帳號:guest(3.144.116.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):戴安順
作者(外文):Tai, An-Shun
論文名稱(中文):探討細胞異質性之統計分解模型
論文名稱(外文):Statistical Deconvolution Models for Inferring Cellular Heterogeneity
指導教授(中文):謝文萍
指導教授(外文):Hsieh, Wen-Ping
口試委員(中文):徐南蓉
黃冠華
楊振翔
盧鴻興
口試委員(外文):Hsu, Nan-Jung
Huang, Guan-Hua
Yeang, Chen-Hsiang
Lu, Horng-Shing
學位類別:博士
校院名稱:國立清華大學
系所名稱:統計學研究所
學號:101024802
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:反褶積腫瘤異質性免疫細胞混和模型貝氏模型
外文關鍵詞:deconvolutiontumor heterogeneityimmune cellmixture modelBayesian model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近期的癌症研究發現,腫瘤細胞的異質性程度與其病程發展的過程以及後續治癒的狀況有著高度的相關性。腫瘤異質性描述的狀況是指一顆癌化腫瘤內經常存在著非常複雜的細胞結構,這些細胞群包含了由組織細胞不斷突變出來的癌細胞以及正常的免疫細胞。為了探究腫瘤細胞的結構,分離細胞的實驗技術已經逐漸被運用在癌症研究上。然而,當前的實驗技術皆需要仰賴著龐大的經費支撐以及花費可觀的時間。相對於單細胞分離實驗,傳統巨量細胞資料有著快速便宜的優勢,藉由反褶積方法來推論巨量細胞資料中的細胞成分。因此,本研究提出數個統計模型以用來分析巨量細胞資料中細胞群落的組成成分。針對不同的主題,我們提出了CloneDeMix,BayICE和PEACH三種方法。首先CloneDeMix是採用混和模型來分群在DNA拷貝數上發生變異的腫瘤細胞群。不同於CloneDeMix分析癌細胞,BayICE的目的在於推論組織中各種免疫細胞的比例,其運用分層貝氏模型同時整合基因挑選以達到資料拆解的最佳效果。最後,我們研究發現分離細胞的技術會導致基因表現的改變,因此提出一個懲罰反褶積模型,稱作PEACH,同時推論巨量細胞資料中的細胞組成以及分析因為細胞分離而改變行為的基因。所有的分法都藉由分析模擬資料以及真實資料以確認模型的估計效能,同時我們也將這些方法運用在癌症以及免疫疾病的資料上。這些方法都有對應的R程式,皆可在R軟體上操作。
Tumor tissue samples comprise a mixture of cancerous and surrounding normal cells. Inferring the cell heterogeneity of tumors is critical to the understanding of cancer prognosis and the treatment decisions. Compared with the experimental methods of using cell sorting technology to isolate cell components, in silico decomposition of mixed cell samples is faster and cheaper. The present study introduces three novel statistical approaches, CloneDeMix, BayICE, and PEACH, for different issues to perform the cellular proportion estimation as well as the genomic inference. First, CloneDeMix adopts clustering approach to dissect the tumor subclonal architecture induced by copy number aberration of genes through DNA sequencing data. Different from CloneDeMix analyzing cancerous cell populations, BayICE next estimates the components of tumor-infiltrating cells such as immune cells via a Bayesian framework with stochastic variable selection. Last, PEACH uses a penalized deconvolution model based on transcriptomic data to investigate the phenomenon that the genes of the particular cell types express inconsistently after cell sorting. These models were validated through simulated data and real data to demonstrate the performance of deconvolution. Furthermore, the analysis of cancer and immune-related diseases showed the results associated with biological interpretation. All of the works are implemented on the corresponding R packages which are publicly available to perform the deconvolution analysis.
Chapter 1 Introduction 9
Chapter 2 Literature review on deconvolution 12
2.1 Basic formula of deconvolution 12
2.2 Genomic deconvolution 13
2.3 Transcriptomic deconvolution 14
Chapter 3 Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations 16
3.1 Motivation 16
3.2 Methods 18
3.2.2 Estimating MCPs and copy number by using expectation–maximization algorithm 20
3.2.3 Determining the order of copy number variants 23
3.3 Result 23
3.3.1 Simulation 24
3.3.2 Comparison with THetA2 26
3.3.3 Preprocessing of TCGA data 28
3.3.4 Copy number distribution and clone structure 28
3.3.5 Inference of evolutionary order of mutations 32
3.3.6 Application on serial biopsies of esophageal cancer 35
3.3.7 Incorporating SNV data into CNA heterogeneity study 37
3.4 Discussion 39
Chapter 4 BayICE: A Hierarchical Bayesian deconvolution model with stochastic search variable selection 42
4.1 Motivation 42
4.2 BayICE deconvolution model 43
4.2.1 Input data and normalization 44
4.2.2 Statistical modeling 45
4.2.3 Novel gene selection via SSVS approach 46
4.2.4 Bayesian false discovery rate 48
4.2.5 Inflation factor 48
4.2.6 Markov chain Monte Carlo sampling procedure 50
4.3 Simulation study 53
4.3.1 Settings of multinomial simulator 53
4.3.2 Assessing inference of deconvolution 55
4.3.3 Evaluating the accuracy of gene detection 56
4.3.4 Robustness 57
4.4 Validation 59
4.5 Application to non-small cell lung cancer 61
4.5.1 Deconvolution of normal lung tissues 62
4.5.2 Deconvolution of tumors 63
4.6 Discussion 65
Chapter 5 Penalized deconvolution model accounting for cellular heterogeneity 68
5.1 Motivation 68
5.2 Materials and Methods 69
5.2.1 Deconvolution model 69
5.2.2 Parameter tuning 73
5.3 Results 74
5.3.1 Dataset and preprocess 74
5.3.2 In silico simulation 75
5.3.3 Validation 77
5.3.4 Application 78
5.4 Discussion 81
Chapter 6 Conclusion and future work 83
Reference 85
Appendix 90
Supplement for Chapter 3 90
1. Extended version to include SNV analysis 90
2. Supporting figure 95
Supplement for Chapter 4 97
Extended version to include SNV analysis 97
1. Simulators 97
2. Simulation results from the NB simulator and the normal simulator 97
Supplement for Chapter 5 100
1. Burrell RA, McGranahan N, Bartek J, Swanton C: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501:338-345.
2. Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G: The immune contexture in cancer prognosis and treatment. Nature reviews Clinical oncology 2017, 14:717.
3. Fridman WH, Pagès F, Sautès-Fridman C, Galon J: The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012, 12:nrc3245.
4. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M: The life history of 21 breast cancers. Cell 2012, 149:994-1007.
5. Dieu-Nosjean M-C, Goc J, Giraldo NA, Sautès-Fridman C, Fridman WH: Tertiary lymphoid structures in cancer and beyond. Trends in immunology 2014, 35:571-580.
6. Seo J-S, Kim A, Shin J-Y, Kim YT: Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Scientific reports 2018, 8:14576.
7. Hackl H, Charoentong P, Finotello F, Trajanoski Z: Computational genomics tools for dissecting tumour–immune cell interactions. Nature Reviews Genetics 2016, 17:441.
8. Tai A-S, Peng C-H, Peng S-C, Hsieh W-P: Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations. PloS one 2018, 13:e0206579.
9. Jin H, Wan Y-W, Liu Z: Comprehensive evaluation of RNA-seq quantification methods for linearity. BMC bioinformatics 2017, 18:117.
10. Zhong Y, Liu Z: Gene expression deconvolution in linear space. Nature methods 2012, 9:8.
11. Ding L, Raphael BJ, Chen F, Wendl MC: Advances for studying clonal evolution in cancer. Cancer letters 2013, 340:212-219.
12. Oesper L, Mahmoody A, Raphael BJ: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 2013, 14:R80.
13. Malikic S, McPherson AW, Donmez N, Sahinalp CS: Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 2015, 31:1349-1356.
14. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ: Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 2015, 31:i62-i70.
15. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q: PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome biology 2015, 16:35.
16. Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q: Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC bioinformatics 2014, 15:35.
17. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, Vij R, Tomasson MH, Graubert TA, Walter MJ: SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. 2014.
18. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, Ha G, Aparicio S, Bouchard-Côté A, Shah SP: PyClone: statistical inference of clonal population structure in cancer. Nature methods 2014, 11:396-398.
19. Oesper L, Satas G, Raphael BJ: Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data. Bioinformatics 2014, 30:3532-3540.
20. Li Y, Xie X: Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity. Bioinformatics 2014:btu174.
21. Li P, Xiang T, Li H, Li Q, Yang B, Huang J, Zhang X, Shi Y, Tan J, Ren G: Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer. International journal of clinical and experimental pathology 2015, 8:12101.
22. Yu Z, Li A, Wang M: CloneCNA: detecting subclonal somatic copy number alterations in heterogeneous tumor samples from whole-exome sequencing data. BMC bioinformatics 2016, 17:310.
23. Fischer A, Vázquez-García I, Illingworth CJ, Mustonen V: High-definition reconstruction of clonal composition in cancer. Cell reports 2014, 7:1740-1752.
24. Gaujoux R, Seoighe C: Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. Infection, Genetics and Evolution 2012, 12:913-921.
25. Prassas I, Chrystoja CC, Makawita S, Diamandis EP: Bioinformatic identification of proteins with tissue-specific expression for biomarker discovery. BMC medicine 2012, 10:39.
26. Xie F, Zhou M, Xu Y: BayCount: A Bayesian decomposition method for inferring tumor heterogeneity using RNA-Seq counts. The Annals of Applied Statistics 2018, 12:1605-1627.
27. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA: Robust enumeration of cell subsets from tissue expression profiles. Nature methods 2015, 12:453.
28. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z: Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell reports 2017, 18:248-262.
29. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S: Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome biology 2016, 17:174.
30. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 2017, 6.
31. Hao J-J, Lin D-C, Dinh HQ, Mayakonda A, Jiang Y-Y, Chang C, Jiang Y, Lu C-C, Shi Z-Z, Xu X: Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nature genetics 2016, 48:1500.
32. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK: VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome research 2012, 22:568-576.
33. Krijgsman O, Carvalho B, Meijer GA, Steenbergen RD, Ylstra B: Focal chromosomal copy number aberrations in cancer—Needles in a genome haystack. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2014, 1843:2698-2704.
34. Network CGA: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517:576-582.
35. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C-Z, Wala J, Mermel CH: Pan-cancer patterns of somatic copy number alteration. Nature genetics 2013, 45:1134-1140.
36. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M: The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463:899.
37. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS: Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171:1611-1624. e1624.
38. Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW: Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS medicine 2015, 12:e1001786.
39. Mroz EA, Tward AD, Pickering CR, Myers JN, Ferris RL, Rocco JW: High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 2013, 119:3034-3042.
40. Bernert B, Porsch H, Heldin P: Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). Journal of Biological Chemistry 2011, 286:42349-42359.
41. Zhang Z, Tao D, Zhang P, Liu X, Zhang Y, Cheng J, Yuan H, Liu L, Jiang H: Hyaluronan synthase 2 expressed by cancer-associated fibroblasts promotes oral cancer invasion. Journal of Experimental & Clinical Cancer Research 2016, 35:181.
42. Fagiani E, Lorentz P, Kopfstein L, Christofori G: Angiopoietin-1 and-2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer research 2011, 71:5717-5727.
43. Holopainen T, Huang H, Chen C, Kim KE, Zhang L, Zhou F, Han W, Li C, Yu J, Wu J: Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer research 2009, 69:4656-4664.
44. Mangiola S, Hong MK, Cmero M, Kurganovs N, Ryan A, Costello AJ, Corcoran NM, Macintyre G, Hovens CM: Comparing nodal versus bony metastatic spread using tumour phylogenies. Scientific Reports 2016, 6.
45. Li T, Yang J, Zhou Q, He Y: Molecular regulation of lymphangiogenesis in development and tumor microenvironment. Cancer Microenvironment 2012, 5:249-260.
46. Sugahara K, Michikawa Y, Ishikawa K, Shoji Y, Iwakawa M, Shibahara T, Imai T: Combination effects of distinct cores in 11q13 amplification region on cervical lymph node metastasis of oral squamous cell carcinoma. International journal of oncology 2011, 39:761.
47. Muller D, Millon R, Lidereau R, Engelmann A, Bronner G, Flesch H, Eber M, Methlin G, Abecassis J: Frequent amplification of 11q13 DNA markers is associated with lymph node involvement in human head and neck squamous cell carcinomas. European Journal of Cancer Part B: Oral Oncology 1994, 30:113-120.
48. Qi L, Song W, Li L, Cao L, Yu Y, Song C, Wang Y, Zhang F, Li Y, Zhang B, Cao W: FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma. Oncotarget 2016, 7.
49. Hao J-J, Shi Z-Z, Zhao Z-X, Zhang Y, Gong T, Li C-X, Zhan T, Cai Y, Dong J-T, Fu S-B: Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors. BMC cancer 2012, 12:367.
50. Yang P-W, Hsieh C-Y, Kuo F-T, Huang P-M, Hsu H-H, Kuo S-W, Chen J-S, Lee J-M: The survival impact of XPA and XPC genetic polymorphisms on patients with esophageal squamous cell carcinoma. Annals of surgical oncology 2013, 20:562-571.
51. Nomura T, Miyashita M, Makino H, Maruyama H, Katsuta M, Kashiwabara M, Takahashi K, Sasajima K, Yamashita K, Tajiri T: Argon plasma coagulation for the treatment of superficial esophageal carcinoma. Journal of Nippon Medical School 2007, 74:163-167.
52. Petty RD, Dahle-Smith A, Stevenson DA, Osborne A, Massie D, Clark C, Murray GI, Dutton SJ, Roberts C, Chong IY: Gefitinib and EGFR gene copy number aberrations in esophageal cancer. Journal of Clinical Oncology 2017, 35:2279-2287.
53. Hu X, Moon JW, Li S, Xu W, Wang X, Liu Y, Lee J-Y: Amplification and overexpression of CTTN and CCND1 at chromosome 11q13 in Esophagus squamous cell carcinoma (ESCC) of North Eastern Chinese Population. International journal of medical sciences 2016, 13:868.
54. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS: A census of amplified and overexpressed human cancer genes. Nature Reviews Cancer 2010, 10:59.
55. Valsesia A, Macé A, Jacquemont S, Beckmann JS, Kutalik Z: The growing importance of CNVs: new insights for detection and clinical interpretation. Frontiers in genetics 2013, 4:92.
56. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016, 351:1463-1469.
57. Park SY, Gönen M, Kim HJ, Michor F, Polyak K: Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. The Journal of clinical investigation 2010, 120:636-644.
58. Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA, Paulson TG, Blount PL, Risques R-A, Rabinovitch PS: Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature genetics 2006, 38:468-473.
59. George EI, McCulloch RE: Variable selection via Gibbs sampling. Journal of the American Statistical Association 1993, 88:881-889.
60. Ishwaran H, Rao JS: Spike and slab gene selection for multigroup microarray data. Journal of the American Statistical Association 2005, 100:764-780.
61. Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in biosciences 2012, 131:281-285.
62. Ishwaran H, Rao JS: Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics 2005, 33:730-773.
63. Whittemore AS: A Bayesian false discovery rate for multiple testing. Journal of Applied Statistics 2007, 34:1-9.
64. Mezheyeuski A, Bergsland CH, Backman M, Djureinovic D, Sjöblom T, Bruun J, Micke P: Multispectral imaging for quantitative and compartment‐specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. The Journal of pathology 2018, 244:421-431.
65. Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF: Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PloS one 2009, 4:e6098.
66. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM, Butte AJ: Cell type–specific gene expression differences in complex tissues. Nature methods 2010, 7:287.
67. Pabst C, Bergeron A, Lavallée V-P, Yeh J, Gendron P, Norddahl GL, Krosl J, Boivin I, Deneault E, Simard J: GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 2016:blood-2015-2011-683649.
68. Kopf M, Schneider C, Nobs SP: The development and function of lung-resident macrophages and dendritic cells. Nature immunology 2015, 16:36.
69. Banat G-A, Tretyn A, Pullamsetti SS, Wilhelm J, Weigert A, Olesch C, Ebel K, Stiewe T, Grimminger F, Seeger W: Immune and inflammatory cell composition of human lung cancer stroma. PLoS One 2015, 10:e0139073.
70. Ruffini E, Asioli S, Filosso PL, Lyberis P, Bruna MC, Macrì L, Daniele L, Oliaro A: Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. The Annals of thoracic surgery 2009, 87:365-372.
71. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA: Inferring tumour purity and stromal and immune cell admixture from expression data. Nature communications 2013, 4:2612.
72. She Y, Owen AB: Outlier detection using nonconvex penalized regression. Journal of the American Statistical Association 2011, 106:626-639.
73. Linsley PS, Speake C, Whalen E, Chaussabel D: Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PloS one 2014, 9:e109760.
74. Walter W, Sánchez-Cabo F, Ricote M: GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 2015, 31:2912-2914.
75. Akaishi T, Takahashi T, Nakashima I: Peripheral blood monocyte count at onset may affect the prognosis in multiple sclerosis. Journal of neuroimmunology 2018, 319:37-40.
76. Roep BO: The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. Diabetologia 2003, 46:305-321.
77. Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, Armstrong M, Powell RL, Reisdorph N, Kumar N: Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 2016, 351:711-714.
78. Shen XF, Cao K, Jiang Jp, Guan WX, Du JF: Neutrophil dysregulation during sepsis: an overview and update. Journal of cellular and molecular medicine 2017, 21:1687-1697.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *