|
(1) Lander E. S. et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860-921. (2) Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N.; Levine, A. J.; Roberts, R. J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Francesco, V. D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A. E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T. J.; Higgins, M. E.; Ji, R.-R.; Ke, Z.; Ketchum, K. A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G. V.; Milshina, N.; Moore, H. M.; Naik, A. K.; Narayan, V. A.; Neelam, B.; Nusskern, D.; Rusch, D. B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z. Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.-H.; Wides, R.; Xiao, C.; Yan, C. The Sequence of the Human Genome. Science 2001, 291, 1304. (3) Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M. C.; Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013, 113. (4) Gillet, L. C.; Leitner, A.; Aebersold, R. Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annu Rev Anal Chem (Palo Alto Calif) 2016, 9, 449-472. (5) Aebersold, R.; Goodlett, D. R. Mass spectrometry in proteomics. Chem Rev 2001, 101. (6) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64. (7) Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Biopolymers. Analytical Chemistry 1991, 63, 1193A-1203A. (8) Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60, 2299-2301. (9) Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347-355. (10) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198-207. (11) Han, X.; Jin, M.; Breuker, K.; McLafferty, F. W. Extending Top-Down Mass Spectrometry to Proteins with Masses Greater Than 200 Kilodaltons. Science 2006, 314, 109. (12) Tran, J. C.; Zamdborg, L.; Ahlf, D. R.; Lee, J. E.; Catherman, A. D.; Durbin, K. R.; Tipton, J. D.; Vellaichamy, A.; Kellie, J. F.; Li, M.; Wu, C.; Sweet, S. M. M.; Early, B. P.; Siuti, N.; LeDuc, R. D.; Compton, P. D.; Thomas, P. M.; Kelleher, N. L. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 2011, 480, 254-258. (13) Wu, C.; Tran, J. C.; Zamdborg, L.; Durbin, K. R.; Li, M.; Ahlf, D. R.; Early, B. P.; Thomas, P. M.; Sweedler, J. V.; Kelleher, N. L. A Protease for Middle Down Proteomics. Nature methods 2012, 9, 822-824. (14) Domon, B.; Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotech 2010, 28, 710-721. (15) Yates, J. R.; Ruse, C. I.; Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009, 11. (16) Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular Systems Biology 2008, 4, 222-222. (17) Ong, S.-E.; Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005, 1, 252-262. (18) Rauniyar, N.; Yates, J. R. Isobaric Labeling-Based Relative Quantification in Shotgun Proteomics. Journal of Proteome Research 2014, 13, 5293-5309. (19) Wu, C. C.; MacCoss, M. J.; Howell, K. E.; Matthews, D. E.; Yates, J. R. Metabolic Labeling of Mammalian Organisms with Stable Isotopes for Quantitative Proteomic Analysis. Analytical Chemistry 2004, 76, 4951-4959. (20) Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics 2002, 1, 376-386. (21) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech 1999, 17, 994-999. (22) Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7. (23) Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Hamon, C. Tandem Mass Tags: A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS. Analytical Chemistry 2003, 75, 1895-1904. (24) Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Proteolytic 18O Labeling for Comparative Proteomics: Model Studies with Two Serotypes of Adenovirus. Analytical Chemistry 2001, 73, 2836-2842. (25) Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Molecular & Cellular Proteomics 2005, 4, 1265-1272. (26) Wiener, M. C.; Sachs, J. R.; Deyanova, E. G.; Yates, N. A. Differential Mass Spectrometry: A Label-Free LC−MS Method for Finding Significant Differences in Complex Peptide and Protein Mixtures. Analytical Chemistry 2004, 76, 6085-6096. (27) de Godoy, L. M. F.; Olsen, J. V.; Cox, J.; Nielsen, M. L.; Hubner, N. C.; Frohlich, F.; Walther, T. C.; Mann, M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455, 1251-1254. (28) Picotti, P.; Clement-Ziza, M.; Lam, H.; Campbell, D. S.; Schmidt, A.; Deutsch, E. W.; Rost, H.; Sun, Z.; Rinner, O.; Reiter, L.; Shen, Q.; Michaelson, J. J.; Frei, A.; Alberti, S.; Kusebauch, U.; Wollscheid, B.; Moritz, R. L.; Beyer, A.; Aebersold, R. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 2013, 494, 266-270. (29) Kelkar, D. S.; Kumar, D.; Kumar, P.; Balakrishnan, L.; Muthusamy, B.; Yadav, A. K.; Shrivastava, P.; Marimuthu, A.; Anand, S.; Sundaram, H.; Kingsbury, R.; Harsha, H. C.; Nair, B.; Prasad, T. S. K.; Chauhan, D. S.; Katoch, K.; Katoch, V. M.; Kumar, P.; Chaerkady, R.; Ramachandran, S.; Dash, D.; Pandey, A. Proteogenomic Analysis of Mycobacterium tuberculosis By High Resolution Mass Spectrometry. Molecular & Cellular Proteomics 2011, 10. (30) Harper, J. W.; Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 2016, 537, 328-338. (31) Iwasaki, M.; Ishihama, Y. Challenges Facing Complete Human Proteome Analysis. CHROMATOGRAPHY 2014, 35, 73-80. (32) Nagaraj, N.; Wisniewski, J. R.; Geiger, T.; Cox, J.; Kircher, M.; Kelso, J.; Paabo, S.; Mann, M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011, 7. (33) Beck, M.; Schmidt, A.; Malmstroem, J.; Claassen, M.; Ori, A.; Szymborska, A.; Herzog, F.; Rinner, O.; Ellenberg, J.; Aebersold, R. The quantitative proteome of a human cell line. Molecular Systems Biology 2011, 7. (34) Branca, R. M. M.; Orre, L. M.; Johansson, H. J.; Granholm, V.; Huss, M.; Perez-Bercoff, A.; Forshed, J.; Kall, L.; Lehtio, J. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Meth 2014, 11, 59-62. (35) Guo, X.; Trudgian, D. C.; Lemoff, A.; Yadavalli, S.; Mirzaei, H. Confetti: A Multiprotease Map of the HeLa Proteome for Comprehensive Proteomics. Molecular & Cellular Proteomics : MCP 2014, 13, 1573-1584. (36) Bekker-Jensen, D. B.; Kelstrup, C. D.; Batth, T. S.; Larsen, S. C.; Haldrup, C.; Bramsen, J. B.; Sørensen, K. D.; Høyer, S.; Ørntoft, T. F.; Andersen, C. L.; Nielsen, M. L.; Olsen, J. V. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Systems 2017, 4, 587-599.e584. (37) Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics 2012, 11. (38) Kim, M.-S.; Pinto, S. M.; Getnet, D.; Nirujogi, R. S.; Manda, S. S.; Chaerkady, R.; Madugundu, A. K.; Kelkar, D. S.; Isserlin, R.; Jain, S.; Thomas, J. K.; Muthusamy, B.; Leal-Rojas, P.; Kumar, P.; Sahasrabuddhe, N. A.; Balakrishnan, L.; Advani, J.; George, B.; Renuse, S.; Selvan, L. D. N.; Patil, A. H.; Nanjappa, V.; Radhakrishnan, A.; Prasad, S.; Subbannayya, T.; Raju, R.; Kumar, M.; Sreenivasamurthy, S. K.; Marimuthu, A.; Sathe, G. J.; Chavan, S.; Datta, K. K.; Subbannayya, Y.; Sahu, A.; Yelamanchi, S. D.; Jayaram, S.; Rajagopalan, P.; Sharma, J.; Murthy, K. R.; Syed, N.; Goel, R.; Khan, A. A.; Ahmad, S.; Dey, G.; Mudgal, K.; Chatterjee, A.; Huang, T.-C.; Zhong, J.; Wu, X.; Shaw, P. G.; Freed, D.; Zahari, M. S.; Mukherjee, K. K.; Shankar, S.; Mahadevan, A.; Lam, H.; Mitchell, C. J.; Shankar, S. K.; Satishchandra, P.; Schroeder, J. T.; Sirdeshmukh, R.; Maitra, A.; Leach, S. D.; Drake, C. G.; Halushka, M. K.; Prasad, T. S. K.; Hruban, R. H.; Kerr, C. L.; Bader, G. D.; Iacobuzio-Donahue, C. A.; Gowda, H.; Pandey, A. A draft map of the human proteome. Nature 2014, 509, 575-581. (39) Wilhelm, M.; Schlegl, J.; Hahne, H.; Gholami, A. M.; Lieberenz, M.; Savitski, M. M.; Ziegler, E.; Butzmann, L.; Gessulat, S.; Marx, H.; Mathieson, T.; Lemeer, S.; Schnatbaum, K.; Reimer, U.; Wenschuh, H.; Mollenhauer, M.; Slotta-Huspenina, J.; Boese, J.-H.; Bantscheff, M.; Gerstmair, A.; Faerber, F.; Kuster, B. Mass-spectrometry-based draft of the human proteome. Nature 2014, 509, 582-587. (40) Deutsch, E. W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C. S.; Mendoza, L.; Shteynberg, D.; Omenn, G. S.; Moritz, R. L. The State of the Human Proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet. Journal of proteome research 2015, 14, 3461-3473. (41) Mertins, P.; Mani, D. R.; Ruggles, K. V.; Gillette, M. A.; Clauser, K. R.; Wang, P.; Wang, X.; Qiao, J. W.; Cao, S.; Petralia, F.; Kawaler, E.; Mundt, F.; Krug, K.; Tu, Z.; Lei, J. T.; Gatza, M. L.; Wilkerson, M.; Perou, C. M.; Yellapantula, V.; Huang, K.-l.; Lin, C.; McLellan, M. D.; Yan, P.; Davies, S. R.; Townsend, R. R.; Skates, S. J.; Wang, J.; Zhang, B.; Kinsinger, C. R.; Mesri, M.; Rodriguez, H.; Ding, L.; Paulovich, A. G.; Fenyö, D.; Ellis, M. J.; Carr, S. A.; Nci, C. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016, 534, 55-62. (42) Zhang, H.; Liu, T.; Zhang, Z.; Payne, S. H.; Zhang, B.; McDermott, J. E.; Zhou, J.-Y.; Petyuk, V. A.; Chen, L.; Ray, D.; Sun, S.; Yang, F.; Chen, L.; Wang, J.; Shah, P.; Cha, S. W.; Aiyetan, P.; Woo, S.; Tian, Y.; Gritsenko, M. A.; Clauss, T. R.; Choi, C.; Monroe, M. E.; Thomas, S.; Nie, S.; Wu, C.; Moore, R. J.; Yu, K.-H.; Tabb, D. L.; Fenyö, D.; Bafna, V.; Wang, Y.; Rodriguez, H.; Boja, E. S.; Hiltke, T.; Rivers, R. C.; Sokoll, L.; Zhu, H.; Shih, I.-M.; Cope, L.; Pandey, A.; Zhang, B.; Snyder, M. P.; Levine, D. A.; Smith, R. D.; Chan, D. W.; Rodland, K. D.; investigators, C. Integrated proteogenomic characterization of human high grade serous ovarian cancer. Cell 2016, 166, 755-765. (43) Wang, Y.; Yang, F.; Gritsenko, M. A.; Wang, Y.; Clauss, T.; Liu, T.; Shen, Y.; Monroe, M. E.; Lopez-Ferrer, D.; Reno, T.; Moore, R. J.; Klemke, R. L.; Camp, D. G.; Smith, R. D. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 2011, 11, 2019-2026. (44) Thakur, S. S.; Geiger, T.; Chatterjee, B.; Bandilla, P.; Fröhlich, F.; Cox, J.; Mann, M. Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation. Molecular & Cellular Proteomics 2011, 10. (45) Iwasaki, M.; Sugiyama, N.; Tanaka, N.; Ishihama, Y. Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. Journal of Chromatography A 2012, 1228, 292-297. (46) Yamana, R.; Iwasaki, M.; Wakabayashi, M.; Nakagawa, M.; Yamanaka, S.; Ishihama, Y. Rapid and Deep Profiling of Human Induced Pluripotent Stem Cell Proteome by One-shot NanoLC–MS/MS Analysis with Meter-scale Monolithic Silica Columns. Journal of Proteome Research 2013, 12, 214-221. (47) Yin, X.; Liu, X.; Zhang, Y.; Yan, G.; Wang, F.; Lu, H.; Shen, H.; Yang, P. Rapid and sensitive profiling and quantification of the human cell line proteome by LC-MS/MS without prefractionation. Proteomics 2014, 14, 2008-2016. (48) Pirmoradian, M.; Budamgunta, H.; Chingin, K.; Zhang, B.; Astorga-Wells, J.; Zubarev, R. A. Rapid and Deep Human Proteome Analysis by Single-dimension Shotgun Proteomics. Molecular & Cellular Proteomics 2013, 12, 3330-3338. (49) Scheltema, R. A.; Hauschild, J.-P.; Lange, O.; Hornburg, D.; Denisov, E.; Damoc, E.; Kuehn, A.; Makarov, A.; Mann, M. The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer. Molecular & Cellular Proteomics 2014, 13, 3698-3708. (50) Hebert, A. S.; Richards, A. L.; Bailey, D. J.; Ulbrich, A.; Coughlin, E. E.; Westphall, M. S.; Coon, J. J. The One Hour Yeast Proteome. Molecular & Cellular Proteomics 2014, 13, 339-347. (51) Lane, L.; Bairoch, A.; Beavis, R. C.; Deutsch, E. W.; Gaudet, P.; Lundberg, E.; Omenn, G. S. Metrics for the Human Proteome Project 2013–2014 and Strategies for Finding Missing Proteins. Journal of Proteome Research 2014, 13, 15-20. (52) Gaudet, P.; Argoud-Puy, G.; Cusin, I.; Duek, P.; Evalet, O.; Gateau, A.; Gleizes, A.; Pereira, M.; Zahn-Zabal, M.; Zwahlen, C.; Bairoch, A.; Lane, L. neXtProt: Organizing Protein Knowledge in the Context of Human Proteome Projects. Journal of Proteome Research 2013, 12, 293-298. (53) Paik, Y.-K.; Jeong, S.-K.; Omenn, G. S.; Uhlen, M.; Hanash, S.; Cho, S. Y.; Lee, H.-J.; Na, K.; Choi, E.-Y.; Yan, F.; Zhang, F.; Zhang, Y.; Snyder, M.; Cheng, Y.; Chen, R.; Marko-Varga, G.; Deutsch, E. W.; Kim, H.; Kwon, J.-Y.; Aebersold, R.; Bairoch, A.; Taylor, A. D.; Kim, K. Y.; Lee, E.-Y.; Hochstrasser, D.; Legrain, P.; Hancock, W. S. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat Biotech 2012, 30, 221-223. (54) Omenn, G. S.; Lane, L.; Lundberg, E. K.; Beavis, R. C.; Overall, C. M.; Deutsch, E. W. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. J Proteome Res 2016, 15, 3951-3960. (55) Legrain, P.; Aebersold, R.; Archakov, A.; Bairoch, A.; Bala, K.; Beretta, L.; Bergeron, J.; Borchers, C. H.; Corthals, G. L.; Costello, C. E.; Deutsch, E. W.; Domon, B.; Hancock, W.; He, F.; Hochstrasser, D.; Marko-Varga, G.; Salekdeh, G. H.; Sechi, S.; Snyder, M.; Srivastava, S.; Uhlén, M.; Wu, C. H.; Yamamoto, T.; Paik, Y.-K.; Omenn, G. S. The Human Proteome Project: Current State and Future Direction. Molecular & Cellular Proteomics 2011, 10. (56) Dimayacyac-Esleta, B. R. T.; Tsai, C.-F.; Kitata, R. B.; Lin, P.-Y.; Choong, W.-K.; Lin, T.-D.; Wang, Y.-T.; Weng, S.-H.; Yang, P.-C.; Arco, S. D.; Sung, T.-Y.; Chen, Y.-J. Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling. Analytical Chemistry 2015, 87, 12016-12023. (57) Kitata, R. B.; Dimayacyac-Esleta, B. R. T.; Choong, W.-K.; Tsai, C.-F.; Lin, T.-D.; Tsou, C.-C.; Weng, S.-H.; Chen, Y.-J.; Yang, P.-C.; Arco, S. D.; Nesvizhskii, A. I.; Sung, T.-Y.; Chen, Y.-J. Mining Missing Membrane Proteins by High-pH Reverse-Phase StageTip Fractionation and Multiple Reaction Monitoring Mass Spectrometry. Journal of Proteome Research 2015, 14, 3658-3669. (58) Han, C. L.; Chien, C. W.; Chen, W. C.; Chen, Y. R.; Wu, C. P.; Li, H.; Chen, Y. J. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 2008, 7, 1983-1997. (59) Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature protocols 2007, 2, 1896-1906. (60) Tsai, C. F.; Wang, Y. T.; Chen, Y. R.; Lai, C. Y.; Lin, P. Y.; Pan, K. T.; Chen, J. Y.; Khoo, K. H.; Chen, Y. J. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 2008, 7, 4058-4069. (61) Rost, H.; Malmstrom, L.; Aebersold, R. A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 2012, 11, 540-549. (62) MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968. (63) Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Elecrophoresis 1999, 20, 3551-3567. (64) Craig, R.; Beavis, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467. (65) Eng, J. K.; Jahan, T. A.; Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 2013, 13, 22-24. (66) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012, 30, 918-920. (67) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536. (68) Vaudel, M.; Burkhart, J. M.; Zahedi, R. P.; Oveland, E.; Berven, F. S.; Sickmann, A.; Martens, L.; Barsnes, H. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 2015, 33, 22-24. (69) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002, 74, 5383-5392. (70) Shteynberg, D.; Deutsch, E. W.; Lam, H.; Eng, J. K.; Sun, Z.; Tasman, N.; Mendoza, L.; Moritz, R. L.; Aebersold, R.; Nesvizhskii, A. I. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 2011, 10, M111 007690. (71) Deutsch, E. W.; Mendoza, L.; Shteynberg, D.; Farrah, T.; Lam, H.; Tasman, N.; Sun, Z.; Nilsson, E.; Pratt, B.; Prazen, B.; Eng, J. K.; Martin, D. B.; Nesvizhskii, A. I.; Aebersold, R. A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159. (72) Reiter, L.; Claassen, M.; Schrimpf, S. P.; Jovanovic, M.; Schmidt, A.; Buhmann, J. M.; Hengartner, M. O.; Aebersold, R. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol Cell Proteomics 2009, 8, 2405-2417. (73) Taus, T.; Köcher, T.; Pichler, P.; Paschke, C.; Schmidt, A.; Henrich, C.; Mechtler, K. Universal and Confident Phosphorylation Site Localization Using phosphoRS. Journal of Proteome Research 2011, 10, 5354-5362. (74) Consortium, U. The Universal Protein Resource (UniProt). Nucleic acids research 2007, 35, D193-197. (75) Lane, L.; Argoud-Puy, G.; Britan, A.; Cusin, I.; Duek, P. D.; Evalet, O.; Gateau, A.; Gaudet, P.; Gleizes, A.; Masselot, A.; Zwahlen, C.; Bairoch, A. neXtProt: a knowledge platform for human proteins. Nucleic acids research 2012, 40, D76-D83. (76) Pontén, F.; Schwenk, J. M.; Asplund, A.; Edqvist, P. H. D. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 2011, 270, 428-446. (77) Mulder, N. J.; Apweiler, R.; Attwood, T. K.; Bairoch, A.; Bateman, A.; Binns, D.; Biswas, M.; Bradley, P.; Bork, P.; Bucher, P.; Copley, R.; Courcelle, E.; Durbin, R.; Falquet, L.; Fleischmann, W.; Gouzy, J.; Griffith-Jones, S.; Haft, D.; Hermjakob, H.; Hulo, N.; Kahn, D.; Kanapin, A.; Krestyaninova, M.; Lopez, R.; Letunic, I.; Orchard, S.; Pagni, M.; Peyruc, D.; Ponting, C. P.; Servant, F.; Sigrist, C. J. InterPro: an integrated documentation resource for protein families, domains and functional sites. Briefings Bioinf 2002, 3, 225-235. (78) Deutsch, E. W.; Lam, H.; Aebersold, R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO rep 2008, 9, 429-434. (79) Tsou, C.-C.; Avtonomov, D.; Larsen, B.; Tucholska, M.; Choi, H.; Gingras, A.-C.; Nesvizhskii, A. I. DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics. Nature methods 2015, 12, 258-264. (80) Bruderer, R.; Bernhardt, O. M.; Gandhi, T.; Miladinović, S. M.; Cheng, L.-Y.; Messner, S.; Ehrenberger, T.; Zanotelli, V.; Butscheid, Y.; Escher, C.; Vitek, O.; Rinner, O.; Reiter, L. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Molecular & Cellular Proteomics : MCP 2015, 14, 1400-1410. (81) Bruderer, R.; Bernhardt, O. M.; Gandhi, T.; Reiter, L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 2016, 16, 2246-2256. (82) Lane, L.; Bairoch, A.; Beavis, R. C.; Deutsch, E. W.; Gaudet, P.; Lundberg, E.; Omenn, G. S. Metrics for the human proteome project 2013–2014 and strategies for finding missing proteins. J Proteome Res 2014, 13, 15-20. (83) Guruceaga, E.; Sanchez Del Pino, M. M.; Corrales, F. J.; Segura, V. Prediction of a missing protein expression map in the context of the human proteome project. J Proteome Res 2015, 14, 1350-1360. (84) Yang, L.; Lian, X.; Zhang, W.; Guo, J.; Wang, Q.; Li, Y.; Chen, Y.; Yin, X.; Yang, P.; Lan, F.; He, Q.-Y.; Zhang, G.; Wang, T. Finding Missing Proteins from the Epigenetically Manipulated Human Cell with Stringent Quality Criteria. Journal of Proteome Research 2015, 14, 3645-3657. (85) Martins-de-Souza, D.; Carvalho, P. C.; Schmitt, A.; Junqueira, M.; Nogueira, F. C.; Turck, C. W.; Domont, G. B. Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project. J Proteome Res 2014, 13, 147-157. (86) Ahn, J. M.; Kim, M. S.; Kim, Y. I.; Jeong, S. K.; Lee, H. J.; Lee, S. H.; Paik, Y. K.; Pandey, A.; Cho, J. Y. Proteogenomic analysis of human chromosome 9-encoded genes from human samples and lung cancer tissues. J Proteome Res 2014, 13, 137-146. (87) Shiromizu, T.; Adachi, J.; Watanabe, S.; Murakami, T.; Kuga, T.; Muraoka, S.; Tomonaga, T. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 2013, 12, 2414-2421. (88) Zhang, C.; Li, N.; Zhai, L.; Xu, S.; Liu, X.; Cui, Y.; Ma, J.; Han, M.; Jiang, J.; Yang, C.; Fan, F.; Li, L.; Qin, P.; Yu, Q.; Chang, C.; Su, N.; Zheng, J.; Zhang, T.; Wen, B.; Zhou, R.; Lin, L.; Lin, Z.; Zhou, B.; Zhang, Y.; Yan, G.; Liu, Y.; Yang, P.; Guo, K.; Gu, W.; Chen, Y.; Zhang, G.; He, Q. Y.; Wu, S.; Wang, T.; Shen, H.; Wang, Q.; Zhu, Y.; He, F.; Xu, P. Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. J Proteome Res 2014, 13, 114-125. (89) Fagerberg, L.; Jonasson, K.; von Heijne, G.; Uhlén, M.; Berglund, L. Prediction of the human membrane proteome. Proteomics 2010, 10, 1141-1149. (90) Elguoshy, A.; Magdeldin, S.; Xu, B.; Hirao, Y.; Zhang, Y.; Kinoshita, N.; Takisawa, Y.; Nameta, M.; Yamamoto, K.; El-Refy, A.; El-Fiky, F.; Yamamoto, T. Why are they missing? : Bioinformatics characterization of missing human proteins. J Proteomics 2016, 149, 7-14. (91) Savas, J. N.; Stein, B. D.; Wu, C. C.; Yates, J. R. Mass Spectrometry Accelerates Membrane Protein Analysis. Trends in biochemical sciences 2011, 36, 388-396. (92) Nesvizhskii, A. I.; Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 2005, 4, 1419-1440. (93) Shteynberg, D.; Nesvizhskii, A. I.; Moritz, R. L.; Deutsch, E. W. Combining results of multiple search engines in proteomics. Mol Cell Proteomics 2013, 12, 2383-2393. (94) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551-3567. (95) Song, C.; Wang, F.; Cheng, K.; Wei, X.; Bian, Y.; Wang, K.; Tan, Y.; Wang, H.; Ye, M.; Zou, H. Large-Scale Quantification of Single Amino-Acid Variations by a Variation-Associated Database Search Strategy. Journal of Proteome Research 2014, 13, 241-248. (96) Deutsch, E. W.; Sun, Z.; Campbell, D.; Kusebauch, U.; Chu, C. S.; Mendoza, L.; Shteynberg, D.; Omenn, G. S.; Moritz, R. L. The State of the Human Proteome in 2014/2015 as viewed through PeptideAtlas: enhancing accuracy and coverage through the AtlasProphet. J Proteome Res 2015. (97) Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat Meth 2014, 11, 1114-1125. (98) Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356-363. (99) Picotti, P.; Rinner, O.; Stallmach, R.; Dautel, F.; Farrah, T.; Domon, B.; Wenschuh, H.; Aebersold, R. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 2010, 7, 43-46. (100) Ezkurdia, I.; Juan, D.; Rodriguez, J. M.; Frankish, A.; Diekhans, M.; Harrow, J.; Vazquez, J.; Valencia, A.; Tress, M. L. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Human molecular genetics 2014, 23, 5866-5878. (101) Landry, C. R.; Zhong, X.; Nielly-Thibault, L.; Roucou, X. Found in translation: functions and evolution of a recently discovered alternative proteome. Current opinion in structural biology 2015, 32, 74-80. (102) Shishkova, E.; Hebert, Alexander S.; Coon, Joshua J. Now, More Than Ever, Proteomics Needs Better Chromatography. Cell Systems 2016, 3, 321-324. (103) Masters, J. R. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2002, 2, 315-319. (104) Anjo, S. I.; Santa, C.; Manadas, B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics 2017, 17. (105) Ting, Y. S.; Egertson, J. D.; Payne, S. H.; Kim, S.; MacLean, B.; Käll, L.; Aebersold, R.; Smith, R. D.; Noble, W. S.; MacCoss, M. J. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data. Molecular & Cellular Proteomics 2015, 14, 2301-2307. (106) Gillet, L. C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 2012, 11, O111 016717. (107) Zi, J.; Zhang, S.; Zhou, R.; Zhou, B.; Xu, S.; Hou, G.; Tan, F.; Wen, B.; Wang, Q.; Lin, L.; Liu, S. Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics. Analytical Chemistry 2014, 86, 7242-7246. (108) Schubert, O. T.; Gillet, L. C.; Collins, B. C.; Navarro, P.; Rosenberger, G.; Wolski, W. E.; Lam, H.; Amodei, D.; Mallick, P.; MacLean, B.; Aebersold, R. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nature protocols 2015, 10, 426-441. (109) Escher, C.; Reiter, L.; MacLean, B.; Ossola, R.; Herzog, F.; Chilton, J.; MacCoss, M. J.; Rinner, O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012, 12, 1111-1121. (110) Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; Stein, S. E.; Aebersold, R. Building consensus spectral libraries for peptide identification in proteomics. Nat Meth 2008, 5, 873-875. (111) Frewen, B. E.; Merrihew, G. E.; Wu, C. C.; Noble, W. S.; MacCoss, M. J. Analysis of Peptide MS/MS Spectra from Large-Scale Proteomics Experiments Using Spectrum Libraries. Analytical Chemistry 2006, 78, 5678-5684. (112) Craig, R.; Cortens, J. C.; Fenyo, D.; Beavis, R. C. Using Annotated Peptide Mass Spectrum Libraries for Protein Identification. Journal of Proteome Research 2006, 5, 1843-1849. (113) Rost, H. L.; Rosenberger, G.; Navarro, P.; Gillet, L.; Miladinovic, S. M.; Schubert, O. T.; Wolski, W.; Collins, B. C.; Malmstrom, J.; Malmstrom, L.; Aebersold, R. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotech 2014, 32, 219-223. (114) Navarro, P.; Kuharev, J.; Gillet, L. C.; Bernhardt, O. M.; MacLean, B.; Rost, H. L.; Tate, S. A.; Tsou, C.-C.; Reiter, L.; Distler, U.; Rosenberger, G.; Perez-Riverol, Y.; Nesvizhskii, A. I.; Aebersold, R.; Tenzer, S. A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotech 2016, 34, 1130-1136. (115) Holman, S. W.; McLean, L.; Eyers, C. E. RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. J Proteome Res 2016, 15, 1090-1102. (116) Reiter, L.; Rinner, O.; Picotti, P.; Huttenhain, R.; Beck, M.; Brusniak, M.-Y.; Hengartner, M. O.; Aebersold, R. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Meth 2011, 8, 430-435. (117) Cox, J.; Hein, M. Y.; Luber, C. A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics : MCP 2014, 13, 2513-2526. (118) Liu, Y.; Hüttenhain, R.; Surinova, S.; Gillet, L. C. J.; Mouritsen, J.; Brunner, R.; Navarro, P.; Aebersold, R. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 2013, 13, 1247-1256. (119) Haverland, N. A.; Fox, H. S.; Ciborowski, P. Quantitative Proteomics by SWATH-MS Reveals Altered Expression of Nucleic Acid Binding and Regulatory Proteins in HIV-1-Infected Macrophages. Journal of Proteome Research 2014, 13, 2109-2119. (120) Collins, B. C.; Gillet, L. C.; Rosenberger, G.; Rost, H. L.; Vichalkovski, A.; Gstaiger, M.; Aebersold, R. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Meth 2013, 10, 1246-1253. (121) Zhang, Y.; Bilbao, A.; Bruderer, T.; Luban, J.; Strambio-De-Castillia, C.; Lisacek, F.; Hopfgartner, G.; Varesio, E. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. J Proteome Res 2015, 14, 4359-4371. (122) Gao, Y.; Wang, X.; Sang, Z.; Li, Z.; Liu, F.; Mao, J.; Yan, D.; Zhao, Y.; Wang, H.; Li, P.; Ying, X.; Zhang, X.; He, K.; Wang, H. Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming in hepatocellular carcinoma tissues. Sci Rep 2017, 7, 45913. (123) Egertson, J. D.; Kuehn, A.; Merrihew, G. E.; Bateman, N. W.; MacLean, B. X.; Ting, Y. S.; Canterbury, J. D.; Marsh, D. M.; Kellmann, M.; Zabrouskov, V.; Wu, C. C.; MacCoss, M. J. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 2013, 10, 744-746. (124) Egertson, J. D.; MacLean, B.; Johnson, R.; Xuan, Y.; MacCoss, M. J. Multiplexed peptide analysis using data-independent acquisition and Skyline. Nat. Protocols 2015, 10, 887-903. (125) Prakash, A.; Peterman, S.; Ahmad, S.; Sarracino, D.; Frewen, B.; Vogelsang, M.; Byram, G.; Krastins, B.; Vadali, G.; Lopez, M. Hybrid Data Acquisition and Processing Strategies with Increased Throughput and Selectivity: pSMART Analysis for Global Qualitative and Quantitative Analysis. Journal of Proteome Research 2014, 13, 5415-5430. (126) Pan, K.-T.; Chen, C.-C.; Urlaub, H.; Khoo, K.-H. Adapting Data-Independent Acquisition for Mass Spectrometry-Based Protein Site-Specific N-Glycosylation Analysis. Analytical Chemistry 2017, 89, 4532-4539. (127) Tsou, C.-C.; Tsai, C.-F.; Teo, G. C.; Chen, Y.-J.; Nesvizhskii, A. I. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 2016, 16, 2257-2271. (128) Parker, S. J.; Venkatraman, V.; Van Eyk, J. E. Effect of peptide assay library size and composition in targeted data-independent acquisition-MS analyses. Proteomics 2016, 16, 2221-2237. (129) Rosenberger, G.; Koh, C. C.; Guo, T.; Röst, H. L.; Kouvonen, P.; Collins, B. C.; Heusel, M.; Liu, Y.; Caron, E.; Vichalkovski, A.; Faini, M.; Schubert, O. T.; Faridi, P.; Ebhardt, H. A.; Matondo, M.; Lam, H.; Bader, S. L.; Campbell, D. S.; Deutsch, E. W.; Moritz, R. L.; Tate, S.; Aebersold, R. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data 2014, 1, 140031. (130) Shteynberg, D.; Nesvizhskii, A. I.; Moritz, R. L.; Deutsch, E. W. Combining Results of Multiple Search Engines in Proteomics. Molecular & Cellular Proteomics 2013, 12, 2383-2393. (131) Audain, E.; Uszkoreit, J.; Sachsenberg, T.; Pfeuffer, J.; Liang, X.; Hermjakob, H.; Sanchez, A.; Eisenacher, M.; Reinert, K.; Tabb, D. L.; Kohlbacher, O.; Perez-Riverol, Y. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Journal of Proteomics 2017, 150, 170-182. (132) Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Research 2006, 34, D655-D658. (133) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P.-A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos, A.; Chalkley, R. J.; Kraus, H.-J.; Albar, J. P.; Martinez-Bartolomé, S.; Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H. ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination. Nature biotechnology 2014, 32, 223-226. (134) Schubert, Olga T.; Ludwig, C.; Kogadeeva, M.; Zimmermann, M.; Rosenberger, G.; Gengenbacher, M.; Gillet, Ludovic C.; Collins, Ben C.; Röst, Hannes L.; Kaufmann, Stefan H. E.; Sauer, U.; Aebersold, R. Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host & Microbe 2015, 18, 96-108. (135) Jedrychowski, M. P.; Huttlin, E. L.; Haas, W.; Sowa, M. E.; Rad, R.; Gygi, S. P. Evaluation of HCD- and CID-type Fragmentation Within Their Respective Detection Platforms For Murine Phosphoproteomics. Molecular & Cellular Proteomics : MCP 2011, 10, M111.009910. (136) Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature 2001, 411. (137) Cohen, P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends in Biochemical Sciences 2000, 25, 596-601. (138) Engholm-Keller, K.; Larsen, M. R. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013, 13. (139) Riley, N. M.; Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Analytical Chemistry 2016, 88, 74-94. (140) Reinders, J.; Sickmann, A. State-of-the-art in phosphoproteomics. Proteomics 2005, 5, 4052-4061. (141) Thingholm, T. E.; Jensen, O. N.; Larsen, M. R. Analytical strategies for phosphoproteomics. Proteomics 2009, 9, 1451-1468. (142) Yang, C.; Zhong, X.; Li, L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis 2014, 35, 3418-3429. (143) Pinkse, M. W. H.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. R. Selective Isolation at the Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-MS/MS and Titanium Oxide Precolumns. Analytical Chemistry 2004, 76, 3935-3943. (144) Leitner, A. Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem 2010, 29. (145) Kweon, H. K.; Håkansson, K. Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Analytical Chemistry 2006, 78, 1743-1749. (146) Tsai, C.-F.; Wang, Y.-T.; Chen, Y.-R.; Lai, C.-Y.; Lin, P.-Y.; Pan, K.-T.; Chen, J.-Y.; Khoo, K.-H.; Chen, Y.-J. Immobilized Metal Affinity Chromatography Revisited: pH/Acid Control toward High Selectivity in Phosphoproteomics. Journal of Proteome Research 2008, 7, 4058-4069. (147) Tsai, C.-F.; Hsu, C.-C.; Hung, J.-N.; Wang, Y.-T.; Choong, W.-K.; Zeng, M.-Y.; Lin, P.-Y.; Hong, R.-W.; Sung, T.-Y.; Chen, Y.-J. Sequential Phosphoproteomic Enrichment through Complementary Metal-Directed Immobilized Metal Ion Affinity Chromatography. Analytical Chemistry 2014, 86, 685-693. (148) Lai, A. C.-Y.; Tsai, C.-F.; Hsu, C.-C.; Sun, Y.-N.; Chen, Y.-J. Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Communications in Mass Spectrometry 2012, 26, 2186-2194. (149) Sharma, K.; D'Souza, R. C.; Tyanova, S.; Schaab, C.; Wisniewski, J. R.; Cox, J.; Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 2014, 8, 1583-1594. (150) Humphrey, Sean J.; Yang, G.; Yang, P.; Fazakerley, Daniel J.; Stöckli, J.; Yang, Jean Y.; James, David E. Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism 2013, 17, 1009-1020. (151) Rigbolt, K. T. G.; Prokhorova, T. A.; Akimov, V.; Henningsen, J.; Johansen, P. T.; Kratchmarova, I.; Kassem, M.; Mann, M.; Olsen, J. V.; Blagoev, B. System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation. Science Signaling 2011, 4, rs3. (152) Lundby, A.; Secher, A.; Lage, K.; Nordsborg, N. B.; Dmytriyev, A.; Lundby, C.; Olsen, J. V. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. 2012, 3, 876. (153) Huttlin, E. L.; Jedrychowski, M. P.; Elias, J. E.; Goswami, T.; Rad, R.; Beausoleil, S. A.; Villén, J.; Haas, W.; Sowa, M. E.; Gygi, S. P. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. Cell 2010, 143, 1174-1189.
|