帳號:guest(3.17.76.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馬泰絲
作者(外文):Martin, Tesmine
論文名稱(中文):揭開陰道滴蟲中TvCyP1與Myb1相互作用的結構基礎
論文名稱(外文):Unravelling the structural basis of interaction between TvCyP1 and Myb1 in Trichomonas vaginalis
指導教授(中文):陳金榜
江昀緯
指導教授(外文):CHEN, CHINPAN
Chiang, Yun-Wei
口試委員(中文):蘇士哲
林世昌
徐駿森
口試委員(外文):SU, SHIH-CHE
Lin, Su-Chang
Hsu, Chun-Hua
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023870
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:93
中文關鍵詞:核磁共振
外文關鍵詞:nmrX-raystructurebiophysics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
TvCyP1和TvCyP2都是環孢素型的肽基 - 脯氨酸異構酶,它們存在於人體的寄生蟲: 陰道滴蟲中,TvCyP1與轉錄因子Myb1相互作用並協助其進入細胞核,而Myb1、Myb2和Myb3會一起調節ap65-1基因的表達,產生氫化酶體細胞粘附酶,進而導致陰道滴蟲的感染。在這篇研究論文中,TvCyP1及其複合物: Myb1的最小結合序列(Myb1104-111)的X-ray晶體結構被解析出來,其中TvCyP1形成了同型二聚體,如同在水溶液中也觀察到一樣的二聚體現象;在複合物的結構中,一個Myb1104-111分子的P107結合到每個TvCyP1蛋白的活性位點上, NMR數據進一步證明TvCyP1可以催化Myb1104-111中P107的順式/反式異構化,然而,在折疊良好的Myb1蛋白(Myb135-141)中,P107位於由-螺旋結構環繞的簡短環狀結構中,使其難以與TvCyP1的活性位點結合,不過核磁共振研究近一步證明,由於P107周圍的胺基酸皆具有微秒範圍的動態變化,使得Myb135-141和Myb1104-111胜肽類似,也可與TvCyP1的活性位點相互作用。另外,根據結構我找到了兩個在TvCyP1二聚化中至關重要的殘基,並構建了只形成單體的雙突變蛋白(FM-TvCyP1), 發現Myb135-141與FM-TvCyP1的相互作用顯著減弱,表示TvCyP1的二聚化對於與Myb135-141的相互作用是必需的。這個研究提供了關於TvCyP1-Myb1相互作用的詳細結構分析,可以為設計藥物以治療抗藥菌株提供一個新的方向。
TvCyP1 and TvCyP2 are cyclophilin type peptidyl-prolyl isomerases present in the human parasite Trichomonas vaginalis. TvCyP1 interacts with the transcription factor Myb1 and assists in its nuclear translocation. Myb1 along with Myb2 and Myb3 regulates the expression of ap65-1 gene that encodes for a hydrogenosomal cytoadherence enzyme, thereby leading to pathogenesis. The crystal structures of TvCyP1 and its complex with the minimum TvCyP1-binding sequence of Myb1 (Myb1104-111) reported here shows that, TvCyP1 formed a homodimer as observed in solution. In the complex structure, P107 of one Myb1104-111 molecule was bound to the active site of each TvCyP1 protomer. NMR data further showed that TvCyP1 can catalyze the cis/trans isomerization of P107 in Myb1104-111. However, in the well-folded Myb1 protein (Myb135-141), P107 lies in a short loop surrounded by helices, making it difficult to bind to the active site of TvCyP1. NMR studies showed that similar to Myb1104-111 peptide, Myb135-141 also interacted with the active site of TvCyP1, facilitated by the slow dynamics in Myb135-141 surrounding P107. Identification of the two residues that are crucial in TvCyP1 dimerization led to the construction of a monomeric double mutant (FM-TvCyP1). Myb135-141 showed significantly weakened interaction with FM-TvCyP1, suggesting dimerization of TvCyP1 is essential for interaction with Myb135-141. This study provides detailed structural insights on TvCyP1-Myb1 interaction that could pave the way for newer drugs to treat drug-resistant strains.



LIST OF CONTENTS

Acknowledgement....i
Abstract (English)....iii
Abstract (Chinese)....iv
List of Contents....v
List of Abbreviations....vii
Chapter 1 Introduction....1
1.1. Peptidyl prolyl isomerases....1
1.2. Cyclophilins....3
1.2.1. Structural characteristics of cyclophilins....4
1.2.2. Cylophilins in T.vaginalis....6
1.3. T.vaginalis....8
1.3.1. Clinical relevance....8
1.3.2. Myb transcription factors in T.vaginalis....10
1.4. Purpose and outline of this study....11
Chapter 2 Structure and solution behaviour of TvCyP1....15
2.1. Biophysical behaviour of TvCyP1 in solution....15
2.2. X-ray crystal structure of TvCyP1....18
2.3. Dimer interface of TvCyP1....22
2.4. Comparison of the structure of TvCyP1 with other cyclophilins....23
2.5. Effect of mutations of dimer interface residues....25
2.6. FM-TvCyP1: the monomeric double mutant of TvCyP1....25
Chapter 3 Interaction of TvCyP1 with Myb1 peptide....28
3.1. Minimum binding sequence in Myb1....31
3.2. Peptidyl-prolyl isomerase activity of TvCyP1....32
3.3. X-ray crystal structure of TvCyP1 in complex with Myb1 peptide....36
3.4. Interaction of FM- TvCyP1 with Myb1 peptide....40
Chapter 4 Interaction of TvCyP1 with Myb1 protein ....42
4.1. Mapping the TvCyP1 binding site in Myb1 protein by NMR....42
4.2. Identification of Myb1 protein interaction region in TvCyP1 by NMR....48
4.3. Reduction in Myb1 dynamics upon interaction with TvCyP1....56
Chapter 5 Discussion....58
Chapter 6 Conclusion....62
Chapter 7 Materials and methods....64
7.1. Expression and purification of TvCyP1 and TvCyP1 mutants....64
7.2. Preparation of Myb1, Myb1 mutants and Myb1 peptides....65
7.3. SEC-MALS....65
7.4. Analytical ultracentrifugation.... 66
7.5. Fluorescence polarization experiments....66
7.6 Protein crystallization and data collection....66
7.7. Structure determination and refinement....67
7.8. NMR experiments....68
References....71
Appendix ....82
Publications


1 Brandts, J. F., Halvorson, H. R. & Brennan, M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953-4963 (1975).
2 Cook, K. H., Schmid, F. X. & Baldwin, R. L. Role of proline isomerization in folding of ribonuclease A at low temperatures. Proc Natl Acad Sci U S A 76, 6157-6161 (1979).
3 Stewart, D. E., Sarkar, A. & Wampler, J. E. Occurrence and Role of Cis Peptide-Bonds in Protein Structures. J Mol Biol 214, 253-260, doi:Doi 10.1016/0022-2836(90)90159-J (1990).
4 Shaw, P. E. Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep 8, 40-45, doi:10.1038/sj.embor.7400873 (2007).
5 Sokolskaja, E. & Luban, J. Cyclophilin, TRIM5, and innate immunity to HIV-1. Curr Opin Microbiol 9, 404-408, doi:10.1016/j.mib.2006.06.011 (2006).
6 Yao, Q. et al. Roles of cyclophilins in cancers and other organ systems. World J Surg 29, 276-280, doi:10.1007/s00268-004-7812-7 (2005).
7 Gerard, M., Deleersnijder, A., Demeulemeester, J., Debyser, Z. & Baekelandt, V. Unraveling the Role of Peptidyl-Prolyl Isomerases in Neurodegeneration. Mol Neurobiol 44, 13-27, doi:10.1007/s12035-011-8184-2 (2011).
8 Chakraborty, A., Sen, B., Datta, R. & Datta, A. K. Isomerase-independent chaperone function of cyclophilin ensures aggregation prevention of adenosine kinase both in vitro and under in vivo conditions. Biochemistry 43, 11862-11872, doi:10.1021/bi049490o (2004).
9 Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J 20, 285-294, doi:10.1093/emboj/20.1.285 (2001).
10 Kramer, G. et al. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem 279, 14165-14170, doi:10.1074/jbc.M313635200 (2004).
11 Timerman, A. P., Wiederrecht, G., Marcy, A. & Fleischer, S. Characterization of an Exchange-Reaction between Soluble Fkbp-12 and the Fkbp Ryanodine Receptor Complex - Modulation by Fkbp Mutants Deficient in Peptidyl-Prolyl Isomerase Activity. J Biol Chem 270, 2451-2459, doi:DOI 10.1074/jbc.270.6.2451 (1995).
12 Fischer, G., Bang, H., Berger, E. & Schellenberger, A. Conformational Specificity of Chymotrypsin toward Proline-Containing Substrates. Biochim Biophys Acta 791, 87-97, doi:Doi 10.1016/0167-4838(84)90285-1 (1984).
13 Fischer, G., Bang, H. & Mech, C. Detection of Enzyme Catalysis for Cis-Trans-Isomerization of Peptide-Bonds Using Proline-Containing Peptides as Substrates. Biomed Biochim Acta 43, 1101-1111 (1984).
14 Wiederrecht, G., Brizuela, L., Elliston, K., Sigal, N. H. & Siekierka, J. J. Fkb1 Encodes a Nonessential Fk 506-Binding Protein in Saccharomyces-Cerevisiae and Contains Regions Suggesting Homology to the Cyclophilins. P Natl Acad Sci USA 88, 1029-1033, doi:DOI 10.1073/pnas.88.3.1029 (1991).
15 Denesyuk, A. I., Vihinen, M., Lundell, J., Zav'yalov, V. P. & Korpela, T. Structural similarity of the binding sites of cyclophilin A-cyclosporin A and FKBP-FK506 systems. Biochem Biophys Res Commun 192, 912-917 (1993).
16 Handschumacher, R. E., Harding, M. W., Rice, J., Drugge, R. J. & Speicher, D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226, 544-547 (1984).
17 Takahashi, N., Hayano, T. & Suzuki, M. Peptidyl-Prolyl Cis-Trans Isomerase Is the Cyclosporin-a-Binding Protein Cyclophilin. Nature 337, 473-475, doi:DOI 10.1038/337473a0 (1989).
18 Harding, M. W., Galat, A., Uehling, D. E. & Schreiber, S. L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758-760, doi:10.1038/341758a0 (1989).
19 Siekierka, J. J., Hung, S. H. Y., Poe, M., Lin, C. S. & Sigal, N. H. A Cytosolic Binding-Protein for the Immunosuppressant Fk506 Has Peptidyl-Prolyl Isomerase Activity but Is Distinct from Cyclophilin. Nature 341, 755-757, doi:DOI 10.1038/341755a0 (1989).
20 Rahfeld, J. U., Schierhorn, A., Mann, K. & Fischer, G. A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. Febs Lett 343, 65-69 (1994).
21 Rahfeld, J. U. et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. Febs Lett 352, 180-184 (1994).
22 Hennig, L. et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953-5960, doi:10.1021/bi973162p (1998).
23 Wang, P. & Heitman, J. The cyclophilins. Genome Biology 6, doi:ARTN 226 10.1186/gb-2005-6-7-226 (2005).
24 Ferreira, P. A. & Orry, A. From Drosophila to Humans: Reflections on the Roles of the Prolyl Isomerases and Chaperones, Cyclophilins, in Cell Function and Disease. J Neurogenet 26, 132-143, doi:10.3109/01677063.2011.647143 (2012).
25 Nigro, P., Pompilio, G. & Capogrossi, M. C. Cyclophilin A: a key player for human disease. Cell Death & Disease 4, doi:UNSP e888 10.1038/cddis.2013.410 (2013).
26 Davis, T. L. et al. Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases. PLoS Biol 8, e1000439, doi:10.1371/journal.pbio.1000439 (2010).
27 Mikol, V., Kallen, J., Pflugl, G. & Walkinshaw, M. D. X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution. J Mol Biol 234, 1119-1130, doi:10.1006/jmbi.1993.1664 (1993).
28 Kallen, J., Sedrani, R., Zenke, G. & Wagner, J. Structure of human cyclophilin a in complex with the novel immunosuppressant sanglifehrin a at 1.6 angstrom resolution. Journal of Biological Chemistry 280, 21965-21971, doi:10.1074/jbc.M501623200 (2005).
29 Liu, J. et al. Calcineurin Is a Common Target of Cyclophilin-Cyclosporine-a and Fkbp-Fk506 Complexes. Cell 66, 807-815, doi:Doi 10.1016/0092-8674(91)90124-H (1991).
30 Dornan, J. et al. Biochemical and structural characterization of a divergent loop cyclophilin from Caenorhabditis elegans. J Biol Chem 274, 34877-34883 (1999).
31 Bua, J., Ruiz, A. M., Potenza, M. & Fichera, L. E. In vitro anti-parasitic activity of Cyclosporin A analogs on Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters 14, 4633-4637, doi:10.1016/j.bmcl.2004.07.003 (2004).
32 Yau, W. L. et al. Cyclosporin A Treatment of Leishmania donovani Reveals Stage-Specific Functions of Cyclophilins in Parasite Proliferation and Viability. Plos Neglected Tropical Diseases 4, doi:ARTN e729 10.1371/journal.pntd.0000729 (2010).
33 Peterson, M. R. et al. The three-dimensional structure of a Plasmodium falciparum cyclophilin in complex with the potent anti-malarial cyclosporin A. J Mol Biol 298, 123-133, doi:DOI 10.1006/jmbi.2000.3633 (2000).
34 Taylor, P., Page, A. P., Kontopidis, G., Husi, H. & Walkinshaw, M. D. The X-ray structure of a divergent cyclophilin from the nematode parasite Brugia malayi. Febs Lett 425, 361-366, doi:Doi 10.1016/S0014-5793(98)00264-6 (1998).
35 Krieger, J. N. Trichomoniasis in Men - Old Issues and New Data. Sexually Transmitted Diseases 22, 83-96, doi:Doi 10.1097/00007435-199503000-00003 (1995).
36 Gimenes, F. et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nature Reviews Urology 11, 672-687, doi:10.1038/nrurol.2014.285 (2014).
37 Fichorova, R. N. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. Journal of Reproductive Immunology 83, 185-189, doi:10.1016/j.jri.2009.08.007 (2009).
38 Krieger, J. N. et al. Clinical Manifestations of Trichomoniasis in Men. Annals of Internal Medicine 118, 844-849 (1993).
39 Mitteregger, D. et al. High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Medical Microbiology and Immunology 201, 113-116, doi:10.1007/s00430-011-0205-2 (2012).
40 Stark, J. R. et al. Prospective Study of Trichomonas vaginalis Infection and Prostate Cancer Incidence and Mortality: Physicians' Health Study. Journal of the National Cancer Institute 101, 1406-1411, doi:10.1093/jnci/djp306 (2009).
41 Weston, T. E. T. & Nicol, C. S. Natural History of Trichomonal Infection in Males. British Journal of Venereal Diseases 39, 251-257 (1963).
42 Cotch, M. F. et al. Trichomonas vaginalis associated with low birth weight and preterm delivery. Sexually Transmitted Diseases 24, 353-360, doi:Doi 10.1097/00007435-199707000-00008 (1997).
43 Moodley, P., Wilkinson, D., Connolly, C., Moodley, J. & Sturm, A. W. Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clinical Infectious Diseases 34, 519-522, doi:Doi 10.1086/338399 (2002).
44 Wolnerhanssen, P. et al. Clinical Manifestations of Vaginal Trichomoniasis. Jama-Journal of the American Medical Association 261, 571-576 (1989).
45 Kissinger, P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. Bmc Infectious Diseases 15, doi:ARTN 307 10.1186/s12879-015-1055-0 (2015).
46 Dunne, R. L., Dunn, L. A., Upcroft, P., O'Donoghue, P. J. & Upcroft, J. A. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res 13, 239-249, doi:10.1038/sj.cr.7290169 (2003).
47 Menezes, C. B., Frasson, A. P. & Tasca, T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell 3, 404-418, doi:10.15698/mic2016.09.526 (2016).
48 Figueroa-Angulo, E. E. et al. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection 14, 1411-1427, doi:10.1016/j.micinf.2012.09.004 (2012).
49 Garcia, A. F. & Alderete, J. F. Characterization of the Trichomonas vaginalis surface-associated AP65 and binding domain interacting with trichomonads and host cells. Bmc Microbiology 7, doi:Artn 116 10.1186/1471-2180-7-116 (2007).
50 Mundodi, V., Kucknoor, A. S., Klumpp, D. J., Chang, T. H. & Alderete, J. F. Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis. Molecular Microbiology 53, 1099-1108, doi:10.1111/j.1365-2958.2004.04192.x (2004).
51 Ong, S. J., Hsu, H. M., Liu, H. W., Chu, C. H. & Tai, J. H. Multifarious transcriptional regulation of adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite Trichomonas vaginalis. Eukaryotic Cell 5, 391-399, doi:10.1128/Ec.5.2.391-399.2006 (2006).
52 Ong, S. J., Hsu, H. M., Liu, H. W., Chu, C. H. & Tai, J. H. Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. Journal of Biological Chemistry 282, 6716-6725, doi:10.1074/jbc.M610484200 (2007).
53 Hsu, H. M., Ong, S. J., Lee, M. C. & Tai, J. H. Transcriptional Regulation of an Iron-Inducible Gene by Differential and Alternate Promoter Entries of Multiple Myb Proteins in the Protozoan Parasite Trichomonas vaginalis. Eukaryotic Cell 8, 362-372, doi:10.1128/Ec.00317-08 (2009).
54 Oh, I. H. & Reddy, E. P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18, 3017-3033, doi:10.1038/sj.onc.1202839 (1999).
55 Wei, S. Y. et al. Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal beta-hairpin conformation. Nucleic Acids Res 40, 449-460, doi:10.1093/nar/gkr707 (2012).
56 Lou, Y. C. et al. NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res 37, 2381-2394, doi:10.1093/nar/gkp097 (2009).
57 Jiang, I. et al. Molecular basis of the recognition of the ap65-1 gene transcription promoter elements by a Myb protein from the protozoan parasite Trichomonas vaginalis. Nucleic Acids Research 39, 8992-9008, doi:10.1093/nar/gkr558 (2011).
58 Hsu, H. M. et al. Iron-Inducible Nuclear Translocation of a Myb3 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis. Eukaryotic Cell 11, 1441-1450, doi:10.1128/Ec.00190-12 (2012).
59 Chu, C. H. et al. A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis. Eukaryotic Cell 10, 1607-1617, doi:10.1128/Ec.05177-11 (2011).
60 Hsu, H. M. et al. Regulation of nuclear translocation of the Myb1 transcription factor by TvCyclophilin 1 in the protozoan parasite Trichomonas vaginalis. J Biol Chem 289, 19120-19136, doi:10.1074/jbc.M114.549410 (2014).
61 Karplus, P. A. & Diederichs, K. Linking Crystallographic Model and Data Quality. Science 336, 1030-1033, doi:10.1126/science.1218231 (2012).
62 Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck - a Program to Check the Stereochemical Quality of Protein Structures. Journal of Applied Crystallography 26, 283-291, doi:Doi 10.1107/S0021889892009944 (1993).
63 Ke, H. M. Similarities and Differences between Human Cyclophilin-a and Other Beta-Barrel Structures - Structural Refinement at 1.63 Angstrom Resolution. J Mol Biol 228, 539-550, doi:Doi 10.1016/0022-2836(92)90841-7 (1992).
64 Jakob, R. P., Schmidpeter, P. A. M., Koch, J. R., Schmid, F. X. & Maier, T. Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps. Plos One 11, doi:ARTN e0157070 10.1371/journal.pone.0157070 (2016).
65 Limacher, A. et al. The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element. Structure 14, 185-195, doi:10.1016/j.str.2005.10.015 (2006).
66 Thai, V. et al. Structural, biochemical, and in vivo characterization of the first virally encoded cyclophilin from the Mimivirus. J Mol Biol 378, 71-86, doi:10.1016/j.jmb.2007.08.051 (2008).
67 Lou, Y. C. et al. NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Research 37, 2381-2394, doi:10.1093/nar/gkp097 (2009).
68 Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol 7, 220-223 (2000).
69 McGowan, L. C. & Hamelberg, D. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover. Biophys J 104, 216-226, doi:10.1016/j.bpj.2012.11.3815 (2013).
70 Carver, J. P. & Richards, R. E. General 2-Site Solution for Chemical Exchange Produced Dependence of T2 Upon Carr-Purcell Pulse Separation. J Magn Reson 6, 89-&, doi:Doi 10.1016/0022-2364(72)90090-X (1972).
71 Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D. & Kay, L. E. Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 123, 11341-11352, doi:10.1021/ja011300z (2001).
72 Morin, S. et al. relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data. Bioinformatics 30, 2219-2220, doi:10.1093/bioinformatics/btu166 (2014).
73 Budiman, C. et al. Crystal structure of N-domain of FKBP22 from Shewanella sp SIB1: Dimer dissociation by disruption of Val-Leu knot. Protein Science 20, 1755-1764, doi:10.1002/pro.714 (2011).
74 Riboldi-Tunnicliffe, A. et al. Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nat Struct Biol 8, 779-783, doi:DOI 10.1038/nsb0901-779 (2001).
75 Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285-1294, doi:Doi 10.1016/S0092-8674(00)81823-1 (1996).
76 Saleh, T. et al. Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol 12, 117-123, doi:10.1038/nchembio.1981 (2016).
77 Howard, B. R., Vajdos, F. F., Li, S., Sundquist, W. I. & Hill, C. P. Structural insights into the catalytic mechanism of cyclophilin A (vol 10, pg 475, 2003). Nat Struct Biol 10 (2003).
78 Cardenas, M. E., Zhu, D. & Heitman, J. Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr Opin Nephrol Hypertens 4, 472-477 (1995).
79 Wyatt, P. J. Light-Scattering and the Absolute Characterization of Macromolecules. Analytica Chimica Acta 272, 1-40, doi:Doi 10.1016/0003-2670(93)80373-S (1993).
80 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326, doi:Doi 10.1016/S0076-6879(97)76066-X (1997).
81 Mccoy, A. J. et al. Phaser crystallographic software. Journal of Applied Crystallography 40, 658-674, doi:10.1107/S0021889807021206 (2007).
82 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D-Biological Crystallography 66, 213-221, doi:10.1107/S0907444909052925 (2010).
83 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallographica Section D-Biological Crystallography 66, 486-501, doi:10.1107/S0907444910007493 (2010).
84 Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D-Biological Crystallography 66, 12-21, doi:10.1107/S0907444909042073 (2010).
85 Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Bio 63, 277-299, doi:Doi 10.1016/0079-6107(95)00007-0 (1995).
86 Akaike, H. in Selected Papers of Hirotugu Akaike (eds Emanuel Parzen, Kunio Tanabe, & Genshiro Kitagawa) 199-213 (Springer New York, 1998).
87 Johnson, B. A. & Blevins, R. A. Nmr View - a Computer-Program for the Visualization and Analysis of Nmr Data. J Biomol Nmr 4, 603-614, doi:Doi 10.1007/Bf00404272 (1994).
88 Delaglio, F. et al. Nmrpipe - a Multidimensional Spectral Processing System Based on Unix Pipes. J Biomol Nmr 6, 277-293, doi:Doi 10.1007/Bf00197809 (1995).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *