帳號:guest(3.133.134.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):安奴克
作者(外文):Anokh, Krishnan-Nair
論文名稱(中文):第六族過渡金屬多重鍵錯合物的合成及其在製備環狀聚合物上的催化應用
論文名稱(外文):Synthesis of Multiply Bonded Group VI Bimetallic Complexes and the Catalytic Application to Generate Cyclic Polymers
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi-Chou
口試委員(中文):鄭建鴻
彭之皓
莊士卿
劉學儒
口試委員(外文):Cheng, Chien-Hong
Peng, Chi-How
Chuang, Shih-Ching
Liu, Hsueh-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023891
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:120
中文關鍵詞:雙金屬錯合物催化環狀聚合物
外文關鍵詞:Bimetallic complexesCatalysisCyclic polymers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:193
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要是介紹第六族過渡金屬元素中具有新穎結構和催化應用的雙金屬多重鍵錯合物之合成及特性。此外,我們也用了合理的證據去研究不飽和烴的聚合反應,以得到具有所需結構的聚合物。整體來說,為了方便起見將本文分為四章。
第一章詳述了鉻和鉬的arene capped雙金屬五重鍵錯合物的合成及特性。我們單離出了具有新穎芳香烴配基的雙鉻五重鍵金屬錯合物 [Cr2(μ-η2-2,3: η2-5,6-C6H5CH3) (μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (1) ,可以藉由新穎的三牙Isoind-N2Ndipp 配基來穩定結構。將三苯基膦做為路易斯鹼加入1中,可得到具有受阻礙路易斯酸鹼對(FLP)型態的芳香烴橋接雙鉻五重鍵金屬錯合物 [Cr2(μ-η2-1,2:η2-4,5-C6H5P(C6H5)2)(μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (2)。在2中,三苯基膦藉由其苯基以μ-η2-1,2:η2-4,5的方式橋接雙金屬,且具有足夠鉻-磷間距離以進行反應性探討。此外,我們使用相同的Isoind-N2Ndipp 配基來穩定新穎的芳香烴配位雙鉻五重鍵金屬錯合物 [Mo2(μ-η2-2,3:η2-5,6-C6H5CH3)(μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (3)。
第二章講述了具有不同結構性質的雙鎢多重鍵金屬錯合物之合成、特性及反應性探討。我們可單離出具有風車型結構的雙鎢四重鍵金屬錯合物 [(W2(-Cl)(-κ2-HC(N-2, 6-(CH3)2C6H3)2)3] (4)和[(W2(-Cl)(-κ2-HC(N-2, 6-(C2H5)2C6H3)2)3] (5) ,其中4和5分別用NCNdmp 和NCNdep配基來穩定其結構。利用鉀石墨(KC8)來還原5可得到具有混合價數的鎢(+1)-鎢(+2)金屬錯合物[(W2(-κ2-HC(N-2, 6-(C2H5)2C6H3)2)3] (6),其具有非常短的鎢-鎢鍵長。此外,我們合成出了鎢(+3)-鎢(+3)三重鍵金屬錯合物 [W2(μ-H)2(μ-κ2-(N-2,6-iPr2C6H3)-C8H4N)2(N-2- iPr,6-CH(κ1-CH2)CH3-C6H3)2((LiCl)2THF)] (8)。為了證實8中有M-H的存在,我們利用1-苯基丙炔和8進行炔類插入反應,並單離出具有六員環結構的雙鎢金屬錯合物的 [W2(C6H5C2H2CH3)(μ-κ1: κ1-1, 4-(C6H5)2, 2, 3-(CH3)2C4) (μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)(N-2- iPr,6-CH(κ1-CH2)CH3-C6H3)] (9)。
第三章描述了具末端亞胺基及橋接碳炔官能基的雙鎢多重鍵金屬錯合物的合 成 及 特 性。 我們合成出了具有混價的雙鎢多重鍵金屬錯合物 [W2(μ-Cl)2(Cl)4(μ-κ2-HC(N-2, 6-(CH3)2C6H3)2)2][Li(C4H8O)4] (10) [W2(μ-Cl)2(Cl)4(μ-κ2-HC(N-2, 6-(C2H5)2C6H3)2)2] [Li(C4H8O)4] (11),分別藉由NCNdmp 和 NCNdep 來穩定其結構,並做為合成雙鎢多重鍵金屬錯合物的起始原料。除此之外,我們合成出雙鎢四重鍵金屬錯合物W2(μ-Cl)[(μ-Cl)2Li-(OEt2)[μ-κ2-HC(N-2, 6-(C2H5)2C6H3)2] (12)也可以做為合成雙鎢金屬錯合物的起始原料。將10和11利用KC8進行還原後導致雙氮基咪配基中C-N鍵斷裂,並分別生成了雙鎢金屬錯合物 [W2(μ-Cl)( μ-CH)(κ1-N-(2, 6-(CH3)2C6H3)2)(κ2-HC(N-(2, 6-(CH3)2C6H3)2] (13) 和[W2(μ-Cl)( μ-CH)(κ1-N-(2, 6-(C2H5)2C6H3)2)(κ2-HC(N-(2, 6-(C2H5)2C6H3)2] (14)。此外,將12和KC8進行還原反應後也會導致雙氮基咪配基中C-N鍵斷裂並生成14。因此,我們確立了合成雙鎢多重鍵金屬錯合物的兩種新合成途徑。
第四章討論了雙鎢三重鍵金屬錯合物8對兩種不飽和烴聚合反應的催化應用。我們使用8做為環擴張聚合催化劑,進行苯乙炔的聚合反應以製備具有環狀結構的聚苯乙炔(c-PPA)。在GPC、動態光散射(DLS)及TEM技術的協助下,我們確認了聚苯乙炔的確具有環狀結構。此外,我們使用8來做為開環易位聚合反應(ROMP)的催化劑,並利用具雙環烯烴的降冰片烯(NBE)單體來合成出具有高度順式間規聚合物的環聚降冰片烯(c-PNBE)。c-PNBE的純度及分子量皆已透過凝膠滲透層析儀(GPC)和核磁共振光譜技術來確認。我們使用了穿隧電子顯微鏡(TEM)分析了c-PNBE的環狀結構,並獲得清楚的TEM影像以支持其環狀結構。因此,我們發現8可以有效地做為聚合反應的催化劑,將相對應的不飽和烴單體以適當的產率生成環狀聚合物。
This dissertation is mainly based on the synthesis and characterization of multiply bonded bimetallic complexes of group six transition metals, having novel structural features and catalytic applications. Besides, polymerization reactions of unsaturated hydrocarbons to produce polymers with desired topology have been investigated with appropriate supporting evidences. On the whole, this thesis has been divided into four chapters for the convenience.
The first chapter details the synthesis and characterization of arene capped bimetallic quintuply bonded complexes of chromium and molybdenum. We have isolated the novel arene coordinated dichromium quintuply bonded complex, [Cr2(μ-η2-2,3: η2-5,6-C6H5CH3) (μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (1) stabilized by novel tridentate Isoind-N2Ndipp ligand. By treating 1 with a Lewis base, PPh3, we have obtained the Frustrated Lewis Pair (FLP)-type arene bridged quintuply bonded dichromium complex, [Cr2(μ-η2-1,2:η2-4,5-C6H5P(C6H5)2)(μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (2). In 2, the PPh3 molecule bridged the bimetallic moiety by its phenyl group in a μ-η2-1,2:η2-4,5 fashion having a geometrical pattern of transition metal FLPs with enough Cr-P separation. We have used the same Isoind-N2Ndipp ligand to stabilize novel arene coordinated dimolybdenum quintuply bonded complex, [Mo2(μ-η2-2,3:η2-5,6-C6H5CH3)(μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)2] (3).
The second chapter includes, the synthesis, characterization and reactivity studies of multiply bonded ditungsten complexes having different structural properties. We have isolated quadruply bonded ditungsten complexes having paddle-wheel geometry, [(W2(-Cl)(-κ2-HC(N-2, 6-(CH3)2C6H3)2)3] (4) and [(W2(-Cl)(-κ2-HC(N-2, 6-(C2H5)2C6H3)2)3] (5) stabilized by NCNdmp and NCNdep ligands respectively. The potassium graphite (KC8) reduction of 5 led to a mixed valent W(I)-W(II) complex [(W2(-κ2-HC(N-2, 6-(C2H5)2C6H3)2)3] (6), having very short W-W bond length. Moreover, we have synthesized the triply bonded W(III)-W(III) complex [W2(μ-H)2(μ-κ2-(N-2,6-iPr2C6H3)-C8H4N)2(N-2- iPr,6-CH(κ1-CH2)CH3-C6H3)2((LiCl)2THF)] (8). In order to confirm the presence of hydride ligands in 8, an alkyne insertion reaction was conducted by reacting 8 and 1-phenyl propyne and isolated a six membered metallacycle, [W2(C6H5C2H2CH3)(μ-κ1: κ1-1, 4-(C6H5)2, 2, 3-(CH3)2C4) (μ-κ2-(N-2,6-iPr2C6H3)2-C8H4N)(N-2- iPr,6-CH(κ1-CH2)CH3-C6H3)] (9).
The third chapter describes the synthesis and characterization of multiply bonded ditungsten imido alkylidyne complexes. We have synthesized the multiply bonded mixed valent ditungsten complexes [W2(μ-Cl)2(Cl)4(μ-κ2-HC(N-2, 6-(CH3)2C6H3)2)2][Li(C4H8O)4] (10) and [W2(μ-Cl)2(Cl)4(μ-κ2-HC(N-2, 6-(C2H5)2C6H3)2)2][Li(C4H8O)4] (11) stabilized by a NCNdmp and NCNdep ligands respectively, as the starting material for the synthesis of multiply bonded ditungsten imido alkylidyne complexes. Besides, a quadruply bonded ditungsten complex, W2(μ-Cl)[(μ-Cl)2Li-(OEt2)[μ-κ2-HC(N-2, 6-(C2H5)2C6H3)2] (12) was also synthesized as another starting material for the synthesis of ditungsten imido alkylidyne complex. The KC8 reduction of 10 and 11 lead to the C-N bond cleavage of their amidinate anions and produced the ditungsten imido alkylidyne complexes, [W2(μ-Cl)( μ-CH)(κ1-N-(2, 6-(CH3)2C6H3)2)(κ2-HC(N-(2, 6-(CH3)2C6H3)2] (13) and [W2(μ-Cl)( μ-CH)(κ1-N-(2, 6-(C2H5)2C6H3)2)(κ2-HC(N-(2, 6-(C2H5)2C6H3)2] (14) respectively. In addition, the KC8 reduction of 12 will also cause the C-N bond cleavage of its amidinate anions and produced 14. Hence, we have established two novel synthetic routes to multiply bonded ditungsten imido alkylidyne complexes.
The fourth chapter deals with the catalytic applications of the triply bonded ditungsten complex 8 for the synthesis of two different polymer materials. We have conducted the polymerization of phenylacetylene to produce cyclic poly phenylacetylene (c-PPA) using 8 as the catalyst. With the help of GPC, dynamic light scattering (DLS), and TEM techniques, we have confirmed the cyclic topology of polyphenylacetylenes. Moreover, we have used 8 as a ring opening metathesis polymerization (ROMP) catalyst for the synthesis of highly cis/syndiotactic cyclic polynorbornene (c-PNBE) using norbornene as the monomer. The purity and molecular weight of c-PNBE as well as the stereochemistry have been confirmed with the help of Gel permeation chromatography (GPC) and NMR techniques respectively. We have analysed the cyclic topology of PNBE using Tunnelling Electron Microscopy (TEM) and obtained clear TEM images to support the cyclic topology of c-PNBE. Hence, we have proved that, 8 can be effectively used as a polymerization catalyst for the production of cyclic PNBE and PPA from corresponding unsaturated hydrocarbons in moderate yields.
Table of Contents
List of Schemes. X
List of Figures. XII
List of Tables. XIV
List of Publications. XV
Symbols and Abbreviations. XVI

Chapter 1: Arene bridged quintuply bonded dinuclear complexes of group VI transition metals

1.1 Introduction 2
1.1.1 Practical establishment of quintuply bonded dinuclear complexes. 3
1.1.2 Quintuply bonded Cr-Cr complexes. 5
1.1.3 Quintuply bonded Mo-Mo complexes. 6
1.1.4 Reactivity of quintuply bonded bimetallic complexes. 7
1.1.5 Arene bridged dimolybdenum quintuply bonded complexes. 8
1.2 Results and Discussion 9
1.2.1 Synthesis of Isoind-N2Ndipp 9
1.2.2 Synthesis of arene bridged quintuply bonded dichromium complex supported by the Isoind-N2Ndipp ligand. 10
1.2.3 Synthesis of FLP-type arene bridged quintuply bonded dichromium complex supported by the Isoind-N2Ndipp ligand. 12
1.2.4 Synthesis of arene bridged quintuply bonded dimolybdenum complex supported by the Isoind-N2Ndipp ligand. 14
1.3 Conclusions 16
1.4 Experimental section 16
1.5 References 20
1.6 X-ray crystallography 22
1H and 13C NMR spectra 25
Chapter 2: Multiply bonded ditungsten complexes having different structural features
2.1 Ditungsten quadruply bonded complexes 34
2.2 Ditungsten triply bonded complexes 37
2.3 Results and discussion 39
2.3.1 Synthesis of quadruply bonded ditungsten paddle-wheel complex supported by NCNdmp (HC(N-2, 6-(CH3)2C6H3)2) ligand. 39
2.3.2 Synthesis of quadruply bonded ditungsten paddle-wheel complex supported by NCNdep (HC(N-2, 6-(C2H5)2C6H3)2) ligand. 40
2.3.3 Synthesis of ditungsten paddle-wheel complex having bond order beyond four supported by NCNdep (HC(N-2, 6-(C2H5)2C6H3)2) ligand. 42
2.3.4 Synthesis of triply bonded ditungsten complex supported by Isoind-N2Ndipp ligand. 44
2.4 Conclusions 47
2.5 Experimental section 48
2.6 References 51
2.7 X-ray crystallography 53
1H and 13C NMR spectra 59
Chapter 3: Synthesis and characterization of ditungsten imido-alkylidyne complexes
3.1 Introduction 66
3.1.1 Transition metal alkylidenes 67
3.1.2 Transition metal alkylidynes 69
3.2 Bimetallic alkylidenes and alkylidynes 71
3.3 Results and discussion 72
3.3.1 Synthesis of multiply bonded mixed valent ditungsten complex supported by NCNdmp (HC(N-2, 6-(CH3)2C6H3)2)ligand. 72
3.3.2 Synthesis of multiply bonded mixed valent ditungsten complex supported by NCNdep (HC(N-2, 6-(C2H5)2C6H3)2) ligand. 73
3.3.3 Synthesis of quadruply bonded ditungsten complex supported by NCNdep (HC(N-2, 6-(C2H5)2C6H3)2) ligand. 74
3.3.4 Synthesis of multiply bonded ditungsten imido alkylidyne complex supported by NCNdmp (HC(N-2, 6-(CH3)2C6H3)2) ligand. 76
3.3.5 Synthesis of multiply bonded ditungsten imido alkylidyne complex supported by NCNdep (HC(N-2, 6-(C2H5)2C6H3)2) ligand. 77
3.4 Conclusions 79
3.5 Experimental section 79
3.6 References 82
3.7 X-ray crystallography 84
1H and 13C NMR spectra 89
Chapter 4: Cyclic polymers from alkenes and alkynes using the triply bonded ditungsten complex as the catalyst
4.1 Cyclic polymers 96
4.1.1 Cyclic polymers from cylcoalkenes 98
4.1.2 Cyclic polymers from alkynes 100
4.2 Results and discussions 101
4.2.1 Synthesis of cyclic polyphenylacetylene (c-PPA) 101
4.2.2 Synthesis of highly cis/syndiotactic cyclic polynorbornene (c-PNBE) 107
4.3 Conclusions 111
4.4 Experimental section 111
4.5 References 114
1H NMR and 13C NMR spectra 116


List of Schemes

Chapter 1
Scheme 1.1: A typical synthetic route of quintuple bonded complexes.. 5
Scheme 1.2: Synthesis of Isoind-N2Ndipp ligand. 10
Scheme 1.3: Synthesis of toluene bridged quintuply bonded dichromium complex 1. 11
Scheme 1.4: Synthesis of FLP-type arene bridged quintuply bonded dichromium complex 2. 12
Scheme 1.5: Synthesis of toluene bridged quintuply bonded dimolybdenum complex 3.. 15

Chapter 2
Scheme 2.1: Representative reactions catalysed by the multiply bonded bimetallic complexes... 36
Scheme 2.2: Alkyne and nitrile metathesis reactions of the triply bonded ditungsten complex.. 38
Scheme 2.3: Alkyne polymerization and ROMP of norbornene catalysed by the triply bonded ditungsten complex.. 38
Scheme 2.4: Synthetic procedure of quadruply bonded ditungsten chloro bridged paddle-wheel complex supported by NCNdmp ligand.. 39
Scheme 2.5: Synthesis of quadruply bonded ditungsten chloro bridged paddle-wheel complex supported by NCNdep ligand... 41
Scheme 2.6: Synthesis of paddle-wheel ditungsten paddle-wheel complex supported by NCNdep ligand... 43
Scheme 2.7: Synthetic procedure for the triply bonded ditungsten complex supported by Isoind-N2Ndipp ligand... 44
Scheme 2.8: Proposed mechanism for the formation of 9.... 47

Chapter 3
Scheme 3.1: Common synthetic procedures for A) Schrock and B) Fisher carbenes.... 69
Scheme 3.2: Common synthetic procedures for Schrock (A, B) and Fisher (C) carbynes... 70
Scheme 3.3: Synthetic procedure for the mixed valent ditungsten hexachloro compound stabilized by NCNdmp ligand... 72
Scheme 3.4: Synthetic procedure for the mixed valent ditungsten hexachloro compound stabilized by NCNdep ligand... 73
Scheme 3.5: Synthetic procedure for the quadruply bonded ditungsten compound stabilized by NCNdep ligand.... 75
Scheme 3.6: Synthetic procedure for the ditungsten imido alkylidyne compound stabilized by NCNdmp ligand.... 76
Scheme 3.7: Synthetic procedure for the ditungsten imido alkylidyne compound stabilized by NCNdep ligand..... 78

Chapter 4
Scheme 4.1: Ring opening metathesis polymerization (ROMP) of cyclooctadiene using Grubb’s catalyst.... 98
Scheme 4.2: Stereoselective ring expansion metathesis polymerization (REMP) of norbornene by the tungsten oxo-alkylidene catalyst... 99
Scheme 4.3: Stereoselective REMP of norbornene using the tungsten-alkylidyne catalyst.... 100
Scheme 4.4: REMP of phenylacetylene using the tungsten-alkylidene catalyst... 101
Scheme 4.5: Proposed catalytic mechanism for the synthesis of c-PPA using 8.... 103
Scheme 4.6: Proposed mechanism of the catalytic cycle for the synthesis of c-PNBE using 8... 109

List of Figures

Chapter 1
Figure 1.1: The bonding molecular orbitals of the group VI diatomic M2 molecules.... 3
Figure 1.2: Feasible geometries of the bimetallic quintuply bonded complexes and their corresponding qualitative molecular orbital diagrams 4
Figure 1.3: Bimetallic quintuply bonded complexes stabilized by different ligand scaffolds.. 6
Figure 1.4: I. Dewar-Chatt model of “bonding pattern of coordinated ethylene” in Zeise’s salt. II. Arene coordinated multiply bonded dimolybdenum complexes synthesized by Masuda (A) and Carmona (B).. 8
Figure 1.5: Pictorial representation of frustrated lewis pair (FLP) vs classical lewis acid-base adduct... 9
Figure 1.6: Solid state molecular structure of 1... 11
Figure 1.7: Solid state molecular structure of 2... 13
Figure 1.8:Representative examples of ligand metal bifunctional catalysts.... 14
Figure 1.9: Solid state molecular structure of 3... 15

Chapter 2
Figure 2.1: Representation of bimetallic quadruply bonded complexes with molecular orbital diagram.... 34
Figure 2.2: Three categories of structurally characterized ditungsten quadruply boned complexes 35
Figure 2.3: Solid state molecular structure of 4.. 40
Figure 2.4: Solid state molecular structure of 5.. 42
Figure 2.5: Solid state molecular structure of 6.. 43
Figure 2.6: Solid state molecular structure of 7... 44
Figure.2.7: Solid state molecular structure of 8... 46

Chapter 3
Figure 3.1: Pictorial representation of organometallic compounds derived from saturated and unsaturated hydrocarbons by the metal, M.... 66
Figure 3.2: Bonding pattern of Schrock and Fischer carbene complexes 68
Figure 3.3: Representative examples of Schrock and Fisher carbenes.. 69
Figure 3.4: Bonding pattern of Fischer and Schrock carbyne complexes.. 69
Figure 3.5: Representative examples of bridging carbynes of transition metals... 71
Figure 3.6: Solid state molecular structure of 10... 73
Figure 3.7: Solid state molecular structure of 11... 74
Figure 3.8: Solid state molecular structure of 12.... 76
Figure 3.9 Solid state molecular structure of 13... 77
Figure 3.10: Solid state molecular structure of 14... 78

Chapter 4
Figure 4.1: GPC comparison of cyclic and linear polyphenylacetylenes of comparable Mn.... 104
Figure 4.2: GPC comparison of cyclic and linear polyphenylacetylenes having Mn with large variance 105
Figure 4.3: Molecular size distribution of cyclic and linear poly phenyl acetylenes obtained from DLS experiment.. 106
Figure 4.4: TEM images of cyclic polyphenylacetylenes (c-PPA).. 107
Figure 4.5: GPC plot of the cyclic polynorbornene (Mn = 361 k) synthesized by using 8 as the catalyst... 110
Figure 4.6: TEM images of cyclic polynorbornenes (c-PNBE) synthesized by using 8 as the catalyst... 111



List of Tables

Chapter 4
Table 4.1: Hydrodynamic diameter comparison of c-PPA and l-PPA using DLS technique.... 102
Table 4.2: Selected polymerization results of norbornenes using 8 as the catalyst 105
Table 4.3: Selected polymerization results of phenylacetylenes using 8 as the catalyst... 108
1. Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Mague, J. T.; Wood, J. S.; Harris, C. B.; Robinson, W. R.; Lippard, S. J., Science 1964, 145, 1305-1307.
2. Cotton, F. A.; Murillo, C. A.; Walton, R. A., Multiple Bond Between Metal Atoms. 3 ed.; Springer: Berlin, 2005.
3. Klotzbucher, W.; Ozin, G. A., Inorg. Chem. 1977, 16, 984-987.
4. Kundig, E. P.; Moskovits, M.; Ozin, G. A., Nature 1975, 254, 503-504.
5. Chisholm, M. H.; Macintosh, A. M., Chem. Rev. 2005, 105, 2949-2976.
6. Kant, A.; Strauss, B., J. Chem. Phys. 1966, 45, 3161-3162.
7. Xiao, Z. L.; Hauge, R. H.; Margrave, J. L., J. Phys. Chem. 1992, 96, 636-644.
8. Morse, M. D., Chem. Rev. 1986, 86, 1049-1109.
9. Casey, S. M.; Villalta, P. W.; Bengali, A. A.; Cheng, C. L.; Dick, J. P.; Fenn, P. T.; Leopold, D. G., J. Am. Chem. Soc. 1991, 113, 6688-6689.
10. Gupta, S. K.; Atkins, R. M.; Gingerich, K. A., Inorg. Chem. 1978, 17, 3211-3213.
11. Dedieu, A.; Albright, T. A.; Hoffmann, R., J. Am. Chem. Soc. 1979, 101, 3141-3151.
12. Weinhold, F.; Landis, C. R., Chem. Educ. Res. Pract. 2001, 2, 91-104.
13. Weinhold, F.; Landis, C. R., Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press: Cambridge, UK/New York, 2005.
14. Landis, C. R.; Weinhold, F., J. Am. Chem. Soc. 2006, 128, 7335-7345.
15. Weinhold, F.; Landis, C. R., Science 2007, 316, 61-63.
16. Merino, G.; Donald, K. J.; D'Acchioli, J. S.; Hoffmann, R., J. Am. Chem. Soc. 2007, 129, 15295-15302.
17. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C., Dalton Trans. 2014, 43, 5618-5638.
18. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C., Inorg. Chim. Acta 2015, 424, 51-62.
19. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P., Science 2005, 310, 844-847.
20. Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2008, 47, 9933-9936.
21. Hua, S.-A.; Tsai, Y.-C.; Peng, S.-M., J. Chin. Chem. Soc. 2014, 61, 9-26.
22. Huang, Y.-L.; Lu, D.-Y.; Yu, H.-C.; Yu, J.-S. K.; Hsu, C.-W.; Kuo, T.-S.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2012, 51, 7781-7785.
23. Liu, S.-C.; Ke, W.-L.; Yu, J.-S. K.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2012, 51, 6394-6397.
24. Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S., J. Am. Chem. Soc. 2009, 131, 12534-12535.
25. Tsai, Y.-C.; Hsu, C.-W.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S., Angew. Chem. Int. Ed. 2008, 47, 7250-7253.
26. Lu, D.-Y.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2016, 55, 11614-11618.
27. Noor, A.; Wagner, F. R.; Kempe, R., Angew. Chem. Int. Ed. 2008, 47, 7246-7249.
28. Noor, A.; Bauer, T.; Todorova, T. K.; Weber, B.; Gagliardi, L.; Kempe, R., Chem. Eur. J. 2013, 19, 9825-9832.
29. Kreisel, K. A.; Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H., J. Am. Chem. Soc. 2007, 129, 14162-14163.
30. Clouston, L. J.; Siedschlag, R. B.; Rudd, P. A.; Planas, N.; Hu, S.; Miller, A. D.; Gagliardi, L.; Lu, C. C., J. Am. Chem. Soc. 2013, 135, 13142-13148.
31. Harisomayajula, N. V. S.; Nair, A. K.; Tsai, Y.-C., Chem. Commun. 2014, 50, 3391-3412.
32. Rudd, P. A.; Liu, S.; Gagliardi, L.; Young, V. G., Jr.; Lu, C. C., J. Am. Chem. Soc. 2011, 133, 20724-20727.
33. Xu, B.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer, H. F., III, J. Phys. Chem. A 2009, 113, 12470-12477.
34. Brynda, M.; Gagliardi, L.; Widmark, P. O.; Power, P. P.; Roos, B. O., Angew. Chem. Int. Ed. 2006, 45, 3804-3807.
35. Bondybey, V. E.; English, J. H., Chem. Phys. Lett. 1983, 94, 443-447.
36. Brynda, M.; Gagliardi, L.; Roos, B. O., Chem. Phys. Lett. 2009, 471, 1-10.
37. Noor, A.; Glatz, G.; Mueller, R.; Kaupp, M.; Demeshko, S.; Kempe, R., Z. Anorg. Allg. Chem. 2009, 635, 1149-1152.
38. Carrasco, M.; Curado, N.; Maya, C.; Peloso, R.; Rodriguez, A.; Ruiz, E.; Alvarez, S.; Carmona, E., Angew. Chem. Int. Ed. 2013, 52, 3227-3231.
39. Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P., Chem. Commun. 2009, 2332-2334.
40. Wu, P.-F.; Liu, S.-C.; Shieh, Y.-J.; Kuo, T.-S.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C., Chem. Commun. 2013, 49, 4391-4393.
41. Schwarzmaier, C.; Noor, A.; Glatz, G.; Zabel, M.; Timoshkin, A. Y.; Cossairt, B. M.; Cummins, C. C.; Kempe, R.; Scheer, M., Angew. Chem. Int. Ed. 2011, 50, 7283-7286.
42. Tamne, E. S.; Noor, A.; Qayyum, S.; Bauer, T.; Kempe, R., Inorg. Chem. 2013, 52, 329-336.
43. Shirakawa, E.; Yamagami, T.; Kimura, T.; Yamaguchi, S.; Hayashi, T., J. Am. Chem. Soc. 2005, 127, 17164-17165.
44. McKinley, N. F.; O'Shea, D. F., J. Org. Chem. 2006, 71, 9552-9555.
45. Nakamura, S.; Uchiyama, M., J. Am. Chem. Soc. 2007, 129, 28-29.
46. Noor, A.; Glatz, G.; Mueller, R.; Kaupp, M.; Demeshko, S.; Kempe, R., Nat. Chem. 2009, 1, 322-325.
47. Noor, A.; Tamne, E. S.; Qayyum, S.; Bauer, T.; Kempe, R., Chem. Eur. J. 2011, 17, 6900-6903.
48. Chen, H.-Z.; Liu, S.-C.; Yen, C.-H.; Yu, J.-S. K.; Shieh, Y.-J.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2012, 51, 10342-10346.
49. Shen, J.; Yap, G. P. A.; Werner, J.-P.; Theopold, K. H., Chem. Commun. 2011, 47, 12191-12193.
50. Chen, H.-G.; Hsueh, H.-W.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2013, 52, 10256-10260.
51. Lu, D.-Y.; Chen, P. P.-Y.; Kuo, T.-S.; Tsai, Y.-C., Angew. Chem. Int. Ed. 2015, 54, 9106-9110.
52. Kajita, Y.; Ogawa, T.; Matsumoto, J.; Masuda, H., Inorg. Chem. 2009, 48, 9069-9071.
53. Ogawa, T.; Kajita, Y.; Masuda, H., Jpn. J. Appl. Phys. 2011, 50, 1-5.
54. Carrasco, M.; Curado, N.; Alvarez, E.; Maya, C.; Peloso, R.; Poveda, M. L.; Rodriguez, A.; Ruiz, E.; Alvarez, S.; Carmona, E., Chem. Eur. J. 2014, 20, 6092-6102.
55. Chatt, J.; Duncanson, L. A., J. Chem. Soc. 1953, 2939-2947.
56. Flynn, S. R.; Wass, D. F., ACS Catal. 2013, 3, 2574-2581.
57. Metters, O. J.; Forrest, S. J. K.; Sparkes, H. A.; Manners, I.; Wass, D. F., J. Am. Chem. Soc. 2016, 138, 1994-2003.
58. Chapman, A. M.; Flynn, S. R.; Wass, D. F., Inorg. Chem. 2016, 55, 1017-1021.
59. Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F., J. Am. Chem. Soc. 1986, 108, 7400-7402.
60. Casey, C. P.; Guan, H., J. Am. Chem. Soc. 2007, 129, 5816-5817.
61. Casey, C. P.; Guan, H., J. Am. Chem. Soc. 2009, 131, 2499-2507.
1. Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bond Between Metal Atoms. 3 ed.; Springer: Berlin, 2005.
2. Cotton, F. A. J. Chem. Educ. 1983, 60, 713.
3. Harisomayajula, N. V. S.; Nair, A. K.; Tsai, Y.-C. Chem. Commun. 2014, 50, 3391-3412.
4. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C. Dalton Trans. 2014, 43, 5618-5638.
5. Nair, A. K.; Harisomayajula, N. V. S.; Tsai, Y.-C. Inorg. Chim. Acta 2015, 424, 51-62.
6. Ventura, K.; Prat, J. R.; Aguirre Quintana, L. M.; Goos, A.; Villagran, D. Chem. Commun. 2016, 52, 3974-3976.
7. Sattelberger, A. P.; McLaughlin, K. W.; Huffman, J. C. J. Am. Chem. Soc. 1981, 103, 2880-2882.
8. Santure, D. J.; Huffman, J. C.; Sattelberger, A. P. Inorg. Chem. 1985, 24, 371-378.
9. Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am. Chem. Soc. 2009, 131, 12534-12535.
10. Bailey, P. J.; Pace, S. Coord. Chem. Rev. 2001, 214, 91-141.
11. Cotton, F. A.; Niswander, R. H.; Sekutowski, J. C. Inorg. Chem. 1979, 18, 1152-1159.
12. Rej, S.; Tsurugi, H.; Mashima, K. Coord. Chem. Rev. 2018, 355, 223-239.
13. Cotton, F. A.; Donahue, J. P.; Lichtenberger, D. L.; Murillo, C. A.; Villagrán, D. J. Am. Chem. Soc. 2005, 127, 10808-10809.
14. Cayton, R. H.; Chisholm, M. H.; Huffman, J. C.; Lobkovsky, E. B. J. Am. Chem. Soc. 1991, 113, 8709-8724.
15. Ventura, K.; Veleta, J. M.; Metta-Magaña, A.; Villagrán, D. Inorg. Chim. Acta 2015, 424, 286-292.
16. Kol, M.; Schrock, R. R.; Kempe, R.; Davis, W. M. J. Am. Chem. Soc. 1994, 116, 4382-4390.
17. Nippe, M.; Goodman, S. M.; Fry, C. G.; Berry, J. F. J. Am. Chem. Soc. 2011, 133, 2856-2859.
18. Chisholm, M. H. Polyhedron 1986, 5, 25-30.
19. Chisholm, M. H. Angew. Chem. 1986, 98, 21-30.
20. Cooper, B. G.; Napoline, J. W.; Thomas, C. M. Catal. Rev. 2012, 54, 1-40.
21. Buchwalter, P.; Rosé, J.; Braunstein, P. Chem. Rev. 2015, 115, 28-126.
22. Powers, I. G.; Uyeda, C. ACS Catal. 2017, 7, 936-958.
23. Tsurugi, H.; Yamada, K.; Majumdar, M.; Sugino, Y.; Hayakawa, A.; Mashima, K. Dalton Trans. 2011, 40, 9358-9361.
24. Tsurugi, H.; Hayakawa, A.; Kando, S.; Sugino, Y.; Mashima, K. Chem. Sci. 2015, 6, 3434-3439.
25. Rej, S.; Majumdar, M.; Kando, S.; Sugino, Y.; Tsurugi, H.; Mashima, K. Inorg. Chem. 2017, 56, 634-644.
26. Chisholm, M. H. Coord. Chem. Rev. 2015, 282-283, 60-65.
27. Chang, I. J.; Nocera, D. G. Inorg. Chem. 1989, 28, 4309-4311.
28. Partigianoni, C. M.; Nocera, D. G. Inorg. Chem. 1990, 29, 2033-2034.
29. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Timmons, D. J.; Wilkinson, C. C. J. Am. Chem. Soc. 2002, 124, 9249-9256.
30. Cotton, F. A.; Donahue, J. P.; Gruhn, N. E.; Lichtenberger, D. L.; Murillo, C. A.; Timmons, D. J.; Van Dorn, L. O.; Villagrán, D.; Wang, X. Inorg. Chem. 2006, 45, 201-213.
31. Grishin, D. F.; Ignatov, S. K.; Shchepalov, A. A.; Razuvaev, A. G. Appl. Organomet. Chem. 2004, 18, 271-276.
32. Stoffelbach, F.; Poli, R.; Maria, S.; Richard, P. J. Organomet. Chem. 2007, 692, 3133-3143.
33. Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C. Prog. Polym. Sci. 2009, 34, 211-239.
34. di Lena, F.; Matyjaszewski, K. Prog. Polym. Sci. 2010, 35, 959-1021.
35. Allan, L. E. N.; Perry, M. R.; Shaver, M. P. Prog. Polym. Sci. 2012, 37, 127-156.
36. Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009-4091.
37. Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756-8757.
38. You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org. Chem. 2017, 82, 1340-1346.
39. Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2006, 45, 3816-3819.
40. Hamilton, J. G.; Ivin, K. J.; McCann, G. M.; Rooney, J. J. Makromol. Chem. 1985, 186, 1477-1494.
41. McCann, M.; Guinan, P. Polyhedron 1991, 10, 2283-2291.
42. Tamblyn, W. T.; Hoffmann, S. R.; Doyle, M. P. J. Organomet. Chem. 1981, 216, C64-C68.
43. Doyle, M. P.; Dorow, R. L.; Tamblyn, W. H. J. Org. Chem. 1982, 47, 4059-4068.
44. Matusiak, R.; Keller, A. J. Mol. Catal. A: Chem. 2003, 195, 29-35.
45. Huq, F.; Mowat, W.; Shortland, A.; Skapski, A. C.; Wilkinson, G. J. Chem. Soc. D, 1971, 1079-1080.
46. Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291-4293.
47. Schrock, R. R. Adv. Synth. Catal. 2007, 349, 41-53.
48. Saragas, N.; Floros, G.; Paraskevopoulou, P.; Psaroudakis, N.; Koinis, S.; Pitsikalis, M.; Mertis, K. J. Mol. Catal. A: Chem. 2009, 303, 124-131.
49. Floros, G.; Saragas, N.; Paraskevopoulou, P.; Psaroudakis, N.; Koinis, S.; Pitsikalis, M.; Hadjichristidis, N.; Mertis, K. Polymers 2012, 4, 1657-1673.
50. Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. Chem. Soc. Rev. 1985, 14, 69-91.
51. Chisholm, M. H. J. Chem. Soc., Dalton Trans. 1996, 1781-1791.
52. Barry, J. T.; Chisholm, M. H. J. Chem. Soc., Chem. Commun. 1995, 1599-1600.
53. Persson, C.; Andersson, C. Inorg. Chim. Acta 1993, 203, 235-238.
1. Fischer, E. O. On the Way to Carbene and Carbyne Complexes**A Nobel lecture translated by P. Legzdins and G.O. Wiedersatz, Technical Uni-versity, Munich. Copyright © The Nobel Foundation, 1974. In Adv. Organomet. Chem., Stone, F. G. A.; West, R., Eds. Academic Press: 1976; Vol. 14, pp 1-32.
2. Herrmann, W. A. Angew. Chem. Int. Ed. 2002, 41, 1290-1309.
3. Cundari, T. R. Chem. Rev. 2000, 100, 807-818.
4. de Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862-892.
5. Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
6. Frenking, G.; Solà, M.; Vyboishchikov, S. F. J. Organomet. Chem. 2005, 690, 6178-6204.
7. Jia, M.; Ma, S. Angew. Chem. Int. Ed. 2016, 55, 9134-9166.
8. Santamaría, J.; Aguilar, E. Org. Chem. Front. 2016, 3, 1561-1588.
9. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. 5 ed.; John Wiley & Sons: New Jersey, 2009.
10. Heppekausen, J.; Fürstner, A. Angew. Chem. Int. Ed. 2011, 50, 7829-7832.
11. Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943-953.
12. Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456, 933.
13. Schrock, R. R. Acc. Chem. Res. 1979, 12, 98-104.
14. Montgomery, C. D. J. Chem. Educ. 2015, 92, 1653-1660.
15. Vyboishchikov, S. F.; Frenking, G. Chem. Eur. J. 1998, 4, 1439-1448.
16. Vyboishchikov, S. F.; Frenking, G. Chem. Eur. J. 1998, 4, 1428-1438.
17. Frenking, G.; Pidun, U. J. Chem. Soc., Dalton Trans. 1997, 1653-1662.
18. Sierra, M. A.; Fernández, I.; Cossío, F. P. Chem. Commun. 2008, 4671-4682.
19. Fernández, I.; Sierra, M. A.; Gómez-Gallego, M.; Mancheño, M. J.; Cossío, F. P. Chem. Eur. J. 2005, 11, 5988-5996.
20. de Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem. Int. Ed. 2000, 39, 3964-4002.
21. de Meijere, A., Pure Appl. Chem., 1996; Vol. 68, p 61.
22. Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. Chem. Commun. 2010, 46, 7670-7687.
23. Dötz, K. H.; Stendel, J. Chem. Rev. 2009, 109, 3227-3274.
24. Javier, S. Curr. Org. Chem. 2009, 13, 31-46.
25. Barluenga, J.; Fernández-Rodrı́guez, M. A.; Aguilar, E. J. Organomet. Chem. 2005, 690, 539-587.
26. Barluenga, J.; Santamaría, J.; Tomás, M. Chem. Rev. 2004, 104, 2259-2284.
27. Barluenga, J.; Diéguez, A.; Rodríguez, F.; Fañanás, F. J. Angew. Chem. Int. Ed. 2005, 44, 126-128.
28. Schrock, R. R.; Czekelius, C. Adv. Synth. Catal. 2007, 349, 55-77.
29. Fürstner, A.; Davies, P. W. Chem. Commun. 2005, 2307-2320.
30. Zhang, W.; Moore, J. S. Adv. Synth. Catal. 2007, 349, 93-120.
31. Mori, M. Adv. Synth. Catal. 2007, 349, 121-135.
32. Astruc, D. New J. Chem. 2005, 29, 42-56.
33. Schrock, R. R. Chem. Commun. 2005, 2773-2777.
34. Murdzek, J. S.; Schrock, R. R. Carbyne Complexes. Verlag Chemie: Weinheim: New York, 1988.
35. Fischer, E. O.; Kreis, G.; Kreiter, C. G.; Müller, J.; Huttner, G.; Lorenz, H. Angew. Chem. Int. Ed. 1973, 12, 564-565.
36. Chisholm, M. H.; Klang, J. A. J. Am. Chem. Soc. 1989, 111, 2324-2325.
37. Chisholm, M. H.; Folting, K.; Klang, J. A. Organometallics 1990, 9, 607-613.
38. Chisholm, M. H.; Folting, K.; Glasgow, K. C.; Lucas, E.; Streib, W. E. Organometallics 2000, 19, 884-892.
39. Alvarez, M. A.; García, M. E.; Martínez, M. E.; Menéndez, S.; Ruiz, M. A. Organometallics 2010, 29, 710-713.
40. Martens, H.; Janssens, F.; Hoornaert, G. Tetrahedron 1975, 31, 177-183.
41. Chen, H.-G.; Hsueh, H.-W.; Kuo, T.-S.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2013, 52, 10256-10260.
42. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. 1997, 36, 896-901.
43. Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bond Between Metal Atoms. 3 ed.; Springer: Berlin, 2005.
44. Persson, C.; Andersson, C. Inorg. Chim. Acta 1993, 203, 235-238.
1. McKenna, G. B.; Hadziioannou, G.; Lutz, P.; Hild, G.; Strazielle, C.; Straupe, C.; Rempp, P.; Kovacs, A. J. Macromolecules 1987, 20, 498-512.
2. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Nat. Mater. 2008, 7, 997-1002.
3. Semlyen, J. A. Introduction: Cyclic Polymers - The First 40 Years. In Cyclic Polymers, Semlyen, J. A., Ed. Springer Netherlands: Dordrecht, 2002; pp 1-46.
4. Clarson, S. J.; Dodgson, K.; Semlyen, J. A. Polymer 1985, 26, 930-934.
5. Chang, Y. A.; Waymouth, R. M. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2892-2902.
6. Zhang, K.; Zha, Y.; Peng, B.; Chen, Y.; Tew, G. N. J. Am. Chem. Soc. 2013, 135, 15994-15997.
7. Xia, Y.; Boydston, A. J.; Grubbs, R. H. Angew. Chem. Int. Ed. 2011, 50, 5882-5885.
8. Schappacher, M.; Deffieux, A. J. Am. Chem. Soc. 2008, 130, 14684-14689.
9. Wang, Z.; Li, Y.; Huang, Y.; Thompson, M. P.; LeGuyader, C. L. M.; Sahu, S.; Gianneschi, N. C. Chem. Commun. 2015, 51, 17108-17111.
10. Jacobson, H.; Beckmann, C. O.; Stockmayer, W. H. J. Chem. Phys. 1950, 18, 1607-1612.
11. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
12. Laurent, B. A.; Grayson, S. M. J. Am. Chem. Soc. 2006, 128, 4238-4239.
13. Han, D.; Tong, X.; Zhao, Y.; Galstian, T.; Zhao, Y. Macromolecules 2010, 43, 3664-3671.
14. Josse, T.; De Winter, J.; Altintas, O.; Dubois, P.; Barner-Kowollik, C.; Gerbaux, P.; Coulembier, O. Macromol. Chem. Phys. 2015, 216, 1227-1234.
15. Xu, J.; Ye, J.; Liu, S. Macromolecules 2007, 40, 9103-9110.
16. Misaka, H.; Kakuchi, R.; Zhang, C.; Sakai, R.; Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 5091-5096.
17. Hoskins, J. N.; Grayson, S. M. Macromolecules 2009, 42, 6406-6413.
18. Chen, F.; Liu, G.; Zhang, G. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 831-835.
19. Hossain, M. D.; Valade, D.; Jia, Z.; Monteiro, M. J. Polym. Chem. 2012, 3, 2986-2995.
20. Liu, B.; Wang, H.; Zhang, L.; Yang, G.; Liu, X.; Kim, I. Polym. Chem. 2013, 4, 2428-2431.
21. Lu, D.; Jia, Z.; Monteiro, M. J. Polym. Chem. 2013, 4, 2080-2089.
22. Tang, Q.; Chen, J.; Zhao, Y.; Zhang, K. Polym. Chem. 2015, 6, 6659-6663.
23. Yamamoto, T.; Yagyu, S.; Tezuka, Y. J. Am. Chem. Soc. 2016, 138, 3904-3911.
24. Zhu, W.; Li, Z.; Zhao, Y.; Zhang, K. Macromol. Rapid Commun. 2015, 36, 1987-1993.
25. Zhu, X.; Zhou, N.; Zhu, J.; Zhang, Z.; Zhang, W.; Cheng, Z.; Tu, Y.; Zhu, X. Macromol. Rapid Commun. 2013, 34, 1014-1019.
26. Zhao, J.; Zhou, Y.; Zhou, Y.; Zhou, N.; Pan, X.; Zhang, Z.; Zhu, X. Polym. Chem. 2016, 7, 1782-1791.
27. Tang, Q.; Wu, Y.; Sun, P.; Chen, Y.; Zhang, K. Macromolecules 2014, 47, 3775-3781.
28. Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297, 2041.
29. Kricheldorf, H. R.; Lee, S.-R. Macromolecules 1995, 28, 6718-6725.
30. Xia, Y.; Boydston, A. J.; Yao, Y.; Kornfield, J. A.; Gorodetskaya, I. A.; Spiess, H. W.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 2670-2677.
31. Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 8424-8425.
32. Zhang, K.; Lackey, M. A.; Wu, Y.; Tew, G. N. J. Am. Chem. Soc. 2011, 133, 6906-6909.
33. Zhang, K.; Lackey, M. A.; Cui, J.; Tew, G. N. J. Am. Chem. Soc. 2011, 133, 4140-4148.
34. Zhang, K.; Tew, G. N. ACS Macro Letters 2012, 1, 574-579.
35. Gonsales, S. A.; Kubo, T.; Flint, M. K.; Abboud, K. A.; Sumerlin, B. S.; Veige, A. S. J. Am. Chem. Soc. 2016, 138, 4996-4999.
36. Nadif, S. S.; Kubo, T.; Gonsales, S. A.; VenkatRamani, S.; Ghiviriga, I.; Sumerlin, B. S.; Veige, A. S. J. Am. Chem. Soc. 2016, 138, 6408-6411.
37. Roland, C. D.; Li, H.; Abboud, K. A.; Wagener, K. B.; Veige, A. S. Nat. Chem. 2016, 8, 791-796
38. Trhlíková, O.; Zedník, J.; Balcar, H.; Brus, J.; Sedláček, J. J. Mol. Catal. A: Chem. 2013, 378, 57-66.
39. Floros, G.; Saragas, N.; Paraskevopoulou, P.; Psaroudakis, N.; Koinis, S.; Pitsikalis, M.; Hadjichristidis, N.; Mertis, K. Polymers 2012, 4, 1657-1673.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *