帳號:guest(18.117.162.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):瑞  達
作者(外文):Kitata, Reta Birhanu
論文名稱(中文):開發深入剖析蛋白體及磷酸化蛋白體之策略
論文名稱(外文):Development of Deep Proteomic and Phosphoproteomic Profiling Strategies
指導教授(中文):陳玉如
林俊成
指導教授(外文):Chen, Yu-Ju
Lin, Chun-Cheng
口試委員(中文):邱繼輝
陳怡婷
鄒德里
陳逸然
口試委員(外文):Khoo, Kay-Hooi
Chen, Yi-Ting
Tzou, Der-Lii M.
Chen, Yet-Ran
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023868
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:108
中文關鍵詞:失蹤蛋白質磷酸化蛋白質體學多重反應監測非數據依賴擷取單一注射蛋白質體分析法譜資料庫
外文關鍵詞:missing proteinphosphoproteomicsmultiple reaction monitoringdata independent acquisitionsingle-shot proteomespectral library
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
相較於其他的物系,人類蛋白質體由於在同一時間中所能表現的蛋白質種類極多,再加上蛋白質異構物(isoforms)與轉譯後修飾作用(post-translational modifications),其複雜性難以估計。為了增加完整蛋白質體鑑定深度,發展更靈敏的蛋白質體學分析方法仍然是必須的。過去十年,質譜法已成功地大規模鑑定與定量分析細胞內的蛋白質體;此外,數據依賴擷取(data dependent acquisition),多重反應監測(multiple reaction monitoring)與近期蓬勃發展的非數據依賴擷取(data independent acquisition)等方法,更提供研究生物系統的途徑。在本篇研究中,我們發展可以全面性分析蛋白質體的方法
在3000個缺乏蛋白質表現證據的蛋白質譯碼基因(protein coding genes)中,我們發現超過三分之一被預測為膜蛋白。其原因可能為分析膜蛋白質的困難包括溶解試劑干擾、含量較低、並且較不易被蛋白酶水解。本研究的第一部分,我們利用一個快速且靈敏的高pH 逆向層析(HpRP)StageTip技術進行胜肽的分離。結合數據依賴擷取法(四極柱串聯時間飛行式質譜儀),分11個非小細胞肺癌(NSCLC)細胞株與20對肺癌組織。於小於1%胜肽圖譜數(PSM)、胜肽與蛋白質錯誤鑑定率(FDR )下,我們鑑定到的7702蛋白質中(66%為膜蛋白),其中發現178個“失蹤蛋白質”(74個為膜蛋白)。於178個失蹤蛋白質中,78%具有mRNA表現數據。更進一步利用以合成胜肽及多重反應監測質譜法驗證8個蛋白質。此研究證實癌症膜蛋白質體為探勘失蹤蛋白質之好策略,幫助完整人類蛋白質體。
單一注射蛋白質體分析法具快速及靈敏之優點,是大量分析臨床樣品的常用方法。於第二部分,我們以HeLa 細胞為模版,在傅立葉轉換高場離子阱(Orbitrap)質譜儀中,以數據依賴擷取模式(DDA)進行深度蛋白質體鑑定分析。利用6 µg HeLa細胞的水解胜肽,在約10小時的優化分析中,鑑定到約6000個蛋白質(<1%錯誤率)。為了進一步增加鑑定深度,我們利用HpRP分群技術,在20 µg的水解胜肽中鑑定到約8000個蛋白質。結合單一注射蛋白質體分析法與HpRP分群技術,我們建立約8000個具有高可信度的圖譜資料庫。
此研究的第三部分專注於非數據依賴擷取(DIA)方法學的開發。非數據依賴擷取法目標為在大量的蛋白質樣品中,於特定之母離子(precursor)質量範圍間,收集所有可以偵測到的胜肽並且得到其二次質譜(MS/MS)分析圖譜。非數據依賴擷取法可以無偏記錄子離子(fragment)圖譜,並且因為提供良好了定量準確性而被注意。儘管對於非數據依賴擷取法已經有一些新軟體分析的報導,但目前還沒有標準數據擷取與分析方法可運用於高質量精確度質譜儀的資料分析。與一般使用的25道爾頓(Da)母離子擷取範圍相比,我們發現當擷取範圍降低至10 Da,利用優化質量範圍與二次質譜解析度之方法,可提升15%蛋白質與22%胜肽鑑定率。 利用前述數據依賴擷取模式所建立的圖譜資料庫(約8000個蛋白質),在單次約2小時梯度時間的非數據依賴擷取法分析中,定量約5000個蛋白質(變異係數(CV)小於20%)。相較已發表文獻,我們的單次非數據依賴擷取模式分析提供了最深的蛋白質體鑑定,此方法可以應用於任何細胞株與組織檢體的分析。
本研究的最後一部分,我們結合發展的StageTip蛋白質水解法與IMAC純化磷酸化胜肽技術,將非數據依賴擷取模式分析法進一步應用極優化於磷酸化蛋白質體的分析,於兩組非小細胞肺癌細胞株PC9(EGFR抑制劑敏感性)與CL68(EGFR抑制劑抗藥性)中,進行,我們建立了包含來自6905磷酸化蛋白質的44247條磷酸化胜肽的數據依賴擷取圖譜資料庫,由兩組細胞株中所純化出來的磷酸化胜肽,在單次約2小時梯度時間的非數據依賴擷取法分析下,我們可以定量來自4800磷酸化蛋白質的28000條磷酸化胜肽且變異係數(CV)小於20%。在抗藥性細胞株中大量表現的磷酸化蛋白質中,多個磷酸化位置已經被報導過與癌症有關,如: ERK/MAPK、HGF訊息傳遞路徑。EGFR上的20個磷酸化位置也在CL68細胞株中有顯著過度表現。此結果提供了解抗藥性的訊息傳遞路徑與探勘可能的藥物治療標的。另一方面,建立高品質的蛋白質體與磷酸化蛋白質體圖譜資料庫,將可應用於非數據依賴擷取方法學於各式生化樣品的分析。
Compared to the genome, the complexity of human proteome due to daunting number of proteins expressed at a given time, presence of multiple protein isoforms, and post-translational modifications, large scale proteomic analysis still needs improvement toward full identification coverage of human proteome. The depth of identification coverage and acquisition rate of mass spectrometer (MS)based proteomics for qualitative and quantitative profiling of cellular proteome has advanced in the past decade. In addition to the well-established discovery data dependent acquisition (DDA) mode, targeted multiple reaction monitoring (MRM) and recently invented data independent acquisition (DIA) methods were among important developments, providing alternative approaches to study the biological system. In this thesis, we aim to develop strategies towards comprehensive proteomic profiling.
Among the over 3000 protein coding genes lacking protein expression evidence, which are called “missing protein”, we found that over one-third are predicted to be membrane proteins, presumably due to analytical challenges for membrane proteins, including difficulty of solubilization by detergents, low abundance of membrane proteins and accessibility to protease digestion. In the first part of this thesis, for comprehensive membrane protein coverage, we employed a rapid and sensitive high pH reversed phase stop-and-go extraction tip (StageTip) for efficient peptide fractionation of membrane proteins from 11 non-small cell lung cancer cell (NSCLC) lines. The dataset of 20 pairs of lung cancer tissues membrane sample analysis without fractionation was also included. Among the identified 7702 proteins (66% membrane proteins), we found 178 “missing proteins” (74 membrane proteins) with peptide spectral matches (PSMs)-, peptide-, and protein-level FDR of 1% using Q-TOF MS in DDA mode. Among these 178 missing protein, 78% possessed mRNA expression data. By further validation using targeted acquisition MRM, 8 proteins were verified comparing the fragmentation spectra and retention time to corresponding synthetic peptide. This study demonstrates that mining missing proteins from cancer membrane subproteome can complementarily contribute to mapping the whole human proteome.
Single shot proteome analysis are of interest due to minimum sample consumption and fast high throughput nature particularly applicable to analyze large number of clinical samples. In the second part of the thesis, using HeLa cell line as a model, we further evaluated the depth of proteome identification using DDA by optimizing chromatographic separations on Orbitrap instruments. Using 6 µg HeLa peptide digest, best performance of single shot loading was achieved with identification of ~6000 proteins at 1% FDR over extended acquisition time of ~10 hr. To enhance the identification depth, we also employed our previously developed HpRP for peptide fractionation and obtained ~8000 proteins from 20 µg peptide digest. Combining single shot and HpRP fractions, we were able to build spectral library from high confidence identification of nearly 8000 proteins.
The third part of the thesis focus on the development of data independent acquisition (DIA) method. DIA acquisition aims at obtaining MS/MS spectra of all detectable peptides in specified precursor mass range to retain large number of proteins. The unbiased recording of fragment spectra from DIA has been found to be attractive approach for reproducible quantitation. Despite the several reports on new software and acquisition approaches, standardized method of data acquisition and analysis were not developed particularly with application of the method on high mass accuracy LTQ Orbitrap MS instruments. We found that narrow 10 Da DIA precursor isolation window over optimized mass range and MS/MS resolution identified ~15% more proteins and ~22% more peptides compared to the wider 25 Da window commonly used. Using spectral library (~8000 proteins) built from DDA, we were able to quantify ~5000 proteins within 20% CV in single shot DIA acquisition using ~2 hr gradient time from HeLa cell. Our study provided so far the deepest proteome profiling by a single shot-DIA analysis using DIA library which can be used for other cell lines or tissue samples.
In the last part of the thesis, the DIA approach was extended to phosphoproteomic profiling of two NSCLC cell lines PC9 (EGFRDel1,TKI sensitive) and CL68 (EGFRT790M/Del19,TKI resistant). Using our newly developed StageTip based protein digestion and peptide fractionation followed by IMAC enrichment, we built a comprehensive DDA spectral library of 44,247 phosphopeptides from 6905 phosphoproteins. Using single shot DIA acquisition (~2 hr gradient time) to analyze phosphopeptides enriched from the two cell lines, we were able to quantify at the depth of ~28,625 and 27,937 phosphopeptides from 4768 and 4827 phodphoproteins for PC9 and CL68, respectively, within 20% coefficient of variation. Quantitative comparison of these NSCLC lines identified several phosphosites on proteins up-regulated in cancer signaling pathways such as ERK/MAPK, HGF and others in resistant CL68 cell lines. For example, 20 phosphosites of EGFR were found to be significantly upregulated in CL 68 cell lines. The result may provide insight for resistance-related pathway and mining druggable target to overcome drug resistance.
In summary, the high quality spectral library generated for proteome and phosphoproteome in this study can be a valuable resource for proteomic community to apply DIA data analysis in various samples.
Acknowledgement....................................................i
摘要........................................................... ii
Abstract....................................................... v
Table of Contents.............................................. ix
List of Figures................................................ xi
List of Tables................................................. xiii
Chapter 1 Introduction......................................... 1
1.1 Mass Spectrometry Based Proteomics......................... 1
1.2 Deep Proteome Profiling of Human Proteome.................. 4
1.3 Current Status of Human Proteome........................... 8
1.4 Objectives of the Thesis................................... 9
Chapter 2 Materials and Methods................................ 12
2.1 Materials and Reagents..................................... 12
2.2 Cell Culture, Lysis and Tissue Collection.................. 13
2.3 Extraction and Digestion of Membrane Protein from NSCLC Cell Lines.......................................................... 13
2.4 Membrane Protein Extraction and Digestion from Tissue...... 14
2.5 Hp-RP StageTip Fractionation............................... 15
2.6 Cell culture and lysis for Phosphoproteome analysis........ 16
2.7 StageTip-based Digestion for Phosphoproteme................ 16
2.8 Phosphopeptide Enrichment by IMAC.......................... 17
2.9 LC-MS/MS Analysis of Membrane Proteome..................... 17
2.10 MRM Method Development, Optimization and Acquisition...... 18
2.11 LC-MS/MS Analysis of Phosphoproteome...................... 19
2.12 LC-MS/MS Analysis for HeLa Proteome....................... 20
2.13 Database Search for Missing Membrane Proteome from Q-TOF Files.......................................................... 21
2.14 Database Search for Orbitrap Fusion and Fusion Lumos Files.......................................................... 23
2.15 Annotations of Cellular Localization, Family and Missing Protein........................................................ 23
2.16 DIA Data Processing by DIA-Umpire......................... 23
2.17 DIA Data Processing by Spectronaut........................ 24
Chapter 3 Mining Missing Membrane Proteins..................... 25
3.1 Strategies for Mining Missing Proteins..................... 25
3.2 Membrane Proteome Profiling Strategies of NSCLC Cell and Tissue......................................................... 26
3.3 Proteome and Membrane Proteome Identification.............. 28
3.4 Missing Protein Annotation................................. 30
3.5 Membrane Protein and Family Annotation of Missing Proteins. 32
3.6 Validation of Missing Membrane Proteins by Multiple Reaction Monitoring..................................................... 32
Chapter 4. Optimization of Data Dependent Acquisition.......... 36
4.1 Single-Shot Data Dependent Acquisition Evaluation.......... 36
4.2 Improved Chromatographic Separation for Single Shot Analysis....................................................... 37
4.3 Peptide Fractionation by HpRP to enhance depth of Proteome Profiling...................................................... 38
Chapter 5. Deep Proteomic Profiling using Data Independent Acquisition.................................................... 40
5.1 Developments in Data Independent Acquisition............... 40
5.2 Strategies of Data Independent Acquisition Analysis........ 43
5.3 Optimization of Scanning Window, Precursor Mass Range and Resolution..................................................... 45
5.3.1 DIA Isolation Window..................................... 47
5.3.2 Precursor Mass Scanning Range............................ 48
5.3.3 MS/MS Resolution......................................... 49
5.4 Proteomic Identification from Data Independent Acquisition. 50
5.5 Construction of Spectral Library for Targeted Data Independent Acquisition.................................................... 51
5.6 Targeted Data Extraction Strategy.......................... 53
5.7 Effect of Spectral Library Size and Composition on Quantitation Depth.......................................................... 54
5.8 Comparison of DDA and DIA Quantitation..................... 56
Chapter 6. Phosphoproteome Analysis using Data Independent Acquisition.................................................... 58
6.1 Strategies for Protein Phosphorylation Analysis............ 58
6.2 Phosphoproteome Analysis by SWATH.......................... 60
6.3 Construction of Phosphoproteome Spectral Library........... 61
6.4 Phosphoproteome analysis of Non-Small Cell Lung Cancer Cell Lines.......................................................... 63
Chapter 7 Conclusion........................................... 66
Chapter 8 References........................................... 69

(1) Lander E. S. et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860-921.
(2) Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N.; Levine, A. J.; Roberts, R. J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Francesco, V. D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A. E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T. J.; Higgins, M. E.; Ji, R.-R.; Ke, Z.; Ketchum, K. A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G. V.; Milshina, N.; Moore, H. M.; Naik, A. K.; Narayan, V. A.; Neelam, B.; Nusskern, D.; Rusch, D. B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z. Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.-H.; Wides, R.; Xiao, C.; Yan, C. The Sequence of the Human Genome. Science 2001, 291, 1304.
(3) Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M. C.; Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013, 113.
(4) Gillet, L. C.; Leitner, A.; Aebersold, R. Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annu Rev Anal Chem (Palo Alto Calif) 2016, 9, 449-472.
(5) Aebersold, R.; Goodlett, D. R. Mass spectrometry in proteomics. Chem Rev 2001, 101.
(6) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64.
(7) Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Analytical Chemistry 1991, 63, 1193A-1203A.
(8) Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60, 2299-2301.
(9) Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347-355.
(10) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198-207.
(11) Han, X.; Jin, M.; Breuker, K.; McLafferty, F. W. Extending Top-Down Mass Spectrometry to Proteins with Masses Greater Than 200 Kilodaltons. Science 2006, 314, 109.
(12) Tran, J. C.; Zamdborg, L.; Ahlf, D. R.; Lee, J. E.; Catherman, A. D.; Durbin, K. R.; Tipton, J. D.; Vellaichamy, A.; Kellie, J. F.; Li, M.; Wu, C.; Sweet, S. M. M.; Early, B. P.; Siuti, N.; LeDuc, R. D.; Compton, P. D.; Thomas, P. M.; Kelleher, N. L. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 2011, 480, 254-258.
(13) Wu, C.; Tran, J. C.; Zamdborg, L.; Durbin, K. R.; Li, M.; Ahlf, D. R.; Early, B. P.; Thomas, P. M.; Sweedler, J. V.; Kelleher, N. L. A Protease for Middle Down Proteomics. Nature methods 2012, 9, 822-824.
(14) Domon, B.; Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotech 2010, 28, 710-721.
(15) Yates, J. R.; Ruse, C. I.; Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009, 11.
(16) Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular Systems Biology 2008, 4, 222-222.
(17) Ong, S.-E.; Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005, 1, 252-262.
(18) Rauniyar, N.; Yates, J. R. Isobaric Labeling-Based Relative Quantification in Shotgun Proteomics. Journal of Proteome Research 2014, 13, 5293-5309.
(19) Wu, C. C.; MacCoss, M. J.; Howell, K. E.; Matthews, D. E.; Yates, J. R. Metabolic Labeling of Mammalian Organisms with Stable Isotopes for Quantitative Proteomic Analysis. Analytical Chemistry 2004, 76, 4951-4959.
(20) Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics 2002, 1, 376-386.
(21) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech 1999, 17, 994-999.
(22) Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7.
(23) Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Hamon, C. Tandem Mass Tags:  A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS. Analytical Chemistry 2003, 75, 1895-1904.
(24) Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Proteolytic 18O Labeling for Comparative Proteomics:  Model Studies with Two Serotypes of Adenovirus. Analytical Chemistry 2001, 73, 2836-2842.
(25) Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Molecular & Cellular Proteomics 2005, 4, 1265-1272.
(26) Wiener, M. C.; Sachs, J. R.; Deyanova, E. G.; Yates, N. A. Differential Mass Spectrometry:  A Label-Free LC−MS Method for Finding Significant Differences in Complex Peptide and Protein Mixtures. Analytical Chemistry 2004, 76, 6085-6096.
(27) de Godoy, L. M. F.; Olsen, J. V.; Cox, J.; Nielsen, M. L.; Hubner, N. C.; Frohlich, F.; Walther, T. C.; Mann, M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455, 1251-1254.
(28) Picotti, P.; Clement-Ziza, M.; Lam, H.; Campbell, D. S.; Schmidt, A.; Deutsch, E. W.; Rost, H.; Sun, Z.; Rinner, O.; Reiter, L.; Shen, Q.; Michaelson, J. J.; Frei, A.; Alberti, S.; Kusebauch, U.; Wollscheid, B.; Moritz, R. L.; Beyer, A.; Aebersold, R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013, 494, 266-270.
(29) Kelkar, D. S.; Kumar, D.; Kumar, P.; Balakrishnan, L.; Muthusamy, B.; Yadav, A. K.; Shrivastava, P.; Marimuthu, A.; Anand, S.; Sundaram, H.; Kingsbury, R.; Harsha, H. C.; Nair, B.; Prasad, T. S. K.; Chauhan, D. S.; Katoch, K.; Katoch, V. M.; Kumar, P.; Chaerkady, R.; Ramachandran, S.; Dash, D.; Pandey, A. Proteogenomic Analysis of Mycobacterium tuberculosis By High Resolution Mass Spectrometry. Molecular & Cellular Proteomics 2011, 10.
(30) Harper, J. W.; Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 2016, 537, 328-338.
(31) Iwasaki, M.; Ishihama, Y. Challenges Facing Complete Human Proteome Analysis. CHROMATOGRAPHY 2014, 35, 73-80.
(32) Nagaraj, N.; Wisniewski, J. R.; Geiger, T.; Cox, J.; Kircher, M.; Kelso, J.; Paabo, S.; Mann, M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011, 7.
(33) Beck, M.; Schmidt, A.; Malmstroem, J.; Claassen, M.; Ori, A.; Szymborska, A.; Herzog, F.; Rinner, O.; Ellenberg, J.; Aebersold, R. The quantitative proteome of a human cell line. Molecular Systems Biology 2011, 7.
(34) Branca, R. M. M.; Orre, L. M.; Johansson, H. J.; Granholm, V.; Huss, M.; Perez-Bercoff, A.; Forshed, J.; Kall, L.; Lehtio, J. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Meth 2014, 11, 59-62.
(35) Guo, X.; Trudgian, D. C.; Lemoff, A.; Yadavalli, S.; Mirzaei, H. Confetti: A Multiprotease Map of the HeLa Proteome for Comprehensive Proteomics. Molecular & Cellular Proteomics : MCP 2014, 13, 1573-1584.
(36) Bekker-Jensen, D. B.; Kelstrup, C. D.; Batth, T. S.; Larsen, S. C.; Haldrup, C.; Bramsen, J. B.; Sørensen, K. D.; Høyer, S.; Ørntoft, T. F.; Andersen, C. L.; Nielsen, M. L.; Olsen, J. V. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Systems 2017, 4, 587-599.e584.
(37) Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics 2012, 11.
(38) Kim, M.-S.; Pinto, S. M.; Getnet, D.; Nirujogi, R. S.; Manda, S. S.; Chaerkady, R.; Madugundu, A. K.; Kelkar, D. S.; Isserlin, R.; Jain, S.; Thomas, J. K.; Muthusamy, B.; Leal-Rojas, P.; Kumar, P.; Sahasrabuddhe, N. A.; Balakrishnan, L.; Advani, J.; George, B.; Renuse, S.; Selvan, L. D. N.; Patil, A. H.; Nanjappa, V.; Radhakrishnan, A.; Prasad, S.; Subbannayya, T.; Raju, R.; Kumar, M.; Sreenivasamurthy, S. K.; Marimuthu, A.; Sathe, G. J.; Chavan, S.; Datta, K. K.; Subbannayya, Y.; Sahu, A.; Yelamanchi, S. D.; Jayaram, S.; Rajagopalan, P.; Sharma, J.; Murthy, K. R.; Syed, N.; Goel, R.; Khan, A. A.; Ahmad, S.; Dey, G.; Mudgal, K.; Chatterjee, A.; Huang, T.-C.; Zhong, J.; Wu, X.; Shaw, P. G.; Freed, D.; Zahari, M. S.; Mukherjee, K. K.; Shankar, S.; Mahadevan, A.; Lam, H.; Mitchell, C. J.; Shankar, S. K.; Satishchandra, P.; Schroeder, J. T.; Sirdeshmukh, R.; Maitra, A.; Leach, S. D.; Drake, C. G.; Halushka, M. K.; Prasad, T. S. K.; Hruban, R. H.; Kerr, C. L.; Bader, G. D.; Iacobuzio-Donahue, C. A.; Gowda, H.; Pandey, A. A draft map of the human proteome. Nature 2014, 509, 575-581.
(39) Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A. M.; Lieberenz, M.; Savitski, M. M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; Mathieson, T.; Lemeer, S.; Schnatbaum, K.; Reimer, U.; Wenschuh, H.; Mollenhauer, M.; Slotta-Huspenina, J.; Boese, J.-H.; Bantscheff, M.; Gerstmair, A.; Faerber, F.; Kuster, B. Mass-spectrometry-based draft of the human proteome. Nature 2014, 509, 582-587.
(40) Deutsch, E. W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C. S.; Mendoza, L.; Shteynberg, D.; Omenn, G. S.; Moritz, R. L. The State of the Human Proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet. Journal of proteome research 2015, 14, 3461-3473.
(41) Mertins, P.; Mani, D. R.; Ruggles, K. V.; Gillette, M. A.; Clauser, K. R.; Wang, P.; Wang, X.; Qiao, J. W.; Cao, S.; Petralia, F.; Kawaler, E.; Mundt, F.; Krug, K.; Tu, Z.; Lei, J. T.; Gatza, M. L.; Wilkerson, M.; Perou, C. M.; Yellapantula, V.; Huang, K.-l.; Lin, C.; McLellan, M. D.; Yan, P.; Davies, S. R.; Townsend, R. R.; Skates, S. J.; Wang, J.; Zhang, B.; Kinsinger, C. R.; Mesri, M.; Rodriguez, H.; Ding, L.; Paulovich, A. G.; Fenyö, D.; Ellis, M. J.; Carr, S. A.; Nci, C. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016, 534, 55-62.
(42) Zhang, H.; Liu, T.; Zhang, Z.; Payne, S. H.; Zhang, B.; McDermott, J. E.; Zhou, J.-Y.; Petyuk, V. A.; Chen, L.; Ray, D.; Sun, S.; Yang, F.; Chen, L.; Wang, J.; Shah, P.; Cha, S. W.; Aiyetan, P.; Woo, S.; Tian, Y.; Gritsenko, M. A.; Clauss, T. R.; Choi, C.; Monroe, M. E.; Thomas, S.; Nie, S.; Wu, C.; Moore, R. J.; Yu, K.-H.; Tabb, D. L.; Fenyö, D.; Bafna, V.; Wang, Y.; Rodriguez, H.; Boja, E. S.; Hiltke, T.; Rivers, R. C.; Sokoll, L.; Zhu, H.; Shih, I.-M.; Cope, L.; Pandey, A.; Zhang, B.; Snyder, M. P.; Levine, D. A.; Smith, R. D.; Chan, D. W.; Rodland, K. D.; investigators, C. Integrated proteogenomic characterization of human high grade serous ovarian cancer. Cell 2016, 166, 755-765.
(43) Wang, Y.; Yang, F.; Gritsenko, M. A.; Wang, Y.; Clauss, T.; Liu, T.; Shen, Y.; Monroe, M. E.; Lopez-Ferrer, D.; Reno, T.; Moore, R. J.; Klemke, R. L.; Camp, D. G.; Smith, R. D. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 2011, 11, 2019-2026.
(44) Thakur, S. S.; Geiger, T.; Chatterjee, B.; Bandilla, P.; Fröhlich, F.; Cox, J.; Mann, M. Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation. Molecular & Cellular Proteomics 2011, 10.
(45) Iwasaki, M.; Sugiyama, N.; Tanaka, N.; Ishihama, Y. Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. Journal of Chromatography A 2012, 1228, 292-297.
(46) Yamana, R.; Iwasaki, M.; Wakabayashi, M.; Nakagawa, M.; Yamanaka, S.; Ishihama, Y. Rapid and Deep Profiling of Human Induced Pluripotent Stem Cell Proteome by One-shot NanoLC–MS/MS Analysis with Meter-scale Monolithic Silica Columns. Journal of Proteome Research 2013, 12, 214-221.
(47) Yin, X.; Liu, X.; Zhang, Y.; Yan, G.; Wang, F.; Lu, H.; Shen, H.; Yang, P. Rapid and sensitive profiling and quantification of the human cell line proteome by LC-MS/MS without prefractionation. Proteomics 2014, 14, 2008-2016.
(48) Pirmoradian, M.; Budamgunta, H.; Chingin, K.; Zhang, B.; Astorga-Wells, J.; Zubarev, R. A. Rapid and Deep Human Proteome Analysis by Single-dimension Shotgun Proteomics. Molecular & Cellular Proteomics 2013, 12, 3330-3338.
(49) Scheltema, R. A.; Hauschild, J.-P.; Lange, O.; Hornburg, D.; Denisov, E.; Damoc, E.; Kuehn, A.; Makarov, A.; Mann, M. The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer. Molecular & Cellular Proteomics 2014, 13, 3698-3708.
(50) Hebert, A. S.; Richards, A. L.; Bailey, D. J.; Ulbrich, A.; Coughlin, E. E.; Westphall, M. S.; Coon, J. J. The One Hour Yeast Proteome. Molecular & Cellular Proteomics 2014, 13, 339-347.
(51) Lane, L.; Bairoch, A.; Beavis, R. C.; Deutsch, E. W.; Gaudet, P.; Lundberg, E.; Omenn, G. S. Metrics for the Human Proteome Project 2013–2014 and Strategies for Finding Missing Proteins. Journal of Proteome Research 2014, 13, 15-20.
(52) Gaudet, P.; Argoud-Puy, G.; Cusin, I.; Duek, P.; Evalet, O.; Gateau, A.; Gleizes, A.; Pereira, M.; Zahn-Zabal, M.; Zwahlen, C.; Bairoch, A.; Lane, L. neXtProt: Organizing Protein Knowledge in the Context of Human Proteome Projects. Journal of Proteome Research 2013, 12, 293-298.
(53) Paik, Y.-K.; Jeong, S.-K.; Omenn, G. S.; Uhlen, M.; Hanash, S.; Cho, S. Y.; Lee, H.-J.; Na, K.; Choi, E.-Y.; Yan, F.; Zhang, F.; Zhang, Y.; Snyder, M.; Cheng, Y.; Chen, R.; Marko-Varga, G.; Deutsch, E. W.; Kim, H.; Kwon, J.-Y.; Aebersold, R.; Bairoch, A.; Taylor, A. D.; Kim, K. Y.; Lee, E.-Y.; Hochstrasser, D.; Legrain, P.; Hancock, W. S. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat Biotech 2012, 30, 221-223.
(54) Omenn, G. S.; Lane, L.; Lundberg, E. K.; Beavis, R. C.; Overall, C. M.; Deutsch, E. W. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. J Proteome Res 2016, 15, 3951-3960.
(55) Legrain, P.; Aebersold, R.; Archakov, A.; Bairoch, A.; Bala, K.; Beretta, L.; Bergeron, J.; Borchers, C. H.; Corthals, G. L.; Costello, C. E.; Deutsch, E. W.; Domon, B.; Hancock, W.; He, F.; Hochstrasser, D.; Marko-Varga, G.; Salekdeh, G. H.; Sechi, S.; Snyder, M.; Srivastava, S.; Uhlén, M.; Wu, C. H.; Yamamoto, T.; Paik, Y.-K.; Omenn, G. S. The Human Proteome Project: Current State and Future Direction. Molecular & Cellular Proteomics 2011, 10.
(56) Dimayacyac-Esleta, B. R. T.; Tsai, C.-F.; Kitata, R. B.; Lin, P.-Y.; Choong, W.-K.; Lin, T.-D.; Wang, Y.-T.; Weng, S.-H.; Yang, P.-C.; Arco, S. D.; Sung, T.-Y.; Chen, Y.-J. Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling. Analytical Chemistry 2015, 87, 12016-12023.
(57) Kitata, R. B.; Dimayacyac-Esleta, B. R. T.; Choong, W.-K.; Tsai, C.-F.; Lin, T.-D.; Tsou, C.-C.; Weng, S.-H.; Chen, Y.-J.; Yang, P.-C.; Arco, S. D.; Nesvizhskii, A. I.; Sung, T.-Y.; Chen, Y.-J. Mining Missing Membrane Proteins by High-pH Reverse-Phase StageTip Fractionation and Multiple Reaction Monitoring Mass Spectrometry. Journal of Proteome Research 2015, 14, 3658-3669.
(58) Han, C. L.; Chien, C. W.; Chen, W. C.; Chen, Y. R.; Wu, C. P.; Li, H.; Chen, Y. J. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 2008, 7, 1983-1997.
(59) Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature protocols 2007, 2, 1896-1906.
(60) Tsai, C. F.; Wang, Y. T.; Chen, Y. R.; Lai, C. Y.; Lin, P. Y.; Pan, K. T.; Chen, J. Y.; Khoo, K. H.; Chen, Y. J. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 2008, 7, 4058-4069.
(61) Rost, H.; Malmstrom, L.; Aebersold, R. A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 2012, 11, 540-549.
(62) MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968.
(63) Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Elecrophoresis 1999, 20, 3551-3567.
(64) Craig, R.; Beavis, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467.
(65) Eng, J. K.; Jahan, T. A.; Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 2013, 13, 22-24.
(66) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012, 30, 918-920.
(67) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536.
(68) Vaudel, M.; Burkhart, J. M.; Zahedi, R. P.; Oveland, E.; Berven, F. S.; Sickmann, A.; Martens, L.; Barsnes, H. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 2015, 33, 22-24.
(69) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002, 74, 5383-5392.
(70) Shteynberg, D.; Deutsch, E. W.; Lam, H.; Eng, J. K.; Sun, Z.; Tasman, N.; Mendoza, L.; Moritz, R. L.; Aebersold, R.; Nesvizhskii, A. I. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 2011, 10, M111 007690.
(71) Deutsch, E. W.; Mendoza, L.; Shteynberg, D.; Farrah, T.; Lam, H.; Tasman, N.; Sun, Z.; Nilsson, E.; Pratt, B.; Prazen, B.; Eng, J. K.; Martin, D. B.; Nesvizhskii, A. I.; Aebersold, R. A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159.
(72) Reiter, L.; Claassen, M.; Schrimpf, S. P.; Jovanovic, M.; Schmidt, A.; Buhmann, J. M.; Hengartner, M. O.; Aebersold, R. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 2009, 8, 2405-2417.
(73) Taus, T.; Köcher, T.; Pichler, P.; Paschke, C.; Schmidt, A.; Henrich, C.; Mechtler, K. Universal and Confident Phosphorylation Site Localization Using phosphoRS. Journal of Proteome Research 2011, 10, 5354-5362.
(74) Consortium, U. The Universal Protein Resource (UniProt). Nucleic acids research 2007, 35, D193-197.
(75) Lane, L.; Argoud-Puy, G.; Britan, A.; Cusin, I.; Duek, P. D.; Evalet, O.; Gateau, A.; Gaudet, P.; Gleizes, A.; Masselot, A.; Zwahlen, C.; Bairoch, A. neXtProt: a knowledge platform for human proteins. Nucleic acids research 2012, 40, D76-D83.
(76) Pontén, F.; Schwenk, J. M.; Asplund, A.; Edqvist, P. H. D. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 2011, 270, 428-446.
(77) Mulder, N. J.; Apweiler, R.; Attwood, T. K.; Bairoch, A.; Bateman, A.; Binns, D.; Biswas, M.; Bradley, P.; Bork, P.; Bucher, P.; Copley, R.; Courcelle, E.; Durbin, R.; Falquet, L.; Fleischmann, W.; Gouzy, J.; Griffith-Jones, S.; Haft, D.; Hermjakob, H.; Hulo, N.; Kahn, D.; Kanapin, A.; Krestyaninova, M.; Lopez, R.; Letunic, I.; Orchard, S.; Pagni, M.; Peyruc, D.; Ponting, C. P.; Servant, F.; Sigrist, C. J. InterPro: an integrated documentation resource for protein families, domains and functional sites. Briefings Bioinf 2002, 3, 225-235.
(78) Deutsch, E. W.; Lam, H.; Aebersold, R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO rep 2008, 9, 429-434.
(79) Tsou, C.-C.; Avtonomov, D.; Larsen, B.; Tucholska, M.; Choi, H.; Gingras, A.-C.; Nesvizhskii, A. I. DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics. Nature methods 2015, 12, 258-264.
(80) Bruderer, R.; Bernhardt, O. M.; Gandhi, T.; Miladinović, S. M.; Cheng, L.-Y.; Messner, S.; Ehrenberger, T.; Zanotelli, V.; Butscheid, Y.; Escher, C.; Vitek, O.; Rinner, O.; Reiter, L. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Molecular & Cellular Proteomics : MCP 2015, 14, 1400-1410.
(81) Bruderer, R.; Bernhardt, O. M.; Gandhi, T.; Reiter, L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 2016, 16, 2246-2256.
(82) Lane, L.; Bairoch, A.; Beavis, R. C.; Deutsch, E. W.; Gaudet, P.; Lundberg, E.; Omenn, G. S. Metrics for the human proteome project 2013–2014 and strategies for finding missing proteins. J Proteome Res 2014, 13, 15-20.
(83) Guruceaga, E.; Sanchez Del Pino, M. M.; Corrales, F. J.; Segura, V. Prediction of a missing protein expression map in the context of the human proteome project. J Proteome Res 2015, 14, 1350-1360.
(84) Yang, L.; Lian, X.; Zhang, W.; Guo, J.; Wang, Q.; Li, Y.; Chen, Y.; Yin, X.; Yang, P.; Lan, F.; He, Q.-Y.; Zhang, G.; Wang, T. Finding Missing Proteins from the Epigenetically Manipulated Human Cell with Stringent Quality Criteria. Journal of Proteome Research 2015, 14, 3645-3657.
(85) Martins-de-Souza, D.; Carvalho, P. C.; Schmitt, A.; Junqueira, M.; Nogueira, F. C.; Turck, C. W.; Domont, G. B. Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project. J Proteome Res 2014, 13, 147-157.
(86) Ahn, J. M.; Kim, M. S.; Kim, Y. I.; Jeong, S. K.; Lee, H. J.; Lee, S. H.; Paik, Y. K.; Pandey, A.; Cho, J. Y. Proteogenomic analysis of human chromosome 9-encoded genes from human samples and lung cancer tissues. J Proteome Res 2014, 13, 137-146.
(87) Shiromizu, T.; Adachi, J.; Watanabe, S.; Murakami, T.; Kuga, T.; Muraoka, S.; Tomonaga, T. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 2013, 12, 2414-2421.
(88) Zhang, C.; Li, N.; Zhai, L.; Xu, S.; Liu, X.; Cui, Y.; Ma, J.; Han, M.; Jiang, J.; Yang, C.; Fan, F.; Li, L.; Qin, P.; Yu, Q.; Chang, C.; Su, N.; Zheng, J.; Zhang, T.; Wen, B.; Zhou, R.; Lin, L.; Lin, Z.; Zhou, B.; Zhang, Y.; Yan, G.; Liu, Y.; Yang, P.; Guo, K.; Gu, W.; Chen, Y.; Zhang, G.; He, Q. Y.; Wu, S.; Wang, T.; Shen, H.; Wang, Q.; Zhu, Y.; He, F.; Xu, P. Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. J Proteome Res 2014, 13, 114-125.
(89) Fagerberg, L.; Jonasson, K.; von Heijne, G.; Uhlén, M.; Berglund, L. Prediction of the human membrane proteome. Proteomics 2010, 10, 1141-1149.
(90) Elguoshy, A.; Magdeldin, S.; Xu, B.; Hirao, Y.; Zhang, Y.; Kinoshita, N.; Takisawa, Y.; Nameta, M.; Yamamoto, K.; El-Refy, A.; El-Fiky, F.; Yamamoto, T. Why are they missing? : Bioinformatics characterization of missing human proteins. J Proteomics 2016, 149, 7-14.
(91) Savas, J. N.; Stein, B. D.; Wu, C. C.; Yates, J. R. Mass Spectrometry Accelerates Membrane Protein Analysis. Trends in biochemical sciences 2011, 36, 388-396.
(92) Nesvizhskii, A. I.; Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 2005, 4, 1419-1440.
(93) Shteynberg, D.; Nesvizhskii, A. I.; Moritz, R. L.; Deutsch, E. W. Combining results of multiple search engines in proteomics. Mol Cell Proteomics 2013, 12, 2383-2393.
(94) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551-3567.
(95) Song, C.; Wang, F.; Cheng, K.; Wei, X.; Bian, Y.; Wang, K.; Tan, Y.; Wang, H.; Ye, M.; Zou, H. Large-Scale Quantification of Single Amino-Acid Variations by a Variation-Associated Database Search Strategy. Journal of Proteome Research 2014, 13, 241-248.
(96) Deutsch, E. W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C. S.; Mendoza, L.; Shteynberg, D.; Omenn, G. S.; Moritz, R. L. The State of the Human Proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet. J Proteome Res 2015.
(97) Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat Meth 2014, 11, 1114-1125.
(98) Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356-363.
(99) Picotti, P.; Rinner, O.; Stallmach, R.; Dautel, F.; Farrah, T.; Domon, B.; Wenschuh, H.; Aebersold, R. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 2010, 7, 43-46.
(100) Ezkurdia, I.; Juan, D.; Rodriguez, J. M.; Frankish, A.; Diekhans, M.; Harrow, J.; Vazquez, J.; Valencia, A.; Tress, M. L. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Human molecular genetics 2014, 23, 5866-5878.
(101) Landry, C. R.; Zhong, X.; Nielly-Thibault, L.; Roucou, X. Found in translation: functions and evolution of a recently discovered alternative proteome. Current opinion in structural biology 2015, 32, 74-80.
(102) Shishkova, E.; Hebert, Alexander S.; Coon, Joshua J. Now, More Than Ever, Proteomics Needs Better Chromatography. Cell Systems 2016, 3, 321-324.
(103) Masters, J. R. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2002, 2, 315-319.
(104) Anjo, S. I.; Santa, C.; Manadas, B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017, 17.
(105) Ting, Y. S.; Egertson, J. D.; Payne, S. H.; Kim, S.; MacLean, B.; Käll, L.; Aebersold, R.; Smith, R. D.; Noble, W. S.; MacCoss, M. J. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data. Molecular & Cellular Proteomics 2015, 14, 2301-2307.
(106) Gillet, L. C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012, 11, O111 016717.
(107) Zi, J.; Zhang, S.; Zhou, R.; Zhou, B.; Xu, S.; Hou, G.; Tan, F.; Wen, B.; Wang, Q.; Lin, L.; Liu, S. Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics. Analytical Chemistry 2014, 86, 7242-7246.
(108) Schubert, O. T.; Gillet, L. C.; Collins, B. C.; Navarro, P.; Rosenberger, G.; Wolski, W. E.; Lam, H.; Amodei, D.; Mallick, P.; MacLean, B.; Aebersold, R. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nature protocols 2015, 10, 426-441.
(109) Escher, C.; Reiter, L.; MacLean, B.; Ossola, R.; Herzog, F.; Chilton, J.; MacCoss, M. J.; Rinner, O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012, 12, 1111-1121.
(110) Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; Stein, S. E.; Aebersold, R. Building consensus spectral libraries for peptide identification in proteomics. Nat Meth 2008, 5, 873-875.
(111) Frewen, B. E.; Merrihew, G. E.; Wu, C. C.; Noble, W. S.; MacCoss, M. J. Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries. Analytical Chemistry 2006, 78, 5678-5684.
(112) Craig, R.; Cortens, J. C.; Fenyo, D.; Beavis, R. C. Using Annotated Peptide Mass Spectrum Libraries for Protein Identification. Journal of Proteome Research 2006, 5, 1843-1849.
(113) Rost, H. L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinovic, S. M.; Schubert, O. T.; Wolski, W.; Collins, B. C.; Malmstrom, J.; Malmstrom, L.; Aebersold, R. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotech 2014, 32, 219-223.
(114) Navarro, P.; Kuharev, J.; Gillet, L. C.; Bernhardt, O. M.; MacLean, B.; Rost, H. L.; Tate, S. A.; Tsou, C.-C.; Reiter, L.; Distler, U.; Rosenberger, G.; Perez-Riverol, Y.; Nesvizhskii, A. I.; Aebersold, R.; Tenzer, S. A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotech 2016, 34, 1130-1136.
(115) Holman, S. W.; McLean, L.; Eyers, C. E. RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. J Proteome Res 2016, 15, 1090-1102.
(116) Reiter, L.; Rinner, O.; Picotti, P.; Huttenhain, R.; Beck, M.; Brusniak, M.-Y.; Hengartner, M. O.; Aebersold, R. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Meth 2011, 8, 430-435.
(117) Cox, J.; Hein, M. Y.; Luber, C. A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics : MCP 2014, 13, 2513-2526.
(118) Liu, Y.; Hüttenhain, R.; Surinova, S.; Gillet, L. C. J.; Mouritsen, J.; Brunner, R.; Navarro, P.; Aebersold, R. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 2013, 13, 1247-1256.
(119) Haverland, N. A.; Fox, H. S.; Ciborowski, P. Quantitative Proteomics by SWATH-MS Reveals Altered Expression of Nucleic Acid Binding and Regulatory Proteins in HIV-1-Infected Macrophages. Journal of Proteome Research 2014, 13, 2109-2119.
(120) Collins, B. C.; Gillet, L. C.; Rosenberger, G.; Rost, H. L.; Vichalkovski, A.; Gstaiger, M.; Aebersold, R. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Meth 2013, 10, 1246-1253.
(121) Zhang, Y.; Bilbao, A.; Bruderer, T.; Luban, J.; Strambio-De-Castillia, C.; Lisacek, F.; Hopfgartner, G.; Varesio, E. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. J Proteome Res 2015, 14, 4359-4371.
(122) Gao, Y.; Wang, X.; Sang, Z.; Li, Z.; Liu, F.; Mao, J.; Yan, D.; Zhao, Y.; Wang, H.; Li, P.; Ying, X.; Zhang, X.; He, K.; Wang, H. Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming in hepatocellular carcinoma tissues. Sci Rep 2017, 7, 45913.
(123) Egertson, J. D.; Kuehn, A.; Merrihew, G. E.; Bateman, N. W.; MacLean, B. X.; Ting, Y. S.; Canterbury, J. D.; Marsh, D. M.; Kellmann, M.; Zabrouskov, V.; Wu, C. C.; MacCoss, M. J. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 2013, 10, 744-746.
(124) Egertson, J. D.; MacLean, B.; Johnson, R.; Xuan, Y.; MacCoss, M. J. Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat. Protocols 2015, 10, 887-903.
(125) Prakash, A.; Peterman, S.; Ahmad, S.; Sarracino, D.; Frewen, B.; Vogelsang, M.; Byram, G.; Krastins, B.; Vadali, G.; Lopez, M. Hybrid Data Acquisition and Processing Strategies with Increased Throughput and Selectivity: pSMART Analysis for Global Qualitative and Quantitative Analysis. Journal of Proteome Research 2014, 13, 5415-5430.
(126) Pan, K.-T.; Chen, C.-C.; Urlaub, H.; Khoo, K.-H. Adapting Data-Independent Acquisition for Mass Spectrometry-Based Protein Site-Specific N-Glycosylation Analysis. Analytical Chemistry 2017, 89, 4532-4539.
(127) Tsou, C.-C.; Tsai, C.-F.; Teo, G. C.; Chen, Y.-J.; Nesvizhskii, A. I. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 2016, 16, 2257-2271.
(128) Parker, S. J.; Venkatraman, V.; Van Eyk, J. E. Effect of peptide assay library size and composition in targeted data-independent acquisition-MS analyses. Proteomics 2016, 16, 2221-2237.
(129) Rosenberger, G.; Koh, C. C.; Guo, T.; Röst, H. L.; Kouvonen, P.; Collins, B. C.; Heusel, M.; Liu, Y.; Caron, E.; Vichalkovski, A.; Faini, M.; Schubert, O. T.; Faridi, P.; Ebhardt, H. A.; Matondo, M.; Lam, H.; Bader, S. L.; Campbell, D. S.; Deutsch, E. W.; Moritz, R. L.; Tate, S.; Aebersold, R. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data 2014, 1, 140031.
(130) Shteynberg, D.; Nesvizhskii, A. I.; Moritz, R. L.; Deutsch, E. W. Combining Results of Multiple Search Engines in Proteomics. Molecular & Cellular Proteomics 2013, 12, 2383-2393.
(131) Audain, E.; Uszkoreit, J.; Sachsenberg, T.; Pfeuffer, J.; Liang, X.; Hermjakob, H.; Sanchez, A.; Eisenacher, M.; Reinert, K.; Tabb, D. L.; Kohlbacher, O.; Perez-Riverol, Y. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Journal of Proteomics 2017, 150, 170-182.
(132) Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Research 2006, 34, D655-D658.
(133) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P.-A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos, A.; Chalkley, R. J.; Kraus, H.-J.; Albar, J. P.; Martinez-Bartolomé, S.; Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H. ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nature biotechnology 2014, 32, 223-226.
(134) Schubert, Olga T.; Ludwig, C.; Kogadeeva, M.; Zimmermann, M.; Rosenberger, G.; Gengenbacher, M.; Gillet, Ludovic C.; Collins, Ben C.; Röst, Hannes L.; Kaufmann, Stefan H. E.; Sauer, U.; Aebersold, R. Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host & Microbe 2015, 18, 96-108.
(135) Jedrychowski, M. P.; Huttlin, E. L.; Haas, W.; Sowa, M. E.; Rad, R.; Gygi, S. P. Evaluation of HCD- and CID-type Fragmentation Within Their Respective Detection Platforms For Murine Phosphoproteomics. Molecular & Cellular Proteomics : MCP 2011, 10, M111.009910.
(136) Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature 2001, 411.
(137) Cohen, P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends in Biochemical Sciences 2000, 25, 596-601.
(138) Engholm-Keller, K.; Larsen, M. R. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013, 13.
(139) Riley, N. M.; Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Analytical Chemistry 2016, 88, 74-94.
(140) Reinders, J.; Sickmann, A. State-of-the-art in phosphoproteomics. Proteomics 2005, 5, 4052-4061.
(141) Thingholm, T. E.; Jensen, O. N.; Larsen, M. R. Analytical strategies for phosphoproteomics. Proteomics 2009, 9, 1451-1468.
(142) Yang, C.; Zhong, X.; Li, L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis 2014, 35, 3418-3429.
(143) Pinkse, M. W. H.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. R. Selective Isolation at the Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-MS/MS and Titanium Oxide Precolumns. Analytical Chemistry 2004, 76, 3935-3943.
(144) Leitner, A. Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem 2010, 29.
(145) Kweon, H. K.; Håkansson, K. Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Analytical Chemistry 2006, 78, 1743-1749.
(146) Tsai, C.-F.; Wang, Y.-T.; Chen, Y.-R.; Lai, C.-Y.; Lin, P.-Y.; Pan, K.-T.; Chen, J.-Y.; Khoo, K.-H.; Chen, Y.-J. Immobilized Metal Affinity Chromatography Revisited: pH/Acid Control toward High Selectivity in Phosphoproteomics. Journal of Proteome Research 2008, 7, 4058-4069.
(147) Tsai, C.-F.; Hsu, C.-C.; Hung, J.-N.; Wang, Y.-T.; Choong, W.-K.; Zeng, M.-Y.; Lin, P.-Y.; Hong, R.-W.; Sung, T.-Y.; Chen, Y.-J. Sequential Phosphoproteomic Enrichment through Complementary Metal-Directed Immobilized Metal Ion Affinity Chromatography. Analytical Chemistry 2014, 86, 685-693.
(148) Lai, A. C.-Y.; Tsai, C.-F.; Hsu, C.-C.; Sun, Y.-N.; Chen, Y.-J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Communications in Mass Spectrometry 2012, 26, 2186-2194.
(149) Sharma, K.; D'Souza, R. C.; Tyanova, S.; Schaab, C.; Wisniewski, J. R.; Cox, J.; Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 2014, 8, 1583-1594.
(150) Humphrey, Sean J.; Yang, G.; Yang, P.; Fazakerley, Daniel J.; Stöckli, J.; Yang, Jean Y.; James, David E. Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism 2013, 17, 1009-1020.
(151) Rigbolt, K. T. G.; Prokhorova, T. A.; Akimov, V.; Henningsen, J.; Johansen, P. T.; Kratchmarova, I.; Kassem, M.; Mann, M.; Olsen, J. V.; Blagoev, B. System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation. Science Signaling 2011, 4, rs3.
(152) Lundby, A.; Secher, A.; Lage, K.; Nordsborg, N. B.; Dmytriyev, A.; Lundby, C.; Olsen, J. V. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. 2012, 3, 876.
(153) Huttlin, E. L.; Jedrychowski, M. P.; Elias, J. E.; Goswami, T.; Rad, R.; Beausoleil, S. A.; Villén, J.; Haas, W.; Sowa, M. E.; Gygi, S. P. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. Cell 2010, 143, 1174-1189.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *