帳號:guest(3.137.218.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林芝宇
作者(外文):Lin, Chih-Yu
論文名稱(中文):功能化中孔洞二氧化矽奈米顆粒 之設計、合成、鑑定與生醫應用
論文名稱(外文):Design, Synthesis and Characterization of Functionalized Mesoporous Silica Nanospheres for Biomedical Applications
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):何佳安
陳平
吳立真
洪嘉呈
口試委員(外文):Ho, Annie Ja-An
Cheng, Richard Ping
Wu, Li-Chen
Horng, Jia-Cherng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023527
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:148
中文關鍵詞:中孔洞二氧化矽奈米顆粒生醫應用奈米藥物多功能奈米複合材料
外文關鍵詞:Mesoporous silica nanoparticlesBiomedical applicationNanomedicineMultifunctional nanocomposite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
奈米藥物利用奈米科技改善治療成效,而中孔洞二氧化矽奈米顆粒(MSNs)為一極具潛力且備受矚目之發展中材料。本論文涵蓋功能化MSNs之設計於藥物輸送、造影與合併治療與診斷之生醫應用,以及血清蛋白與MSNs交互作用之研究。首先,我們合成表面帶有氟碳化合物之MSNs,並證明其在不同超音波參數設定下可分別應用於顯影與治療,同時探討研究材料表面性質對超音波響應之影響與機制。針對結合顯影與治療,我們設計之FePt 奈米顆粒與中空MSNs複合材料具良好生物相容性與降解性,可用於核磁造影與近紅外光熱治療,並增加癌細胞對孔洞中攜帶藥物之敏感度。
接著,我們附載Pt 氧化物(PtOx)於中空MSNs以研究Pt於生理條件下之釋放動力學以及PtOx表面之化學環境變化。結果顯示PtOx將於生理條件下逐漸釋放具毒殺癌細胞之Pt物種,可視為有潛力之新形態Pt藥物,但其治療效率將受血清蛋白吸附影響。最後,我們有系統地研究血清蛋白於一系列不同性質之MSNs之吸附行為,結果顯示吸附蛋白質總量與相對成份對血清濃度十分敏感,而表面官能基之影響僅能在相對低濃度血清觀察到,中孔結構之影響則幾可忽略。另一方面,MSNs溶解過程中形貌之變化也與血清濃度高度相關,詳細機制研究雖仍在進行中,但此現象之發現已為相關領域帶來重要新訊息。
Nanomedicine utilizes nanotechnology to provide better treatments and improve the quality of patients’ lives. Among the in progressing materials, mesoporous silica nanoparticles (MSNs) have shown great promise and are believed to be soon brought from bench to bedside. This thesis encompasses designing functionalized MSNs for drug delivery, diagnosis, theranostic, and the interplay between serum proteins and MSNs for closing knowledge gap between in vitro and in vivo conditions. Firstly, fluorocarbon functionalized MSNs were prepared and demonstrated as ultrasound (US) contrast agents, which could realize on-demand and longer-lasting imaging than clinical used MBs. Their potential uses for US-based therapy was also revealed under high-intensity focused US irradiation. Meanwhile, the mechanism and influences of textural and surface properties of MSNs on US responsiveness were also investigated. For theranostic application, a FePt NPs functionalized hollow MSNs was fabricated. The biocompatible and degradable composite could be used for MRI and NIR photothermal therapy, and the anticancer drug topotecan and photothermal effect exhibited significant synergistic effect. Next, Pt oxides (PtOx) on hollow MSNs was prepared to study the Pt releasing kinetics and changes in chemical state of the NPs for better understanding of the oxidation dissolution of the bioactive Pt species. The results unveiled dissolvable and toxic Pt releasable natures of PtOx and the potential influences from biomolecules in biological relevant media. Lastly, in attempt to provide implications for the in vivo behaviors of MSNs-based biomaterials, protein adsorption behaviors on a serial of MSNs in both in vitro and in vivo relevant conditions were investigated. The results showed that protein adsorption can be strongly affected by serum concentrations in terms of quantity and composition, whereas the surface functional group and textural property of MSNs play minor roles. In addition, it was also found that serum proteins significantly altered MSNs dissolution fashion.
Table of Content
Abstract I
Acknowledgement III
Abbreviation IV
Table of Content IX
List of Figures XIV
List of Tables XXI
Chapter 1 General Introduction 1
1.1 Nanomedicine 1
1.1.1 Brief overview 1
1.1.2 Long-established materials 2
1.1.3 In progressing silica materials 4
1.1.4 Envisagement 5
1.2 Mesoporous silica materials 6
1.2.1 Historical overview 6
1.2.2 Synthesis and mechanism 8
1.2.3 Nanonization 11
1.2.4 Structural diversity 12
1.2.5 Surface modification 13
1.2.6 Inclusion chemistry 15
1.3 Biomedical applications of functionalized MSNs 17
1.3.1 Drug delivery system 17
1.3.2 Multipurpose theranostic agents 20
1.3.3 Challenges and perspectives 21
1.4 Motivation and scope of the thesis 23
Chapter 2 Preparation of Superhydrophobic Silica Nano-particles for Ultrasound-based Biomedical Applications 26
2.1 Introduction 26
2.2 Experimental section 29
2.2.1 Chemicals 29
2.2.2 Particle synthesis and functionalization 29
2.2.3 Characterization 31
2.2.4 Ultrasound responsiveness assessment 32
2.2.5 High-speed photography 34
2.2.6 Theoretical simulation 34
2.3 Results and discussion 35
2.3.1 Characterization of particles for ultrasound imaging 35
2.3.2 Contrast efficiency 37
2.3.3 Concentration dependency and stability 38
2.3.4 Surface and textural properties on ultrasound responsiveness 39
2.3.5 Visualizing with high-speed photography 42
2.3.6 Theoretical simulation 43
2.4 Conclusions 44
Chapter 3 Hollow Mesoporous Silica Nanosphere-supported FePt Nanoparticles for Potential Theranostic Applications 45
3.1 Introduction 45
3.2 Experimental section 47
3.2.1 Materials and characterization 47
3.2.2 Sample preparations 48
3.2.3 Photothermal properties of the metal-containing samples 49
3.2.4 Metal degradation of the metal-containing samples 49
3.2.5 Cytotoxicity and in vitro photothermal efficacy 50
3.2.6 TPT loading and in vitro release 50
3.2.7 In vitro evaluation of synergistic chemo-/thermotherapy 51
3.3 Results and discussion 51
3.3.1 Preparation and characterization 51
3.3.2 Magnetic and photophysical properties 54
3.3.3 Metal degradation in buffered solutions 59
3.3.4 In vitro evaluation of photothermal efficiency 63
3.3.5 In vitro evaluation of TPT releasing and synergistic chemo/thermotherapy 65
3.5 Conclusions 67
Chapter 4 Study on the Dissolution of Hollow Mesoporous Silica Nanosphere-Supported Nanosized Platinum Oxide in Biorelevant Media for Evaluating its Potential as Chemotherapeutics 68
4.1 Introduction 68
4.2 Experimental section 71
4.2.1 Chemical and reagents 71
4.2.2 Preparation of PtOx@MMT-2 71
4.2.3 Materials characterizations 71
4.2.4 Dissolution studies 72
4.2.5 H2O2 decomposition tests 72
4.2.6 Studies on cytotoxicity and cellular uptake of PtOx@MMT-2 73
4.3 Results and discussion 74
4.3.1 Preparation and characterization of PtOx@MMT-2 74
4.3.2 PtOx@MMT-2 dissolution in biological relevant media 77
4.3.3 Changes in Pt chemical states during dissolution 82
4.3.4 Catalase-like activity 85
4.3.5 Correlation between cytotoxicity and dissolution. 86
4.4 Conclusions 88
Chapter 5 Study of Serum Protein Adsorption on Mesoporous Silica Nanoparticles 89
5.1 Introduction 89
5.2 Experimental section 92
5.2.1 Materials and characterization 92
5.2.2 Particle synthesis 93
5.2.3 Particle functionalization 94
5.2.4 Protein adsorption and complex characterization 95
5.2.5 SDS-PAGE 95
5.2.6 Cell culture and cell viability assay 96
5.3 Results and discussion 96
5.3.1 Particle characterization 96
5.3.2 Complex analysis 100
5.3.3 Analyses of the protein corona 103
5.3.3.1 Total protein quantification 103
5.3.2.2 Relative protein compositions 108
5.3.4 Influences of protein adsorption on MSNs 112
5.3.4.1 Textural properties 112
5.3.4.2 Cytotoxicity 117
5.4 Conclusions 118
Chapter 6 Conclusions and perspective 120
Chapter 7 References 122
List of Publications 147
1. Maeda, H., Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Del. Rev. 2015, 91, 3-6.
2. Anselmo, A. C.; Mitragotri, S., Nanoparticles in the clinic. Bioeng. Trans. Med. 2016, 1 (1), 10-29.
3. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R., Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33 (10), 2373-87.
4. Chen, F.; Ehlerding, E. B.; Cai, W., Theranostic nanoparticles. J. Nucl. Med. 2014, 55 (12), 1919-1922.
5. Ahmed, N.; Fessi, H.; Elaissari, A., Theranostic applications of nanoparticles in cancer. Drug Discov. Today 2012, 17 (17), 928-934.
6. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K., Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8 (1), 102.
7. Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A., Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149-173.
8. Junghanns, J.-U. A. H.; Müller, R. H., Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine 2008, 3 (3), 295-309.
9. MagForce AG, T. N. C. Nanotherm® therapy information for the treatment of brain tumors. https://www.magforce.com/en/patienten/beschreibung-der-therapie.html.
10. Pilot study of Aurolase(TM) therapy in refractory and/or recurrent tumors of the head and neck. https://ClinicalTrials.gov/show/NCT00848042.
11. Calderón-Jiménez, B.; Johnson, M. E.; Montoro Bustos, A. R.; Murphy, K. E.; Winchester, M. R.; Vega Baudrit, J. R., Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5 (6).
12. Tang, L.; Cheng, J., Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8 (3), 290-312.
13. Tsuneo, Y.; Toshio, S.; Kazuyuki, K.; Chuzo, K., The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63 (4), 988-992.
14. Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc., Chem. Commun. 1993, (8), 680-682.
15. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843.
16. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L., Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem. Mater. 1994, 6 (12), 2317-2326.
17. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45 (20), 3216-3251.
18. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H., Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11 (7), 579-585.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2, 1976, 72 (0), 1525-1568.
20. K. Holmberg, B. J., B. Kronberg and B. Lindman, Phase behaviour of concentrated surfactant systems. In Surfactants and polymers in aqueous solution, 2003; pp 67-95.
21. Davis, M. E.; Lobo, R. F., Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4 (4), 756-768.
22. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Molecular or supramolecular templating: Defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chem. Mater. 1994, 6 (10), 1816-1821.
23. Huo, Q.; Margolese, D. I.; Stucky, G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 1996, 8 (5), 1147-1160.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279 (5350), 548-52.
25. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38 (1‐2), 56-77.
26. Wan, Y.; Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107 (7), 2821-2860.
27. Taguchi, A.; Schüth, F., Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77 (1), 1-45.
28. Brinker, C. J.; Scherer, G. W., Hydrolysis and condensation ii: Silicates. In Sol-gel science, Brinker, C. J.; Scherer, G. W., Eds. Academic Press: San Diego, 1990; pp 96-233.
29. Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W., Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents. In Advanced catalysts and nanostructured materials, Moser, W. R., Ed. Academic Press: San Diego, 1996; pp 1-19.
30. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F., Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 1994, 6 (8), 1176-1191.
31. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, 317.
32. Grün, M.; Lauer, I.; Unger, K. K., The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997, 9 (3), 254-257.
33. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125 (15), 4451-4459.
34. Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24 (12), 1504-1534.
35. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42 (9), 3862-3875.
36. Croissant, J. G.; Fatieiev, Y.; Almalik, A.; Khashab, N. M., Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthcare Mater. 2018, 7 (4), 1700831.
37. Sayari, A.; Hamoudi, S., Periodic mesoporous silica-based organic−inorganic nanocomposite materials. Chem. Mater. 2001, 13 (10), 3151-3168.
38. Li, R.; Zhang, L.; Wang, P., Rational design of nanomaterials for water treatment. Nanoscale 2015, 7 (41), 17167-17194.
39. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Del. Rev. 2008, 60 (11), 1278-1288.
40. Sancenón, F.; Pascual, L.; Oroval, M.; Aznar, E.; Martínez-Máñez, R., Gated silica mesoporous materials in sensing applications. ChemistryOpen 2015, 4 (4), 418-437.
41. Chen, D.; Jiang, M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38 (6), 494-502.
42. Lin, Y.-S.; Wu, S.-H.; Tseng, C.-T.; Hung, Y.; Chang, C.; Mou, C.-Y., Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem. Commun. 2009, (24), 3542-3544.
43. Zhang, H.; Xu, H.; Wu, M.; Zhong, Y.; Wang, D.; Jiao, Z., A soft–hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J. Mater. Chem. B 2015, 3 (31), 6480-6489.
44. Qi, G.; Wang, Y.; Estevez, L.; Switzer, A. K.; Duan, X.; Yang, X.; Giannelis, E. P., Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 2010, 22 (9), 2693-2695.
45. Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N., A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3 (4), 1632-1639.
46. Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin, Y., Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angew. Chem. Int. Ed. 2008, 47 (31), 5806-5811.
47. Lai, N.; Lin, C.; Ku, P.; Chang, L.; Liao, K.; Lin, W.; Yang, C., Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Res. 2014, 7 (10), 1439-1448.
48. Qian, R.; Ding, L.; Ju, H., Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135 (36), 13282-5.
49. Burkett, S. L.; Sims, S. D.; Mann, S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 1996, (11), 1367-1368.
50. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A., Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867.
51. Croissant, J. G.; Cattoën, X.; Wong Chi Man, M.; Durand, J.-O.; Khashab, N. M., Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 2015, 7 (48), 20318-20334.
52. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T., Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44 (10), 893-902.
53. Davidson, M.; Ji, Y.; Leong, G. J.; Kovach, N. C.; Trewyn, B. G.; Richards, R. M., Hybrid mesoporous silica/noble-metal nanoparticle materials—synthesis and catalytic applications. ACS Appl. Nano Mater. 2018, 1 (9), 4386-4400.
54. Vallet-Regi, M.; Rámila, A.; del Real, R. P.; Pérez-Pariente, J., A new property of MCM-41:  Drug delivery system. Chem. Mater. 2001, 13 (2), 308-311.
55. Forman, H. J.; Zhang, H.; Rinna, A., Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009, 30 (1-2), 1-12.
56. Lee, C.-H.; Cheng, S.-H.; Huang, I.-P.; Souris, J. S.; Yang, C.-S.; Mou, C.-Y.; Lo, L.-W., Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 2010, 49 (44), 8214-8219.
57. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132 (5), 1500-1501.
58. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc. 2008, 130 (8), 2382-2383.
59. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z., Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135 (13), 5068-5073.
60. Moreira, A. F.; Dias, D. R.; Correia, I. J., Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous Mesoporous Mater. 2016, 236, 141-157.
61. Smith, A. M.; Mancini, M. C.; Nie, S., Second window for in vivo imaging. Nat. Nanotech. 2009, 4, 710.
62. Liu, J.; Bu, W.; Pan, L.; Shi, J., NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 2013, 125 (16), 4471-4475.
63. Knežević, N. Ž.; Ruiz-Hernández, E.; Hennink, W. E.; Vallet-Regí, M., Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013, 3 (25), 9584-9593.
64. Paris, J. L.; Cabañas, M. V.; Manzano, M.; Vallet-Regí, M., Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 2015, 9 (11), 11023-11033.
65. Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M., Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3 (8), 487-97.
66. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44 (17), 2546-54.
67. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2014, 26 (1), 435-451.
68. Yang, B.; Chen, Y.; Shi, J., Exogenous/endogenous-triggered mesoporous silica cancer nanomedicine. Adv. Healthcare Mater. 2018, 7 (20), 1800268.
69. Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; Yang, W., Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34 (12), 3150-3158.
70. Baeza, A.; Guisasola, E.; Ruiz-Hernández, E.; Vallet-Regí, M., Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 2012, 24 (3), 517-524.
71. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goodwin, A. P., Understanding acoustic cavitation initiation by porous nanoparticles: Toward nanoscale agents for ultrasound imaging and therapy. Chem. Mater. 2016, 28 (16), 5962-5972.
72. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 2013, 8, 772.
73. Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A., What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132 (16), 5761-5768.
74. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotech. 2013, 8, 137.
75. Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N., Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J. Control. Release 2016, 241, 144-163.
76. Stride, E.; Saffari, N., Microbubble ultrasound contrast agents: A review. Proc. Inst. Mech. Eng. H 2003, 217 (6), 429-447.
77. Borden, M. A.; Zhang, H.; Gillies, R. J.; Dayton, P. A.; Ferrara, K. W., A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 2008, 29 (5), 597-606.
78. Ferrara, K. W.; Borden, M. A.; Zhang, H., Lipid-shelled vehicles: Engineering for ultrasound molecular imaging and drug delivery. Acc. Chem. Res. 2009, 42 (7), 881-892.
79. Takegami, K.; Kaneko, Y.; Watanabe, T.; Maruyama, T.; Matsumoto, Y.; Nagawa, H., Erythrocytes, as well as microbubble contrast agents, are important factors in improving thermal and therapeutic effects of high-intensity focused ultrasound. Ultrasound Med. Biol. 2005, 31 (3), 385-390.
80. Hanajiri, K.; Maruyama, T.; Kaneko, Y.; Mitsui, H.; Watanabe, S.; Sata, M.; Nagai, R.; Kashima, T.; Shibahara, J.; Omata, M.; Matsumoto, Y., Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound. Hepatol. Res. 2006, 36 (4), 308-314.
81. Culp, W. C.; Flores, R.; Brown, A. T.; Lowery, J. D.; Roberson, P. K.; Hennings, L. J.; Woods, S. D.; Hatton, J. H.; Culp, B. C.; Skinner, R. D.; Borrelli, M. J., Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke 2011, 42 (8), 2280-2285.
82. Flores, R.; Hennings, L. J.; Lowery, J. D.; Brown, A. T.; Culp, W. C., Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest. Radiol. 2011, 46 (7), 419-424.
83. Wheatley, M. A.; Forsberg, F.; Dube, N.; Patel, M.; Oeffinger, B. E., Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med. Biol. 2006, 32 (1), 83-93.
84. Wang, Y.; Liu, G.; Hu, H.; Li, T. Y.; Johri, A. M.; Li, X.; Wang, J., Stable encapsulated air nanobubbles in water. Angew. Chem. Int. Ed. 2015, 54 (48), 14291-14294.
85. Huang, S.-L.; McPherson, D. D.; MacDonald, R. C., A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery. Ultrasound Med. Biol. 2008, 34 (8), 1272-1280.
86. Tian, J.; Yang, F.; Cui, H.; Zhou, Y.; Ruan, X.; Gu, N., A novel approach to making the gas-filled liposome real: Based on the interaction of lipid with free nanobubble within the solution. ACS Appl. Mater. Interfaces 2015, 7 (48), 26579-26584.
87. Medwin, H., Counting bubbles acoustically: A review. Ultrasonics 1977, 15 (1), 7-13.
88. GORCE, J.-M.; ARDITI, M.; SCHNEIDER, M., Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of sonovue™. Invest. Radiol. 2000, 35 (11), 661-671.
89. Tyrrell, J. W. G.; Attard, P., Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 2001, 87 (17), 176104.
90. Borkent, B. M.; Dammer, S. M.; Schönherr, H.; Vancso, G. J.; Lohse, D., Superstability of surface nanobubbles. Phys. Rev. Lett. 2007, 98 (20), 204502.
91. Belova, V.; Shchukin, D. G.; Gorin, D. A.; Kopyshev, A.; Möhwald, H., A new approach to nucleation of cavitation bubbles at chemically modified surfaces. Phys. Chem. Chem. Phys. 2011, 13 (17), 8015-8023.
92. Shchukin, D. G.; Skorb, E.; Belova, V.; Möhwald, H., Ultrasonic cavitation at solid surfaces. Adv. Mater. 2011, 23 (17), 1922-1934.
93. Belova, V.; Krasowska, M.; Wang, D.; Ralston, J.; Shchukin, D. G.; Möhwald, H., Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation. Chem. Sci. 2013, 4 (1), 248-256.
94. Kwan, J. J.; Graham, S.; Myers, R.; Carlisle, R.; Stride, E.; Coussios, C. C., Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys. Rev. E 2015, 92 (2), 023019.
95. Fernandez Rivas, D.; Prosperetti, A.; Zijlstra, A. G.; Lohse, D.; Gardeniers, H. J. G. E., Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew. Chem. Int. Ed. 2010, 49 (50), 9699-9701.
96. Stricker, L.; Dollet, B.; Rivas, D. F.; Lohse, D., Interacting bubble clouds and their sonochemical production. J. Acoust. Soc. Am. 2013, 134 (3), 1854-1862.
97. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goldscheitter, G. M.; Goodwin, A. P., Stable encapsulation of air in mesoporous silica nanoparticles: Fluorocarbon-free nanoscale ultrasound contrast agents. Adv. Healthcare Mater. 2016, 5 (11), 1290-1298.
98. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
99. Jin, Q.; Lin, C.-Y.; Chang, Y.-C.; Yang, C.-M.; Yeh, C.-K., Roles of textural and surface properties of nanoparticles in ultrasound-responsive systems. Langmuir 2018, 34 (4), 1256-1265.
100. Atchley, A. A.; Prosperetti, A., The crevice model of bubble nucleation. J. Acoust. Soc. Am. 1989, 86 (3), 1065-1084.
101. Borkent, B. M.; Gekle, S.; Prosperetti, A.; Lohse, D., Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 2009, 21 (10), 102003.
102. Jin, Q.; Lin, C.-Y.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yang, C.-M.; Yeh, C.-K., Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrason. Sonochem. 2017, 36, 262-269.
103. Cho, S.-H.; Kim, J.-Y.; Chun, J.-H.; Kim, J.-D., Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf. Physicochem. Eng. Aspects 2005, 269 (1), 28-34.
104. Chen, J. L.; Dhanaliwala, A. H.; Dixon, A. J.; Klibanov, A. L.; Hossack, J. A., Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Ultrasound Med. Biol. 2014, 40 (2), 400-409.
105. Dhanaliwala, A. H.; Chen, J. L.; Wang, S.; Hossack, J. A. J. M.; Nanofluidics, Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid. Nanofluid. 2013, 14 (3), 457-467.
106. Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y., The lowest surface free energy based on −CF3 alignment. Langmuir 1999, 15 (13), 4321-4323.
107. Gao, J.; Gu, H.; Xu, B., Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42 (8), 1097-1107.
108. Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22 (25), 2729-2742.
109. Lee, D.-E.; Koo, H.; Sun, I.-C.; Ryu, J. H.; Kim, K.; Kwon, I. C., Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41 (7), 2656-2672.
110. Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I., Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41 (7), 2590-2605.
111. Wang, K.; He, X.; Yang, X.; Shi, H., Functionalized silica nanoparticles: A platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 2013, 46 (7), 1367-1376.
112. Ling, D.; Lee, N.; Hyeon, T., Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48 (5), 1276-1285.
113. Sun, S., Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18 (4), 393-403.
114. Chou, S.-W.; Shau, Y.-H.; Wu, P.-C.; Yang, Y.-S.; Shieh, D.-B.; Chen, C.-C., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 2010, 132 (38), 13270-13278.
115. Chen, C.-L.; Kuo, L.-R.; Lee, S.-Y.; Hwu, Y.-K.; Chou, S.-W.; Chen, C.-C.; Chang, F.-H.; Lin, K.-H.; Tsai, D.-H.; Chen, Y.-Y., Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 2013, 34 (4), 1128-1134.
116. Seehra, M. S.; Singh, V.; Dutta, P.; Neeleshwar, S.; Chen, Y. Y.; Chen, C. L.; Chou, S. W.; Chen, C. C., Size-dependent magnetic parameters of fcc FePt nanoparticles: Applications to magnetic hyperthermia. J. Phys. D 2010, 43 (14), 145002.
117. Ho, D.; Sun, X.; Sun, S., Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44 (10), 875-882.
118. Lusic, H.; Grinstaff, M. W., X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113 (3), 1641-1666.
119. Green, L. A. W.; Thuy, T. T.; Mott, D. M.; Maenosono, S.; Kim Thanh, N. T., Multicore magnetic FePt nanoparticles: Controlled formation and properties. RSC Adv. 2014, 4 (3), 1039-1044.
120. Maenosono, S.; Suzuki, T.; Saita, S., Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 2008, 320 (9), L79-L83.
121. Chen, S.; Wang, L.; Duce, S. L.; Brown, S.; Lee, S.; Melzer, A.; Cuschieri, S. A.; André, P., Engineered biocompatible nanoparticles for in vivo imaging applications. J. Am. Chem. Soc. 2010, 132 (42), 15022-15029.
122. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44 (17), 2546-2554.
123. Maenosono, S.; Saita, S., Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans. Magn. 2006, 42 (6), 1638-1642.
124. Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: Second window for in vivo imaging. Nat. Nanotech. 2009, 4 (11), 710-711.
125. Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S., Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7 (6), 5330-5342.
126. Souza, C. G. S.; Beck, W., Jr.; Varanda, L. C., Multifunctional luminomagnetic FePt@Fe3O4/SiO2/Rhodamine B/SiO2 nanoparticles with high magnetic emanation for biomedical applications. J. Nanoparticle Res. 2013, 15 (4), 1-11.
127. Kostevšek, N.; Žužek Rožman, K.; Arshad, M. S.; Spreitzer, M.; Kobe, S.; Šturm, S., Multimodal hybrid FePt/SiO2/Au nanoparticles for nanomedical applications: Combining photothermal stimulation and manipulation with an external magnetic field. J. Phys. Chem. C 2015, 119 (28), 16374-16382.
128. Rosenholm, J. M.; Sahlgren, C.; Linden, M., Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2010, 2 (10), 1870-1883.
129. Wu, S.-H.; Hung, Y.; Mou, C.-Y., Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 2011, 47 (36), 9972-9985.
130. Cauda, V.; Schlossbauer, A.; Bein, T., Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater. 2010, 132 (1–2), 60-71.
131. He, Q.; Shi, J.; Zhu, M.; Chen, Y.; Chen, F., The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010, 131 (1–3), 314-320.
132. Lin, Y.-S.; Hurley, K. R.; Haynes, C. L., Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 2012, 3 (3), 364-374.
133. Yamada, H.; Urata, C.; Aoyama, Y.; Osada, S.; Yamauchi, Y.; Kuroda, K., Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem. Mater. 2012, 24 (8), 1462-1471.
134. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang, C.-M.; Ho, J.-a. A., Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: Improved water suspensibility and decreased nonspecific protein binding. ACS Nano 2010, 4 (8), 4371-4379.
135. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134 (13), 5722-5725.
136. Teng, I.-T.; Chang, Y.-J.; Wang, L.-S.; Lu, H.-Y.; Wu, L.-C.; Yang, C.-M.; Chiu, C.-C.; Yang, C.-H.; Hsu, S.-L.; Ho, J.-a. A., Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34 (30), 7462-7470.
137. Martinez-Carmona, M.; Baeza, A.; Rodriguez-Milla, M. A.; Garcia-Castro, J.; Vallet-Regi, M., Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. J. Mater. Chem. B 2015, 3 (28), 5746-5752.
138. Lu, F.; Wu, S.-H.; Hung, Y.; Mou, C.-Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5 (12), 1408-1413.
139. Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010, 6 (18), 1952-1967.
140. Kockrick, E.; Krawiec, P.; Schnelle, W.; Geiger, D.; Schappacher, F. M.; Pottgen, R.; Kaskel, S., Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 2007, 19 (19), 3021-+.
141. Gupta, G.; Patel, M. N.; Ferrer, D.; Heitsch, A. T.; Korgel, B. A.; Jose-Yacaman, M.; Johnston, K. P., Stable ordered FePt mesoporous silica catalysts with high loadings. Chem. Mater. 2008, 20 (15), 5005-5015.
142. Longmire, M.; Choyke, P. L.; Kobayashi, H., Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3 (5), 703-717.
143. Liu, J.; Yu, M.; Zhou, C.; Zheng, J., Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today 2013, 16 (12), 477-486.
144. Cabri, L. J.; Feather, C. E., Platinum-Iron alloys; a nomenclature based on a study of natural and synthetic alloys. Can. Mineral. 1975, 13 (2), 117-126.
145. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287 (5460), 1989-1992.
146. Keloglu, Y. P.; Fedorko, A. S., Vegard’s law for some binary and pseudobinary semiconductor systems. In Chemical bonds in solids, Sirota, A. N., Ed. Springer US: 1995; pp 113-117.
147. Liu, C.; Klemmer, T. J.; Shukla, N.; Wu, X.; Weller, D.; Tanase, M.; Laughlin, D., Oxidation of FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266 (1–2), 96-101.
148. Yang, C.-M.; Liu, P.-H.; Ho, Y.-F.; Chiu, C.-Y.; Chao, K.-J., Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 2003, 15 (1), 275-280.
149. Chen, P.-K.; Lai, N.-C.; Ho, C.-H.; Hu, Y.-W.; Lee, J.-F.; Yang, C.-M., New synthesis of MCM-48 nanospheres and facile replication to mesoporous platinum nanospheres as highly active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2013, 25 (21), 4269-4277.
150. Kevin, E.; Daren, L.; Narayan, P.; Vikas, N.; Zhiqiang, J.; Kanghua, C.; Liu, J. P., Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D 2005, 38 (14), 2306.
151. Medwal, R.; Sehdev, N.; Annapoorni, S., Order–disorder investigation of hard magnetic nanostructured FePt alloy. J. Phys. D 2012, 45 (5), 055001.
152. Jeyadevan, B.; Hobo, A.; Urakawa, K.; Chinnasamy, C. N.; Shinoda, K.; Tohji, K., Towards direct synthesis of fct-FePt nanoparticles by chemical route. J. Appl. Phys. 2003, 93 (10), 7574-7576.
153. Na, H. B.; Song, I. C.; Hyeon, T., Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21 (21), 2133-2148.
154. Wittenberg, N. J.; Haynes, C. L., Using nanoparticles to push the limits of detection. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009, 1 (2), 237-254.
155. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R., Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002, 20 (8), 816-20.
156. Larsen, B. A.; Haag, M. A.; Serkova, N. J.; Shroyer, K. R.; Stoldt, C. R., Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 2008, 19 (26), 265102.
157. Matsumoto, Y.; Jasanoff, A., T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn. Reson. Imaging 2008, 26 (7), 994-998.
158. Paquet, C.; de Haan, H. W.; Leek, D. M.; Lin, H. Y.; Xiang, B.; Tian, G.; Kell, A.; Simard, B., Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: A particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 2011, 5 (4), 3104-12.
159. Wang, C.; Cai, X.; Zhang, J.; Wang, X.; Wang, Y.; Ge, H.; Yan, W.; Huang, Q.; Xiao, J.; Zhang, Q.; Cheng, Y., Trifolium-like platinum nanoparticle-mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small 2015, 11 (17), 2080-6.
160. Chou, S.-W.; Liu, C.-L.; Liu, T.-M.; Shen, Y.-F.; Kuo, L.-C.; Wu, C.-H.; Hsieh, T.-Y.; Wu, P.-C.; Tsai, M.-R.; Yang, C.-C.; Chang, K.-Y.; Lu, M.-H.; Li, P.-C.; Chen, S.-P.; Wang, Y.-H.; Lu, C.-W.; Chen, Y.-A.; Huang, C.-C.; Wang, C.-R.; Hsiao, J.-K.; Li, M.-L.; Chou, P.-T., Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging. Biomaterials 2016, 85, 54-64.
161. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y., Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16 (14), 1805-1813.
162. He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71 (12), 125411.
163. Huang, X.; El-Sayed, M. A., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1 (1), 13-28.
164. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L., Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209 (2), 171-176.
165. Harmon, B. V.; Corder, A. M.; Collins, R. J.; Gobé, G. C.; Allen, J.; Allan, D. J.; Kerr, J. F. R., Cell death induced in a murine mastocytoma by 42–47 °C heating in vitro: Evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int. J. Radiat. Biol. 1990, 58 (5), 845-858.
166. Alkilany, A. M.; Murphy, C. J., Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanoparticle Res. 2010, 12 (7), 2313-2333.
167. Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G. S., Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 2009, 4 (8), 858-864.
168. Malvindi, M. A.; De Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G. C.; Athanassiou, A.; Cingolani, R.; Pompa, P. P., Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014, 9 (1), e85835.
169. Topalov, A. A.; Cherevko, S.; Zeradjanin, A. R.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J., Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 2014, 5 (2), 631-638.
170. Xu, C.; Yuan, Z.; Kohler, N.; Kim, J.; Chung, M. A.; Sun, S., FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J. Am. Chem. Soc. 2009, 131 (42), 15346-15351.
171. Slowing, I.; Trewyn, B. G.; Lin, V. S. Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 2006, 128 (46), 14792-14793.
172. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 2007, 40 (9), 846-853.
173. Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31 (3), 438-448.
174. George, S.; Xia, T.; Rallo, R.; Zhao, Y.; Ji, Z.; Lin, S.; Wang, X.; Zhang, H.; France, B.; Schoenfeld, D.; Damoiseaux, R.; Liu, R.; Lin, S.; Bradley, K. A.; Cohen, Y.; Nel, A. E., Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 2011, 5 (3), 1805-1817.
175. Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J., In vitro cytotoxicity of oxide nanoparticles:  Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006, 40 (14), 4374-4381.
176. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J., Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46 (3), 792-801.
177. Rosenholm, J. M.; Sahlgren, C.; Linden, M., Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets 2011, 12 (8), 1166-86.
178. Kusumoto, T.; Maehara, Y.; Baba, H.; Takahashi, I.; Kusumoto, H.; Ohno, S.; Sugimachi, K., Sequence dependence of the hyperthermic potentiation of carboplatin-induced cytotoxicity and intracellular platinum accumulation in HeLa cells. Br. J. Cancer 1993, 68 (2), 259-263.
179. Istomin, Y. P.; Zhavrid, E. A.; Alexandrova, E. N.; Sergeyeva, O. P.; Petrovich, S. V., Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp. Oncol. 2008, 30 (1), 56-9.
180. Quinto, C. A.; Mohindra, P.; Tong, S.; Bao, G., Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 2015, 7 (29), 12728-36.
181. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3 (10), 2919-2926.
182. Hermisson, M.; Weller, M., Hyperthermia enhanced chemosensitivity of human malignant glioma cells. Anticancer Res. 2000, 20 (3a), 1819-23.
183. Gao, J.; Liang, G.; Zhang, B.; Kuang, Y.; Zhang, X.; Xu, B., FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 2007, 129 (5), 1428-33.
184. Asharani, P. V.; Xinyi, N.; Hande, M. P.; Valiyaveettil, S., DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (Lond) 2010, 5 (1), 51-64.
185. Teow, Y.; Valiyaveettil, S., Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010, 2 (12), 2607-13.
186. Chien, C.-T.; Yan, J.-Y.; Chiu, W.-C.; Wu, T.-H.; Liu, C.-Y.; Lin, S.-Y., Caged Pt nanoclusters exhibiting corrodibility to exert tumor-inside activation for anticancer chemotherapeutics. Adv. Mater. 2013, 25 (36), 5067-73.
187. Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; Kim, D.-H.; Ling, D.; Hui, K. M.; Hyeon, T., pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci. 2016, 2 (11), 802-811.
188. Cheng, H.-J.; Wu, T.-H.; Chien, C.-T.; Tu, H.-W.; Cha, T.-S.; Lin, S.-Y., Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction. Small 2016, 12 (44), 6124-6133.
189. Zhang, L.; Laug, L.; Munchgesang, W.; Pippel, E.; Gosele, U.; Brandsch, M.; Knez, M., Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010, 10 (1), 219-23.
190. Wang, X.; Zhang, Y.; Li, T.; Tian, W.; Zhang, Q.; Cheng, Y., Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 2013, 29 (17), 5262-5270.
191. Liu, Y.; Wu, H.; Li, M.; Yin, J. J.; Nie, Z., pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014, 6 (20), 11904-10.
192. Liu, Y.; Wu, H.; Chong, Y.; Wamer, W. G.; Xia, Q.; Cai, L.; Nie, Z.; Fu, P. P.; Yin, J. J., Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 2015, 7 (35), 19709-17.
193. Moglianetti, M.; De Luca, E.; Pedone, D.; Marotta, R.; Catelani, T.; Sartori, B.; Amenitsch, H.; Retta, S. F.; Pompa, P. P., Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 2016, 8 (6), 3739-52.
194. P. J, S.; Mukherjee, A.; Chandrasekaran, N., DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesised silver and platinum nanoparticles. RSC Adv. 2016, 6 (33), 27775-27787.
195. Takara, S.; Masayo, S.; Reiko, H.; Ichizo, Y.; Toshihiro, K., Study of platinum dissolution mechanism using a highly sensitive electrochemical quartz crystal microbalance. Chem. Lett. 2011, 40 (4), 402-404.
196. Matsumoto, M.; Miyazaki, T.; Imai, H., Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J. Phys. Chem. C 2011, 115 (22), 11163-11169.
197. Gallagher, J. R.; Li, T.; Zhao, H.; Liu, J.; Lei, Y.; Zhang, X.; Ren, Y.; Elam, J. W.; Meyer, R. J.; Winans, R. E.; Miller, J. T., In situ diffraction of highly dispersed supported platinum nanoparticles. Catal. Sci. Technol. 2014, 4 (9), 3053-3063.
198. Banerjee, R.; Chen, D. A.; Karakalos, S.; Piedboeuf, M.-L. C.; Job, N.; Regalbuto, J. R., Ambient oxidation of ultrasmall platinum nanoparticles on microporous carbon catalyst supports. ACS Appl. Nano Mater. 2018, 1 (10), 5876-5884.
199. Wexselblatt, E.; Gibson, D., What do we know about the reduction of Pt(IV) pro-drugs? J. Inorg. Biochem. 2012, 117, 220-229.
200. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R., The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39 (35), 8113-8127.
201. Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y., Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem. Int. Ed. 2005, 44 (32), 5083-5087.
202. Fang, X.; Zhao, X.; Fang, W.; Chen, C.; Zheng, N., Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 2013, 5 (6), 2205-2218.
203. Lin, C.-Y.; Li, W.-P.; Huang, S.-P.; Yeh, C.-S.; Yang, C.-M., Hollow mesoporous silica nanosphere-supported FePt nanoparticles for potential theranostic applications. J. Mater. Chem. B 2017, 5 (36), 7598-7607.
204. Chen, Z.; Cui, Z.-M.; Niu, F.; Jiang, L.; Song, W.-G., Pd nanoparticles in silica hollow spheres with mesoporous walls: A nanoreactor with extremely high activity. Chem. Commun. 2010, 46 (35), 6524-6526.
205. Tian, M.; Long, Y.; Xu, D.; Wei, S.; Dong, Z., Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. J. Colloid Interface Sci. 2018, 521, 132-140.
206. Ruch, R. J.; Cheng, S. J.; Klaunig, J. E., Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis 1989, 10 (6), 1003-8.
207. Oudenhuijzen, M. K.; Kooyman, P. J.; Tappel, B.; van Bokhoven, J. A.; Koningsberger, D. C., Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3−)2]: A combination of HRTEM, mass spectrometry, and quick EXAFS. J. Catal. 2002, 205 (1), 135-146.
208. Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1 (17), 4059-4063.
209. Bernardi, F.; Alves, M. C. M.; Morais, J., Monitoring of Pt nanoparticle formation by H2 reduction of PtO2: An in situ dispersive X-ray absorption spectroscopy study. J. Phys. Chem. C 2010, 114 (49), 21434-21438.
210. Allen, G. C.; Tucker, P. M.; Capon, A.; Parsons, R., X-ray photoelectron spectroscopy of adsorbed oxygen and carbonaceous species on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1974, 50 (3), 335-343.
211. Şen, F.; Gökaǧaç, G., Different sized platinum nanoparticles supported on carbon:  An XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 2007, 111 (15), 5715-5720.
212. Shrestha, B. R.; Tada, E.; Nishikata, A., Effect of chloride on platinum dissolution. Electrochimica Acta 2014, 143, 161-167.
213. Wang, Z.; Tada, E.; Nishikata, A., In situ analysis of chloride effect on platinum dissolution by a channel-flow multi-electrode system. J. Electrochem. Soc. 2014, 161 (9), F845-F849.
214. Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67 (3), 217-23.
215. Almaroai, Y. A.; Usman, A. R.; Ahmad, M.; Kim, K. R.; Vithanage, M.; Ok, Y. S., Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environ. Technol. 2013, 34 (5-8), 747-55.
216. Aksu, S.; Doyle, F. M., Electrochemistry of copper in aqueous glycine solutions. J. Electrochem. Soc. 2001, 148 (1), B51-B57.
217. Gondikas, A. P.; Morris, A.; Reinsch, B. C.; Marinakos, S. M.; Lowry, G. V.; Hsu-Kim, H., Cysteine-induced modifications of zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 2012, 46 (13), 7037-7045.
218. Azaroual, M.; Romand, B.; Freyssinet, P.; Disnar, J.-R., Solubility of platinum in aqueous solutions at 25 °C and pHs 4 to 10 under oxidizing conditions. Geochim. Cosmochim. Acta 2001, 65, 4453-4466.
219. Hall, M. D.; Foran, G. J.; Zhang, M.; Beale, P. J.; Hambley, T. W., XANES determination of the platinum oxidation state distribution in cancer cells treated with platinum(IV) anticancer agents. J. Am. Chem. Soc. 2003, 125 (25), 7524-7525.
220. Okamoto, H.; Horii, K.; Fujisawa, A.; Yamamoto, Y., Oxidative deterioration of platinum nanoparticle and its prevention by palladium. Exp. Dermatol. 2012, 21 (s1), 5-7.
221. Lynch, I.; Dawson, K. A., Protein-nanoparticle interactions. Nano Today 2008, 3 (1), 40-47.
222. Taylor, K. M. L.; Rieter, W. J.; Lin, W., Manganese-based nanoscale metal−organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130 (44), 14358-14359.
223. Vestal, C. R.; Zhang, Z. J., Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003, 3 (12), 1739-1743.
224. Yoon, T.-J.; Yu, K. N.; Kim, E.; Kim, J. S.; Kim, B. G.; Yun, S.-H.; Sohn, B.-H.; Cho, M.-H.; Lee, J.-K.; Park, S. B., Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2006, 2 (2), 209-215.
225. Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R., Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2010, 26 (14), 11631-11641.
226. Liu, J.-N.; Bu, W.-B.; Shi, J.-L., Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics. Acc. Chem. Res. 2015, 48 (7), 1797-1805.
227. A first in human study using 89Zr-cRDGY ultrasmall silica particle tracers for malignant brain tumors. https://ClinicalTrials.gov/show/NCT03465618.
228. Targeted silica nanoparticles for real-time image-guided intraoperative mapping of nodal metastases. https://ClinicalTrials.gov/show/NCT02106598.
229. Castillo, R. R.; Colilla, M.; Vallet-Regí, M., Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin. Drug Deliv. 2017, 14 (2), 229-243.
230. He, Q.; Shi, J., Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21 (16), 5845-5855.
231. Mamaeva, V.; Sahlgren, C.; Lindén, M., Mesoporous silica nanoparticles in medicine—recent advances. Adv. Drug Del. Rev. 2013, 65 (5), 689-702.
232. Vallet-Regí, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46 (40), 7548-7558.
233. Blanco, E.; Shen, H.; Ferrari, M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941.
234. Beck, M.; Mandal, T.; Buske, C.; Lindén, M., Serum protein adsorption enhances active leukemia stem cell targeting of mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2017, 9 (22), 18566-18574.
235. Shahabi, S.; Döscher, S.; Bollhorst, T.; Treccani, L.; Maas, M.; Dringen, R.; Rezwan, K., Enhancing cellular uptake and doxorubicin delivery of mesoporous silica nanoparticles via surface functionalization: Effects of serum. ACS Appl. Mater. Interfaces 2015, 7 (48), 26880-26891.
236. Lesniak, A.; Fenaroli, F.; Monopoli, M. P.; Åberg, C.; Dawson, K. A.; Salvati, A., Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6 (7), 5845-5857.
237. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E., Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Del. Rev. 2009, 61 (6), 428-437.
238. Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; Mailänder, V., Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16 (4), 1311-1321.
239. Walkey, C. D.; Chan, W. C. W., Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41 (7), 2780-2799.
240. Wolfram, J.; Yang, Y.; Shen, J.; Moten, A.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y., The nano-plasma interface: Implications of the protein corona. Colloids Surf. B. Biointerfaces 2014, 124, 17-24.
241. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012, 7, 5577-91.
242. Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N. E.; Salvatore, F.; Tasciotti, E., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2015, 11 (1), 81-100.
243. Shahabi, S.; Treccani, L.; Dringen, R.; Rezwan, K., Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: Effects of serum. ACS Appl. Mater. Interfaces 2015, 7 (25), 13821-13833.
244. Catalano, F.; Alberto, G.; Ivanchenko, P.; Dovbeshko, G.; Martra, G., Effect of silica surface properties on the formation of multilayer or submonolayer protein hard corona: Albumin adsorption on pyrolytic and colloidal SiO2 nanoparticles. J. Phys. Chem. C 2015, 119 (47), 26493-26505.
245. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K. A., Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133 (8), 2525-2534.
246. Ghavami, M.; Saffar, S.; Abd Emamy, B.; Peirovi, A.; Shokrgozar, M. A.; Serpooshan, V.; Mahmoudi, M., Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv. 2013, 3 (4), 1119-1126.
247. Clemments, A. M.; Botella, P.; Landry, C. C., Protein adsorption from biofluids on silica nanoparticles: Corona analysis as a function of particle diameter and porosity. ACS Appl. Mater. Interfaces 2015, 7 (39), 21682-21689.
248. Saikia, J.; Yazdimamaghani, M.; Hadipour Moghaddam, S. P.; Ghandehari, H., Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl. Mater. Interfaces 2016, 8 (50), 34820-34832.
249. Clemments, A. M.; Muniesa, C.; Landry, C. C.; Botella, P., Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Adv. 2014, 4 (55), 29134-29138.
250. Zhao, Y.; Sun, X.; Zhang, G.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y., Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano 2011, 5 (2), 1366-1375.
251. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chem. Mater. 2016, 28 (12), 4243-4258.
252. Kang, D.; Gho, Y. S.; Suh, M.; Kang, C., Highly sensitive and fast protein detection with Coomassie Brilliant Blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull. Korean Chem. Soc. 2002, 23 (11), 1511-1512.
253. Lee, Y. K.; Choi, E.-J.; Webster, T. J.; Kim, S.-H.; Khang, D., Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomedicine 2015, 10, 97-113.
254. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K., The evolution of the protein corona around nanoparticles: A test study. ACS Nano 2011, 5 (9), 7503-7509.
255. Lord, M. S.; Foss, M.; Besenbacher, F., Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5 (1), 66-78.
256. Rechendorff, K.; Hovgaard, M. B.; Foss, M.; Zhdanov, V. P.; Besenbacher, F., Enhancement of protein adsorption induced by surface roughness. Langmuir 2006, 22 (26), 10885-10888.
257. Scopelliti, P. E.; Borgonovo, A.; Indrieri, M.; Giorgetti, L.; Bongiorno, G.; Carbone, R.; Podestà, A.; Milani, P., The effect of surface nanometre-scale morphology on protein adsorption. PLoS One 2010, 5 (7), e11862.
258. Wells, M. A.; Abid, A.; Kennedy, I. M.; Barakat, A. I., Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology 2012, 6 (8), 837-846.
259. Gebauer, J. S.; Malissek, M.; Simon, S.; Knauer, S. K.; Maskos, M.; Stauber, R. H.; Peukert, W.; Treuel, L., Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 2012, 28 (25), 9673-9679.
260. Pochert, A.; Vernikouskaya, I.; Pascher, F.; Rasche, V.; Lindén, M., Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J. Colloid Interface Sci. 2017, 488, 1-9.
261. Gebregeorgis, A.; Bhan, C.; Wilson, O.; Raghavan, D., Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: Morphological, compositional, and interaction studies. J. Colloid Interface Sci. 2013, 389 (1), 31-41.
262. Lavalette, D.; Tétreau, C.; Tourbez, M.; Blouquit, Y., Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys. J. 1999, 76 (5), 2744-2751.
263. Wang, Y.; Li, C.; Pielak, G. J., Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132 (27), 9392-9397.
264. Treuheit, M. J.; Kosky, A. A.; Brems, D. N., Inverse relationship of protein concentration and aggregation. Pharm. Res. 2002, 19 (4), 511-516.
265. Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L. H.; Mahmoudi, M., Nanoparticle and protein corona. In Protein-nanoparticle interactions: The bio-nano interface, Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L. H.; Mahmoudi, M., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 21-44.
266. Gessner, A.; Waicz, R.; Lieske, A.; Paulke, B. R.; Mäder, K.; Müller, R. H., Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. Int. J. Pharm. 2000, 196 (2), 245-249.
267. Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 2007, 104 (7), 2050.
268. Francis, G. A., High-density lipoproteins: Metabolism and protective roles against atherosclerosis. In Biochemistry of lipids, lipoproteins and membranes (sixth edition), Ridgway, N. D.; McLeod, R. S., Eds. Elsevier: Boston, 2016; pp 437-457.
269. Belton, D. J.; Patwardhan, S. V.; Annenkov, V. V.; Danilovtseva, E. N.; Perry, C. C., From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. 2008, 105 (16), 5963.
270. Coradin, T.; Livage, J., Aqueous silicates in biological sol–gel applications: New perspectives for old precursors. Acc. Chem. Res. 2007, 40 (9), 819-826.
271. Zane, A. C.; Michelet, C.; Roehrich, A.; Emani, P. S.; Drobny, G. P., Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity. Langmuir 2014, 30 (24), 7152-7161.
272. LoPresti, C.; Massignani, M.; Fernyhough, C.; Blanazs, A.; Ryan, A. J.; Madsen, J.; Warren, N. J.; Armes, S. P.; Lewis, A. L.; Chirasatitsin, S.; Engler, A. J.; Battaglia, G., Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation. ACS Nano 2011, 5 (3), 1775-1784.
273. Niu, Y.; Yu, M.; Hartono, S. B.; Yang, J.; Xu, H.; Zhang, H.; Zhang, J.; Zou, J.; Dexter, A.; Gu, W.; Yu, C., Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv. Mater. 2013, 25 (43), 6233-6237.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *