.2.1 AIMPOL Polarimetry 17
2.2.2 TRIPOL Polarimetry 18
2.2.3 Mimir Polarimetry 18
2.3 Results 19
2.3.1 The Polarization Catalog 19
2.3.2 Consistency in P.A. between Multiple Wavelengths 22
2.3.3 Negligible Foreground Contamination 23
2.4 Analysis 24
2.4.1 NICER Extinction 24
2.4.2 Polarization Efficiency 26
2.4.3 Wavelength Dependence of Polarization using the Serkowski Relation 31
2.4.4 “Polarization Color” as a Constraint on λmax 32
2.5 Discussion 38
2.5.1 Evolution of Dust Grains 38
2.5.2 How Deep Into a Cloud Can Polarization Be Used to Reveal B fields? 39
2.5.3 The Diverse PE in Low-AV Regions 40
2.5.4 The Breakpoint in PE–AV Relations 41
2.6 Conclusions 42
3. Multiwavelength Polarimetry of the Filamentary Cloud IC5146 II. Magnetic Field Structures 44
3.1. Introduction 44
3.2 Analysis 47
3.2.1 The Distance to the IC5146 system 47
3.2.2 Magnetic Field Morphology 50
3.2.3 Magnetic Field Strength over the IC5146 Cloud 55
3.2.4 Magnetic Strength versus Density 63
3.2.5. Mass-to-Magnetic Flux ratio 73
3.3 Discussion 76
3.3.1 Magnetic Field Morphology 76
3.3.2 Magnetic Field Strength 77
3.3.3 B-n Relation 77
3.4 Conclusions 79
Chapter 4. JCMT BISTRO Survey: Magnetic Fields within The Hub-Filament Structure in IC 5146 80
4.1. Introduction 80
4.2. OBSERVATIONS 83
4.2.1 Data Acquisition and Reduction Techniques 83
4.2.1 CO contamination 86
4.3 Results and Analysis 86
4.3.1 Magnetic Field Morphology 86
4.3.2 Polarization Efficiency 92
4.3.3 Polarization Efficiency–AV Dependence 94
4.3.4 Orientation of Clumps and Magnetic Fields 98
4.3.5 Magnetic Field Strength in IC5146 101
4.3.6 Gravitational Stability of Clumps 107
4.4 Discussion 108
4.4.1 The Origin of the Core-Scale HFS 108
4.4.2 The Alignment between Local Magnetic Fields and Clumps 111
4.5 Conclusions 112
4.6 Appendix: Bias on Determination of P vs. I relation 113
Chapter 5. Conclusions 116
Reference 119
Akaike, H. 1974, IEEE Transactions on Automatic Control, 19, 716 Alves, F., Frau, P., Girart, J. M., et al. 2014, A&A, 569, 1 Andersson, B.-G., & Potter, S. B. 2007, ApJ, 665, 369
Andersson, B.-G., Lazarian, A., & Vaillancourt, J. E. 2015, ARA&A, 53, 501 Andr´e, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
Andr´e, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, Protostars and Planets VI, 27 Arzoumanian, D., Andr´e, P., Didelon, P., et al. 2011, A&A, 529, L6
Arzoumanian, D., Andr´e, P., Peretto, N., & K¨onyves, V. 2013, A&A, 553, A119 Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33 Bastien et al., in prep., 2019
Berry, D. S., Gledhill, T. M., Greaves, J. S., & Jenness, T. 2005, Astronomical Polarimetry: Current Status and Future Directions, 343, 71
Bertoldi, F., & McKee, C. F. 1992, ApJ, 395, 140 Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Buckle, J. V., Hills, R. E., Smith, H., et al. 2009, MNRAS, 399, 1026 Busquet, G., Zhang, Q., Palau, A., et al. 2013, ApJ, 764, L26 Cashman, L. R., & Clemens, D. P. 2014, ApJ, 793, 126 Chandrasekhar, S., & Fermi, E. 1953 ApJ, 118, 113Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
Chapman, N. L., Goldsmith, P. F., Pineda, J. L., et al. 2011, ApJ, 741, 21 Chiar, J. E., Pendleton, Y. J., Allamandola, L. J., et al. 2011, ApJ, 731, 9 Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2016, ApJ, 819, 159
Cho, J., & Lazarian, A. 2005, ApJ, 631, 361
Clarke, S. D., Whitworth, A. P., & Hubber, D. A. 2016, MNRAS, 458, 319 Clayton, G. C., Anderson, C. M., Magalhaes, A. M., et al. 1992, ApJ, 385, L53 Clemens, D. P., Sarcia, D., Grabau, A., et al. 2007, PASP, 119, 1385
Clemens, D. P. 2012, ApJ, 748, 18
Clemens, D. P., Pinnick, A. F., Pavel, M. D., Taylor, B. W., 2012a, ApJS, 200, 19 Clemens, D. P., Pinnick, A. F., & Pavel, M. D. 2012b, ApJS, 200, 20
Clemens, D. P., Pavel, M. D., & Cashman, L. R. 2012c, ApJS, 200, 21 Clemens, D. P., Tassis, K., & Goldsmith, P. F. 2016, ApJ, 833, 176 Cortes, P. C., Crutcher, R. M., & Watson, W. D. 2005, ApJ, 628, 780 Coud´e, S., Bastien, P., Kirk, H., et al. 2016, MNRAS, 457, 2139 Crutcher, R. M. 1999, ApJ, 520, 706
Crutcher, R. M. 2004, Ap&SS, 292, 225
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ, 725, 466
Crutcher, R. (2012) Ann. Rev. Astron. Astrophys., 50, 29-63
Currie, M. J., Berry, D. S., Jenness, T., et al. 2014, Astronomical Data Analysis Software and Systems XXIII, 485, 391
Davis, L. 1951, Physical Review, 81, 890
Deguchi, S., & Watson, W. D. 1984, ApJ, 285, 126
Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534 Dolginov, A. Z., & Mitrofanov, I. G. 1976, Ap&SS, 43, 291
Di Francesco, J., Evans, N. J., II, Caselli, P., et al. 2007, Protostars and Planets V, 17 Drabek, E., Hatchell, J., Friberg, P., et al. 2012, MNRAS, 426, 23
Draine, B. T., & Weingartner, J. C. 1996, ApJ, 470, 551 Draine, B. T., & Weingartner, J. C. 1997, ApJ, 480, 633
Dunham, M. M., Allen, L. E., Evans, N. J., II, et al. 2015, ApJS, 220, 11
Dzib, S. A., Loinard, L., Ortiz-Le´on, G. N., Rodr´ıguez, L. F., & Galli, P. A. B. 2018, ApJ, 867, 151
Eswaraiah, C., Pandey, A. K., Maheswar, G., et al. 2011, MNRAS, 411, 1418 Eswaraiah, C., Pandey, A. K., Maheswar, G., et al. 2012, MNRAS, 419, 2587 Falceta-Gon¸calves, D., Lazarian, A., & Kowal, G. 2008, ApJ, 679, 537 Fiedler, R. A., & Mouschovias, T. Ch. 1993, ApJ, 415, 680
Fisher R. A., 1925, Nat, 123, 866
Franco, G. A. P., Alves, F. O., & Girart, J. M. 2010, ApJ, 723, 146 Friberg, P., Bastien, P., Berry, D., et al. 2016, Proc. SPIE, 9914, 991403
Friberg, P., Berry, D., Savini, G., et al. 2018, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10708, 107083M
Friesen, R. K., Medeiros, L., Schnee, S., et al. 2013, MNRAS, 436, 1513
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1 Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1 Ginsburg, A., & Mirocha, J. 2011, Astrophysics Source Code Library, ascl:1109.001 Girart, J. M., Rao, R., & Marrone, D. P. 2006, Sci, 313, 812
Goldreich, P., & Kylafis, N. D. 1981, ApJ, 243, L75 Goldreich, P., & Kylafis, N. D. 1982, ApJ, 253, 606
G´omez, G. C., & Va´zquez-Semadeni, E. 2014, ApJ, 791, 124
G´omez, G. C., V´azquez-Semadeni, E., & Zamora-Avil´es, M. 2018, MNRAS, 480, 2939 Goodman, A. A., Jones, T. J. B., Lada, E. A. , & Myers, P. C. 1995, ApJ, 448, 748 Griffin, M.J., Abergel, A., Abreu, A., et al. 2010, ˚A, 518, L3
Graham, S. B. 2008, PhD thesis, Jesus College, Cambridge Hall, J. S. 1949, Sci, 109, 166
Harvey, P. M., Huard, T. L., Jørgensen, J. K., et al. 2008, ApJ, 680, 495-516 Hatano, H., Nishiyama, S., Kurita, M., et al. 2013, AJ, 145, 105
Heitsch, F., Zweibel, E. G., Mac Low, M.-M., Li, P., & Norman, M. L. 2001, ApJ, 561, 800 Heitsch, F., & Hartmann, L. 2014, MNRAS, 443, 230
Heiles, C. 2000, AJ, 119, 923
Herbig, G. H., & Dahm, S. E. 2002, AJ, 123, 304
Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., & Vaillancourt, J. E. 2009, ApJ, 696, 567
Hiltner, W. A. 1949a, ApJ, 109, 471
Hiltner, W. A. 1949b, Sci, 109, 165
Hirashita, H., & Yan, H. 2009, MNRAS, 394, 1061
Hoang, T., & Lazarian, A. 2009, ApJ, 695, 1457 Hoang, T., Cho, J., & Lazarian, A. 2018, ApJ, 852, 129
Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., & Kirby, L. 2009, ApJ, 706, 1504
Hoffman, M. D., & Gelman, A. 2011, The Journal of Machine Learning Research, 30. Hoq, S., Clemens, D. P., Guzm´an, A. E., & Cashman, L. R. 2017, ApJ, 836, 199 Hull, C. L. H., Mocz, P., Burkhart, B., et al. 2017, ApJ, 842, L9
Indebetouw, R., Mathis, J. S., Babler, B. L., et al. 2005, ApJ, 619, 931 Inutsuka, S., Inoue, T., Iwasaki, K., & Hosokawa, T., 2015, A&A, 580, A49
Jaynes, E. T., & Bretthorst, G. L. 2003, Probability Theory, by E. T. Jaynes and Edited by G. Larry Bretthorst, pp. 758. ISBN 0521592712. Cambridge, UK: Cambridge University Press, June 2003., 758
Jua´rez, C., Girart, J. M., Zamora-Avil´es, M., et al. 2017, ApJ, 844, 44 Johnstone, D., Ciccone, S., Kirk, H., et al. 2017, ApJ, 836, 132
Jones, R. V., & Spitzer, L., Jr. 1967, ApJ, 147, 943
Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, ApJ, 469, 740 Jones, E., Oliphant, E., Peterson, P., et al. 2001, http://www.scipy.org/
Jones, T. J., Bagley, M., Krejny, M., Andersson, B.-G., & Bastien, P. 2015, AJ, 149, 31 Jones, T. J., Gordon, M., Shenoy, D., et al. 2016, AJ, 151, 156
Kim, S.-H., & Martin, P. G. 1995, ApJ, 444, 293 Kim, E.-j., & Diamond, P. H. 2002, ApJ, 578, L113
Kirk, H., Myers, P. C., Bourke, T. L., et al. 2013, ApJ, 766, 115
Koch, P. M., Tang, Y.-W., Ho, P. T. P., et al. 2014, ApJ, 797, 99
Koch, P. M., Tang, Y.-W., Ho, P. T. P., et al. 2018, ApJ, 855, 39
Kwon, J., Tamura, M., Hough, J. H., et al. 2015, ApJS, 220, 17 Kwon, J., Doi, Y., Tamura, M., et al. 2018, ApJ, 859, 4
Lada, C. J., Alves, J., & Lada, E. A. 1999, ApJ, 512, 250
Lazarian, A., Goodman, A. A., & Myers, P. C. 1997, ApJ, 490, 273
Lazarian, A., & Hoang, T. 2007, MNRAS, 378, 910 Lazarian, A., & Hoang, T. 2007, ApJ, 669, L77
Lazarian, A., Esquivel, A., & Crutcher, R. 2012, ApJ, 757, 154 Li, A., & Greenberg, J. M. 1997, A&A, 323, 566
Li, Z.-Y., Wang, P., Abel, T., & Nakamura, F. 2010, ApJ, 720, L26
Li, H.-b., Fang, M., Henning, T., & Kainulainen, J. 2013, MNRAS, 436, 3707
Li, H.-b., Goodman, A., Sridharan, T. K., Houde, M., Li, Z.-Y., Novak, G., & Tang, K. S., Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Henning
Li, H.-b., Yuen, K.-H, Otto, F., et al. 2015, Nature, 520, 518 Li, P. S., McKee, C. F., & Klein, R. I. 2015, MNRAS, 452, 2500
Liu, H. B., Jim´enez-Serra, I., Ho, P. T. P., et al. 2012, ApJ, 756, 10
Liu, H. B., Galv´an-Madrid, R., Jim´enez-Serra, I., et al. 2015, ApJ, 804, 37 Liu, T., Li, P. S., Juvela, M., et al. 2018, ApJ, 859, 151
Lombardi, M., & Alves, J. 2001, A&A, 377, 1023
Ludden, Thomas M., Beal, Stuart L., & Sheiner, Lewis B, C. 1994, Journal of Pharmacokinetics and Biopharmaceutics, 22, 5, 431
Mac Low, M.-M., & Klessen, R. S. 2004, Rev. Mod. Phy., 76, 125 Martin, P. 1989, Interstellar Dust, 135, 55
Martin, P. G., & Whittet, D. C. B. 1990, ApJ, 357, 11
Martin, P. G., Adamson, A. J., Whittet, D. C. B., et al. 1992, ApJ, 392, 691 Marchwinski, R. C., Pavel, M. D., & Clemens, D. P. 2012, ApJ, 755, 130 Mairs, S., Johnstone, D., Kirk, H., et al. 2015, MNRAS, 454, 2557
Mestel, L. 1985, Protostars and Planets II, 320
Meingast, S., Lombardi, M., & Alves, J. 2017, A&A, 601, A137 McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Men’shchikov, A., Andr´e, P., Didelon, P., et al. 2010, A&A, 518, L103 Mestel, L. 1966, MNRAS, 133, 265
Miville-Deschˆenes, M., Martin, P. G., Abergel, A., et al. 2010, A&A, 518, L104 Miettinen, O. 2012, A&A, 540, A104
Montier, L., Plaszczynski, S., Levrier, F., et al. 2015, A&A, 574, A135 Montier, L., Plaszczynski, S., Levrier, F., et al. 2015, A&A, 574, A136 Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100 Mouschovias, T. C., & Paleologou, E. V. 1986, ApJ, 308, 781 Mouschovias, T. C., & Morton, S. A. 1991, ApJ, 371, 296
Mocz, P., Burkhart, B., Hernquist, L., McKee, C. F., & Springel, V. 2017, ApJ, 838, 40 Myers, P. C. 2009, ApJ, 700, 1609
Nagai, T., Inutsuka, S., & Miyama, S. 1998, ApJ, 506, 306 Nakamura, F., & Li, Z. 2008, ApJ, 687, 354
Nakano, T., & Nakamura, T. 1978, PASJ, 30, 671
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980
Ormel, C. W., Paszun, D., Dominik, C., & Tielens, A. G. G. M. 2009, A&A, 502, 845 Parzen, E. 1962, Ann. Math. Statist., 33, 1065
Padoan, P., & Nordlund, A. 2002, ApJ, 576, 870
Padoan, P., Goodman, A., Draine, B. T., et al. 2001, ApJ, 559, 1005 Pattle, K., Ward-Thompson, D., Berry, D., et al. 2017, ApJ, 846, 122 Pattle, K., Ward-Thompson, D., Hasegawa, T., et al. 2018, ApJ, 860, L6 Pattle, K., Shih-Ping Lai, Tetsuo Hasegawa, et al., in prep., 2019 Palmeirim, P., Andr´e, P., Kirk, J., et al. 2013, A&A, 550, A38
Pillai, T., Kauffmann, J., Wyrowski, F., et al. 2011, A&A, 530, A118
Pillai, T., Kauffmann, J., Tan, J. C., et al. 2015, ApJ, 799, 74
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 586, A138 Pon, A., Johnstone, D., & Heitsch, F. 2011, ApJ, 740, 88
Pon, A., Toal´a, J. A., Johnstone, D., et al. 2012, ApJ, 756, 145 Price, D. J., & Bate, M. R. 2008, MNRAS, 385, 1820
Purcell, E. M. 1979, ApJ, 231, 404 Quinn, J. L. 2012, A&A, 538, A65
Ranalli, P., Koulouridis, E., Georgantopoulos, I., et al. 2016, A&A, 590, A80
Rautela, B. S., Joshi, G. C., & Pandey, J. C., 2004, Bull. Astron. Soc. India, 32, 159 Rao, R., Girart, J. M., Marrone, D. P., Lai, S.-P., & Schnee, S. 2009, ApJ, 707, 921 Rice, S. O. 1945, Bell Systems Tech. J., Volume 24, p. 46-156, 24, 46
Robitaille, T., & Bressert, E. 2012, Astrophysics Source Code Library, ascl:1208.017 Rosenblatt, M. 1956, Ann. Math. Statist., 27, 832
Salvatier J, Wiecki TV, Fonnesbeck C. 2016, Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 https://doi.org/10.7717/peerj-cs.55
Sanhueza, P., Jackson, J. M., Zhang, Q., et al. 2017, ApJ, 841, 97
Santos, F. P., Busquet, G., Franco, G. A. P., Girart, J. M., & Zhang, Q. 2016, ApJ, 832, 186
Santos-Lima, R., Lazarian, A., de Gouveia Dal Pino, E. M., & Cho, J. 2010, ApJ, 714, 442 Sato, S., T. Zenno, T. Nagayama, et al., APRIM 2011, NARIT Conference Series, 1, 413 Sato, S., T. Zenno, T. Nagayama, et al., 2017, submitted to PASJ
Serkowski, K. 1973, Interstellar Dust and Related Topics, 52, 145 Serkowski, K., Mathewson, D. S., & Ford, V. L. 1975, ApJ, 196, 261 Seifried, D., & Walch, S. 2015, MNRAS, 452, 2410
Schaefer, B., Collett, E., Smyth, R., et al. Am. J. Phys. 75, 163 (2007). Schmidt, G. D., Elston, R., & Lupie, O. L., 1992, AJ, 104, 1563 Shimajiri, Y., Andr´e, P., Palmeirim, P., et al. 2019, A&A, 623, A16
Simmons, J. F. L., & Stewart, B. G. 1985, A&A, 142, 100
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 Soam, A., Pattle, K., Ward-Thompson, D., et al. 2018, ApJ, 861, 65 Sugitani, K., Nakamura, F., Watanabe, M., et al. 2011, ApJ, 734, 63 Sugiura, N. 1978, Comm. Statist., A7, 13
Tamura, M., Nagata, T., Sato, S., & Tanaka, M. 1987, MNRAS, 224, 413 Tamura, M., & Kwon, J. 2015, Polarimetry of Stars and Planetary Systems, 162 Tang, Y.-W., Ho, P. T. P., Koch, P. M., et al. 2009, ApJ, 700, 251
Vaillancourt, J. E. 2006, PASP, 118, 1340
Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, “The NumPy array: A structure for efficient numerical computation,” Comput. Sci. Eng. 13(2), 22–30
Van Leeuwen, F. 2007, A&A, 474, 653
Van Loo, S., Keto, E., & Zhang, Q. 2014, ApJ, 789, 37
Vehtari, A., Gelman, A., Gabry, J.. 2017, Statistics and Computing, 27, 5, 1413. https://doi.org/10.1007/s11222-016-9696-4
Villar, V. A., Guillochon, J., Berger, E., et al. 2017, ApJ, 851, L21
Voshchinnikov, N. V., Das, H. K., Yakovlev, I. S., & Il’in, V. B. 2013, Astronomy Letters, 39, 421
Voshchinnikov, N. V., & Hirashita, H. 2014, MNRAS, 445, 301 Wang, J.-W., Lai, S.-P., Eswaraiah, C., et al. 2017, ApJ, 849, 157
Wang, J.-W., Lai, S.-P., Eswaraiah, C., et al. 2019, ApJ, 876, 42 Watanabe, S. 2010, J. Machine Learning Res., 11, 3571
Ward-Thompson, D., Kirk, J. M., Andr´e, P., et al. 2010, A&A, 518, L92 Wardle, J. F. C., & Kronberg, P. P. 1974, ApJ, 194, 249
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296 Whittet, D. C. B., & van Breda, I. G. 1978, A&A, 66, 57
Whittet, D. C. B., Martin, P. G., Hough, J. H., et al. 1992, ApJ, 386, 562
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., & Shenoy, S. S. 2001, ApJ, 547, 872 Whittet, D. C. B., Hough, J. H., Lazarian, A., & Hoang, T. 2008, ApJ, 674, 304 Wilking, B. A., Lebofsky, M. J., & Rieke, G. H. 1982, AJ, 87, 695
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868-1881 Yuan, J., Li, J.-Z., Wu, Y., et al. 2017, arXiv:1711.08951
Zhang, Q., Qiu, K., Girart, J. M., et al. 2014, ApJ, 792, 116
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *