|
1. Maeda, H., Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Del. Rev. 2015, 91, 3-6. 2. Anselmo, A. C.; Mitragotri, S., Nanoparticles in the clinic. Bioeng. Trans. Med. 2016, 1 (1), 10-29. 3. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R., Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33 (10), 2373-87. 4. Chen, F.; Ehlerding, E. B.; Cai, W., Theranostic nanoparticles. J. Nucl. Med. 2014, 55 (12), 1919-1922. 5. Ahmed, N.; Fessi, H.; Elaissari, A., Theranostic applications of nanoparticles in cancer. Drug Discov. Today 2012, 17 (17), 928-934. 6. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K., Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8 (1), 102. 7. Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A., Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149-173. 8. Junghanns, J.-U. A. H.; Müller, R. H., Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine 2008, 3 (3), 295-309. 9. MagForce AG, T. N. C. Nanotherm® therapy information for the treatment of brain tumors. https://www.magforce.com/en/patienten/beschreibung-der-therapie.html. 10. Pilot study of Aurolase(TM) therapy in refractory and/or recurrent tumors of the head and neck. https://ClinicalTrials.gov/show/NCT00848042. 11. Calderón-Jiménez, B.; Johnson, M. E.; Montoro Bustos, A. R.; Murphy, K. E.; Winchester, M. R.; Vega Baudrit, J. R., Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5 (6). 12. Tang, L.; Cheng, J., Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8 (3), 290-312. 13. Tsuneo, Y.; Toshio, S.; Kazuyuki, K.; Chuzo, K., The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63 (4), 988-992. 14. Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc., Chem. Commun. 1993, (8), 680-682. 15. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843. 16. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L., Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem. Mater. 1994, 6 (12), 2317-2326. 17. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45 (20), 3216-3251. 18. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H., Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11 (7), 579-585. 19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2, 1976, 72 (0), 1525-1568. 20. K. Holmberg, B. J., B. Kronberg and B. Lindman, Phase behaviour of concentrated surfactant systems. In Surfactants and polymers in aqueous solution, 2003; pp 67-95. 21. Davis, M. E.; Lobo, R. F., Zeolite and molecular sieve synthesis. Chem. Mater. 1992, 4 (4), 756-768. 22. Beck, J. S.; Vartuli, J. C.; Kennedy, G. J.; Kresge, C. T.; Roth, W. J.; Schramm, S. E., Molecular or supramolecular templating: Defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chem. Mater. 1994, 6 (10), 1816-1821. 23. Huo, Q.; Margolese, D. I.; Stucky, G. D., Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 1996, 8 (5), 1147-1160. 24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279 (5350), 548-52. 25. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38 (1‐2), 56-77. 26. Wan, Y.; Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107 (7), 2821-2860. 27. Taguchi, A.; Schüth, F., Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 2005, 77 (1), 1-45. 28. Brinker, C. J.; Scherer, G. W., Hydrolysis and condensation ii: Silicates. In Sol-gel science, Brinker, C. J.; Scherer, G. W., Eds. Academic Press: San Diego, 1990; pp 96-233. 29. Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W., Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents. In Advanced catalysts and nanostructured materials, Moser, W. R., Ed. Academic Press: San Diego, 1996; pp 1-19. 30. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F., Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 1994, 6 (8), 1176-1191. 31. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368, 317. 32. Grün, M.; Lauer, I.; Unger, K. K., The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997, 9 (3), 254-257. 33. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 2003, 125 (15), 4451-4459. 34. Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24 (12), 1504-1534. 35. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42 (9), 3862-3875. 36. Croissant, J. G.; Fatieiev, Y.; Almalik, A.; Khashab, N. M., Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthcare Mater. 2018, 7 (4), 1700831. 37. Sayari, A.; Hamoudi, S., Periodic mesoporous silica-based organic−inorganic nanocomposite materials. Chem. Mater. 2001, 13 (10), 3151-3168. 38. Li, R.; Zhang, L.; Wang, P., Rational design of nanomaterials for water treatment. Nanoscale 2015, 7 (41), 17167-17194. 39. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Del. Rev. 2008, 60 (11), 1278-1288. 40. Sancenón, F.; Pascual, L.; Oroval, M.; Aznar, E.; Martínez-Máñez, R., Gated silica mesoporous materials in sensing applications. ChemistryOpen 2015, 4 (4), 418-437. 41. Chen, D.; Jiang, M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38 (6), 494-502. 42. Lin, Y.-S.; Wu, S.-H.; Tseng, C.-T.; Hung, Y.; Chang, C.; Mou, C.-Y., Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem. Commun. 2009, (24), 3542-3544. 43. Zhang, H.; Xu, H.; Wu, M.; Zhong, Y.; Wang, D.; Jiao, Z., A soft–hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J. Mater. Chem. B 2015, 3 (31), 6480-6489. 44. Qi, G.; Wang, Y.; Estevez, L.; Switzer, A. K.; Duan, X.; Yang, X.; Giannelis, E. P., Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 2010, 22 (9), 2693-2695. 45. Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N., A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3 (4), 1632-1639. 46. Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin, Y., Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angew. Chem. Int. Ed. 2008, 47 (31), 5806-5811. 47. Lai, N.; Lin, C.; Ku, P.; Chang, L.; Liao, K.; Lin, W.; Yang, C., Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Res. 2014, 7 (10), 1439-1448. 48. Qian, R.; Ding, L.; Ju, H., Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135 (36), 13282-5. 49. Burkett, S. L.; Sims, S. D.; Mann, S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 1996, (11), 1367-1368. 50. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A., Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867. 51. Croissant, J. G.; Cattoën, X.; Wong Chi Man, M.; Durand, J.-O.; Khashab, N. M., Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 2015, 7 (48), 20318-20334. 52. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T., Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44 (10), 893-902. 53. Davidson, M.; Ji, Y.; Leong, G. J.; Kovach, N. C.; Trewyn, B. G.; Richards, R. M., Hybrid mesoporous silica/noble-metal nanoparticle materials—synthesis and catalytic applications. ACS Appl. Nano Mater. 2018, 1 (9), 4386-4400. 54. Vallet-Regi, M.; Rámila, A.; del Real, R. P.; Pérez-Pariente, J., A new property of MCM-41: Drug delivery system. Chem. Mater. 2001, 13 (2), 308-311. 55. Forman, H. J.; Zhang, H.; Rinna, A., Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 2009, 30 (1-2), 1-12. 56. Lee, C.-H.; Cheng, S.-H.; Huang, I.-P.; Souris, J. S.; Yang, C.-S.; Mou, C.-Y.; Lo, L.-W., Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 2010, 49 (44), 8214-8219. 57. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P., pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132 (5), 1500-1501. 58. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc. 2008, 130 (8), 2382-2383. 59. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z., Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135 (13), 5068-5073. 60. Moreira, A. F.; Dias, D. R.; Correia, I. J., Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous Mesoporous Mater. 2016, 236, 141-157. 61. Smith, A. M.; Mancini, M. C.; Nie, S., Second window for in vivo imaging. Nat. Nanotech. 2009, 4, 710. 62. Liu, J.; Bu, W.; Pan, L.; Shi, J., NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 2013, 125 (16), 4471-4475. 63. Knežević, N. Ž.; Ruiz-Hernández, E.; Hennink, W. E.; Vallet-Regí, M., Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013, 3 (25), 9584-9593. 64. Paris, J. L.; Cabañas, M. V.; Manzano, M.; Vallet-Regí, M., Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 2015, 9 (11), 11023-11033. 65. Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M., Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3 (8), 487-97. 66. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44 (17), 2546-54. 67. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 2014, 26 (1), 435-451. 68. Yang, B.; Chen, Y.; Shi, J., Exogenous/endogenous-triggered mesoporous silica cancer nanomedicine. Adv. Healthcare Mater. 2018, 7 (20), 1800268. 69. Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; Yang, W., Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34 (12), 3150-3158. 70. Baeza, A.; Guisasola, E.; Ruiz-Hernández, E.; Vallet-Regí, M., Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 2012, 24 (3), 517-524. 71. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goodwin, A. P., Understanding acoustic cavitation initiation by porous nanoparticles: Toward nanoscale agents for ultrasound imaging and therapy. Chem. Mater. 2016, 28 (16), 5962-5972. 72. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 2013, 8, 772. 73. Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A., What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132 (16), 5761-5768. 74. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotech. 2013, 8, 137. 75. Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N., Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J. Control. Release 2016, 241, 144-163. 76. Stride, E.; Saffari, N., Microbubble ultrasound contrast agents: A review. Proc. Inst. Mech. Eng. H 2003, 217 (6), 429-447. 77. Borden, M. A.; Zhang, H.; Gillies, R. J.; Dayton, P. A.; Ferrara, K. W., A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 2008, 29 (5), 597-606. 78. Ferrara, K. W.; Borden, M. A.; Zhang, H., Lipid-shelled vehicles: Engineering for ultrasound molecular imaging and drug delivery. Acc. Chem. Res. 2009, 42 (7), 881-892. 79. Takegami, K.; Kaneko, Y.; Watanabe, T.; Maruyama, T.; Matsumoto, Y.; Nagawa, H., Erythrocytes, as well as microbubble contrast agents, are important factors in improving thermal and therapeutic effects of high-intensity focused ultrasound. Ultrasound Med. Biol. 2005, 31 (3), 385-390. 80. Hanajiri, K.; Maruyama, T.; Kaneko, Y.; Mitsui, H.; Watanabe, S.; Sata, M.; Nagai, R.; Kashima, T.; Shibahara, J.; Omata, M.; Matsumoto, Y., Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound. Hepatol. Res. 2006, 36 (4), 308-314. 81. Culp, W. C.; Flores, R.; Brown, A. T.; Lowery, J. D.; Roberson, P. K.; Hennings, L. J.; Woods, S. D.; Hatton, J. H.; Culp, B. C.; Skinner, R. D.; Borrelli, M. J., Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke 2011, 42 (8), 2280-2285. 82. Flores, R.; Hennings, L. J.; Lowery, J. D.; Brown, A. T.; Culp, W. C., Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest. Radiol. 2011, 46 (7), 419-424. 83. Wheatley, M. A.; Forsberg, F.; Dube, N.; Patel, M.; Oeffinger, B. E., Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med. Biol. 2006, 32 (1), 83-93. 84. Wang, Y.; Liu, G.; Hu, H.; Li, T. Y.; Johri, A. M.; Li, X.; Wang, J., Stable encapsulated air nanobubbles in water. Angew. Chem. Int. Ed. 2015, 54 (48), 14291-14294. 85. Huang, S.-L.; McPherson, D. D.; MacDonald, R. C., A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery. Ultrasound Med. Biol. 2008, 34 (8), 1272-1280. 86. Tian, J.; Yang, F.; Cui, H.; Zhou, Y.; Ruan, X.; Gu, N., A novel approach to making the gas-filled liposome real: Based on the interaction of lipid with free nanobubble within the solution. ACS Appl. Mater. Interfaces 2015, 7 (48), 26579-26584. 87. Medwin, H., Counting bubbles acoustically: A review. Ultrasonics 1977, 15 (1), 7-13. 88. GORCE, J.-M.; ARDITI, M.; SCHNEIDER, M., Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of sonovue™. Invest. Radiol. 2000, 35 (11), 661-671. 89. Tyrrell, J. W. G.; Attard, P., Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 2001, 87 (17), 176104. 90. Borkent, B. M.; Dammer, S. M.; Schönherr, H.; Vancso, G. J.; Lohse, D., Superstability of surface nanobubbles. Phys. Rev. Lett. 2007, 98 (20), 204502. 91. Belova, V.; Shchukin, D. G.; Gorin, D. A.; Kopyshev, A.; Möhwald, H., A new approach to nucleation of cavitation bubbles at chemically modified surfaces. Phys. Chem. Chem. Phys. 2011, 13 (17), 8015-8023. 92. Shchukin, D. G.; Skorb, E.; Belova, V.; Möhwald, H., Ultrasonic cavitation at solid surfaces. Adv. Mater. 2011, 23 (17), 1922-1934. 93. Belova, V.; Krasowska, M.; Wang, D.; Ralston, J.; Shchukin, D. G.; Möhwald, H., Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation. Chem. Sci. 2013, 4 (1), 248-256. 94. Kwan, J. J.; Graham, S.; Myers, R.; Carlisle, R.; Stride, E.; Coussios, C. C., Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys. Rev. E 2015, 92 (2), 023019. 95. Fernandez Rivas, D.; Prosperetti, A.; Zijlstra, A. G.; Lohse, D.; Gardeniers, H. J. G. E., Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew. Chem. Int. Ed. 2010, 49 (50), 9699-9701. 96. Stricker, L.; Dollet, B.; Rivas, D. F.; Lohse, D., Interacting bubble clouds and their sonochemical production. J. Acoust. Soc. Am. 2013, 134 (3), 1854-1862. 97. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goldscheitter, G. M.; Goodwin, A. P., Stable encapsulation of air in mesoporous silica nanoparticles: Fluorocarbon-free nanoscale ultrasound contrast agents. Adv. Healthcare Mater. 2016, 5 (11), 1290-1298. 98. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69. 99. Jin, Q.; Lin, C.-Y.; Chang, Y.-C.; Yang, C.-M.; Yeh, C.-K., Roles of textural and surface properties of nanoparticles in ultrasound-responsive systems. Langmuir 2018, 34 (4), 1256-1265. 100. Atchley, A. A.; Prosperetti, A., The crevice model of bubble nucleation. J. Acoust. Soc. Am. 1989, 86 (3), 1065-1084. 101. Borkent, B. M.; Gekle, S.; Prosperetti, A.; Lohse, D., Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 2009, 21 (10), 102003. 102. Jin, Q.; Lin, C.-Y.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yang, C.-M.; Yeh, C.-K., Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrason. Sonochem. 2017, 36, 262-269. 103. Cho, S.-H.; Kim, J.-Y.; Chun, J.-H.; Kim, J.-D., Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf. Physicochem. Eng. Aspects 2005, 269 (1), 28-34. 104. Chen, J. L.; Dhanaliwala, A. H.; Dixon, A. J.; Klibanov, A. L.; Hossack, J. A., Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Ultrasound Med. Biol. 2014, 40 (2), 400-409. 105. Dhanaliwala, A. H.; Chen, J. L.; Wang, S.; Hossack, J. A. J. M.; Nanofluidics, Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid. Nanofluid. 2013, 14 (3), 457-467. 106. Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y., The lowest surface free energy based on −CF3 alignment. Langmuir 1999, 15 (13), 4321-4323. 107. Gao, J.; Gu, H.; Xu, B., Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42 (8), 1097-1107. 108. Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22 (25), 2729-2742. 109. Lee, D.-E.; Koo, H.; Sun, I.-C.; Ryu, J. H.; Kim, K.; Kwon, I. C., Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41 (7), 2656-2672. 110. Li, Z.; Barnes, J. C.; Bosoy, A.; Stoddart, J. F.; Zink, J. I., Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41 (7), 2590-2605. 111. Wang, K.; He, X.; Yang, X.; Shi, H., Functionalized silica nanoparticles: A platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 2013, 46 (7), 1367-1376. 112. Ling, D.; Lee, N.; Hyeon, T., Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48 (5), 1276-1285. 113. Sun, S., Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18 (4), 393-403. 114. Chou, S.-W.; Shau, Y.-H.; Wu, P.-C.; Yang, Y.-S.; Shieh, D.-B.; Chen, C.-C., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 2010, 132 (38), 13270-13278. 115. Chen, C.-L.; Kuo, L.-R.; Lee, S.-Y.; Hwu, Y.-K.; Chou, S.-W.; Chen, C.-C.; Chang, F.-H.; Lin, K.-H.; Tsai, D.-H.; Chen, Y.-Y., Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials 2013, 34 (4), 1128-1134. 116. Seehra, M. S.; Singh, V.; Dutta, P.; Neeleshwar, S.; Chen, Y. Y.; Chen, C. L.; Chou, S. W.; Chen, C. C., Size-dependent magnetic parameters of fcc FePt nanoparticles: Applications to magnetic hyperthermia. J. Phys. D 2010, 43 (14), 145002. 117. Ho, D.; Sun, X.; Sun, S., Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44 (10), 875-882. 118. Lusic, H.; Grinstaff, M. W., X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113 (3), 1641-1666. 119. Green, L. A. W.; Thuy, T. T.; Mott, D. M.; Maenosono, S.; Kim Thanh, N. T., Multicore magnetic FePt nanoparticles: Controlled formation and properties. RSC Adv. 2014, 4 (3), 1039-1044. 120. Maenosono, S.; Suzuki, T.; Saita, S., Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 2008, 320 (9), L79-L83. 121. Chen, S.; Wang, L.; Duce, S. L.; Brown, S.; Lee, S.; Melzer, A.; Cuschieri, S. A.; André, P., Engineered biocompatible nanoparticles for in vivo imaging applications. J. Am. Chem. Soc. 2010, 132 (42), 15022-15029. 122. Issels, R. D., Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44 (17), 2546-2554. 123. Maenosono, S.; Saita, S., Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans. Magn. 2006, 42 (6), 1638-1642. 124. Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: Second window for in vivo imaging. Nat. Nanotech. 2009, 4 (11), 710-711. 125. Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S., Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7 (6), 5330-5342. 126. Souza, C. G. S.; Beck, W., Jr.; Varanda, L. C., Multifunctional luminomagnetic FePt@Fe3O4/SiO2/Rhodamine B/SiO2 nanoparticles with high magnetic emanation for biomedical applications. J. Nanoparticle Res. 2013, 15 (4), 1-11. 127. Kostevšek, N.; Žužek Rožman, K.; Arshad, M. S.; Spreitzer, M.; Kobe, S.; Šturm, S., Multimodal hybrid FePt/SiO2/Au nanoparticles for nanomedical applications: Combining photothermal stimulation and manipulation with an external magnetic field. J. Phys. Chem. C 2015, 119 (28), 16374-16382. 128. Rosenholm, J. M.; Sahlgren, C.; Linden, M., Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2010, 2 (10), 1870-1883. 129. Wu, S.-H.; Hung, Y.; Mou, C.-Y., Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 2011, 47 (36), 9972-9985. 130. Cauda, V.; Schlossbauer, A.; Bein, T., Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater. 2010, 132 (1–2), 60-71. 131. He, Q.; Shi, J.; Zhu, M.; Chen, Y.; Chen, F., The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010, 131 (1–3), 314-320. 132. Lin, Y.-S.; Hurley, K. R.; Haynes, C. L., Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 2012, 3 (3), 364-374. 133. Yamada, H.; Urata, C.; Aoyama, Y.; Osada, S.; Yamauchi, Y.; Kuroda, K., Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem. Mater. 2012, 24 (8), 1462-1471. 134. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang, C.-M.; Ho, J.-a. A., Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: Improved water suspensibility and decreased nonspecific protein binding. ACS Nano 2010, 4 (8), 4371-4379. 135. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J., Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134 (13), 5722-5725. 136. Teng, I.-T.; Chang, Y.-J.; Wang, L.-S.; Lu, H.-Y.; Wu, L.-C.; Yang, C.-M.; Chiu, C.-C.; Yang, C.-H.; Hsu, S.-L.; Ho, J.-a. A., Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34 (30), 7462-7470. 137. Martinez-Carmona, M.; Baeza, A.; Rodriguez-Milla, M. A.; Garcia-Castro, J.; Vallet-Regi, M., Mesoporous silica nanoparticles grafted with a light-responsive protein shell for highly cytotoxic antitumoral therapy. J. Mater. Chem. B 2015, 3 (28), 5746-5752. 138. Lu, F.; Wu, S.-H.; Hung, Y.; Mou, C.-Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5 (12), 1408-1413. 139. Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010, 6 (18), 1952-1967. 140. Kockrick, E.; Krawiec, P.; Schnelle, W.; Geiger, D.; Schappacher, F. M.; Pottgen, R.; Kaskel, S., Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 2007, 19 (19), 3021-+. 141. Gupta, G.; Patel, M. N.; Ferrer, D.; Heitsch, A. T.; Korgel, B. A.; Jose-Yacaman, M.; Johnston, K. P., Stable ordered FePt mesoporous silica catalysts with high loadings. Chem. Mater. 2008, 20 (15), 5005-5015. 142. Longmire, M.; Choyke, P. L.; Kobayashi, H., Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3 (5), 703-717. 143. Liu, J.; Yu, M.; Zhou, C.; Zheng, J., Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today 2013, 16 (12), 477-486. 144. Cabri, L. J.; Feather, C. E., Platinum-Iron alloys; a nomenclature based on a study of natural and synthetic alloys. Can. Mineral. 1975, 13 (2), 117-126. 145. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287 (5460), 1989-1992. 146. Keloglu, Y. P.; Fedorko, A. S., Vegard’s law for some binary and pseudobinary semiconductor systems. In Chemical bonds in solids, Sirota, A. N., Ed. Springer US: 1995; pp 113-117. 147. Liu, C.; Klemmer, T. J.; Shukla, N.; Wu, X.; Weller, D.; Tanase, M.; Laughlin, D., Oxidation of FePt nanoparticles. J. Magn. Magn. Mater. 2003, 266 (1–2), 96-101. 148. Yang, C.-M.; Liu, P.-H.; Ho, Y.-F.; Chiu, C.-Y.; Chao, K.-J., Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 2003, 15 (1), 275-280. 149. Chen, P.-K.; Lai, N.-C.; Ho, C.-H.; Hu, Y.-W.; Lee, J.-F.; Yang, C.-M., New synthesis of MCM-48 nanospheres and facile replication to mesoporous platinum nanospheres as highly active electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2013, 25 (21), 4269-4277. 150. Kevin, E.; Daren, L.; Narayan, P.; Vikas, N.; Zhiqiang, J.; Kanghua, C.; Liu, J. P., Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D 2005, 38 (14), 2306. 151. Medwal, R.; Sehdev, N.; Annapoorni, S., Order–disorder investigation of hard magnetic nanostructured FePt alloy. J. Phys. D 2012, 45 (5), 055001. 152. Jeyadevan, B.; Hobo, A.; Urakawa, K.; Chinnasamy, C. N.; Shinoda, K.; Tohji, K., Towards direct synthesis of fct-FePt nanoparticles by chemical route. J. Appl. Phys. 2003, 93 (10), 7574-7576. 153. Na, H. B.; Song, I. C.; Hyeon, T., Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21 (21), 2133-2148. 154. Wittenberg, N. J.; Haynes, C. L., Using nanoparticles to push the limits of detection. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009, 1 (2), 237-254. 155. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R., Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002, 20 (8), 816-20. 156. Larsen, B. A.; Haag, M. A.; Serkova, N. J.; Shroyer, K. R.; Stoldt, C. R., Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 2008, 19 (26), 265102. 157. Matsumoto, Y.; Jasanoff, A., T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn. Reson. Imaging 2008, 26 (7), 994-998. 158. Paquet, C.; de Haan, H. W.; Leek, D. M.; Lin, H. Y.; Xiang, B.; Tian, G.; Kell, A.; Simard, B., Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: A particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 2011, 5 (4), 3104-12. 159. Wang, C.; Cai, X.; Zhang, J.; Wang, X.; Wang, Y.; Ge, H.; Yan, W.; Huang, Q.; Xiao, J.; Zhang, Q.; Cheng, Y., Trifolium-like platinum nanoparticle-mediated photothermal therapy inhibits tumor growth and osteolysis in a bone metastasis model. Small 2015, 11 (17), 2080-6. 160. Chou, S.-W.; Liu, C.-L.; Liu, T.-M.; Shen, Y.-F.; Kuo, L.-C.; Wu, C.-H.; Hsieh, T.-Y.; Wu, P.-C.; Tsai, M.-R.; Yang, C.-C.; Chang, K.-Y.; Lu, M.-H.; Li, P.-C.; Chen, S.-P.; Wang, Y.-H.; Lu, C.-W.; Chen, Y.-A.; Huang, C.-C.; Wang, C.-R.; Hsiao, J.-K.; Li, M.-L.; Chou, P.-T., Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging. Biomaterials 2016, 85, 54-64. 161. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y., Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16 (14), 1805-1813. 162. He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71 (12), 125411. 163. Huang, X.; El-Sayed, M. A., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1 (1), 13-28. 164. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L., Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209 (2), 171-176. 165. Harmon, B. V.; Corder, A. M.; Collins, R. J.; Gobé, G. C.; Allen, J.; Allan, D. J.; Kerr, J. F. R., Cell death induced in a murine mastocytoma by 42–47 °C heating in vitro: Evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int. J. Radiat. Biol. 1990, 58 (5), 845-858. 166. Alkilany, A. M.; Murphy, C. J., Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanoparticle Res. 2010, 12 (7), 2313-2333. 167. Chen, Y.-S.; Hung, Y.-C.; Liau, I.; Huang, G. S., Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 2009, 4 (8), 858-864. 168. Malvindi, M. A.; De Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G. C.; Athanassiou, A.; Cingolani, R.; Pompa, P. P., Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014, 9 (1), e85835. 169. Topalov, A. A.; Cherevko, S.; Zeradjanin, A. R.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J., Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 2014, 5 (2), 631-638. 170. Xu, C.; Yuan, Z.; Kohler, N.; Kim, J.; Chung, M. A.; Sun, S., FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J. Am. Chem. Soc. 2009, 131 (42), 15346-15351. 171. Slowing, I.; Trewyn, B. G.; Lin, V. S. Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc. 2006, 128 (46), 14792-14793. 172. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 2007, 40 (9), 846-853. 173. Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31 (3), 438-448. 174. George, S.; Xia, T.; Rallo, R.; Zhao, Y.; Ji, Z.; Lin, S.; Wang, X.; Zhang, H.; France, B.; Schoenfeld, D.; Damoiseaux, R.; Liu, R.; Lin, S.; Bradley, K. A.; Cohen, Y.; Nel, A. E., Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 2011, 5 (3), 1805-1817. 175. Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J., In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006, 40 (14), 4374-4381. 176. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J., Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46 (3), 792-801. 177. Rosenholm, J. M.; Sahlgren, C.; Linden, M., Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets 2011, 12 (8), 1166-86. 178. Kusumoto, T.; Maehara, Y.; Baba, H.; Takahashi, I.; Kusumoto, H.; Ohno, S.; Sugimachi, K., Sequence dependence of the hyperthermic potentiation of carboplatin-induced cytotoxicity and intracellular platinum accumulation in HeLa cells. Br. J. Cancer 1993, 68 (2), 259-263. 179. Istomin, Y. P.; Zhavrid, E. A.; Alexandrova, E. N.; Sergeyeva, O. P.; Petrovich, S. V., Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp. Oncol. 2008, 30 (1), 56-9. 180. Quinto, C. A.; Mohindra, P.; Tong, S.; Bao, G., Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 2015, 7 (29), 12728-36. 181. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3 (10), 2919-2926. 182. Hermisson, M.; Weller, M., Hyperthermia enhanced chemosensitivity of human malignant glioma cells. Anticancer Res. 2000, 20 (3a), 1819-23. 183. Gao, J.; Liang, G.; Zhang, B.; Kuang, Y.; Zhang, X.; Xu, B., FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 2007, 129 (5), 1428-33. 184. Asharani, P. V.; Xinyi, N.; Hande, M. P.; Valiyaveettil, S., DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (Lond) 2010, 5 (1), 51-64. 185. Teow, Y.; Valiyaveettil, S., Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010, 2 (12), 2607-13. 186. Chien, C.-T.; Yan, J.-Y.; Chiu, W.-C.; Wu, T.-H.; Liu, C.-Y.; Lin, S.-Y., Caged Pt nanoclusters exhibiting corrodibility to exert tumor-inside activation for anticancer chemotherapeutics. Adv. Mater. 2013, 25 (36), 5067-73. 187. Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; Kim, D.-H.; Ling, D.; Hui, K. M.; Hyeon, T., pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci. 2016, 2 (11), 802-811. 188. Cheng, H.-J.; Wu, T.-H.; Chien, C.-T.; Tu, H.-W.; Cha, T.-S.; Lin, S.-Y., Corrosion-activated chemotherapeutic function of nanoparticulate platinum as a cisplatin resistance-overcoming prodrug with limited autophagy induction. Small 2016, 12 (44), 6124-6133. 189. Zhang, L.; Laug, L.; Munchgesang, W.; Pippel, E.; Gosele, U.; Brandsch, M.; Knez, M., Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010, 10 (1), 219-23. 190. Wang, X.; Zhang, Y.; Li, T.; Tian, W.; Zhang, Q.; Cheng, Y., Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 2013, 29 (17), 5262-5270. 191. Liu, Y.; Wu, H.; Li, M.; Yin, J. J.; Nie, Z., pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014, 6 (20), 11904-10. 192. Liu, Y.; Wu, H.; Chong, Y.; Wamer, W. G.; Xia, Q.; Cai, L.; Nie, Z.; Fu, P. P.; Yin, J. J., Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 2015, 7 (35), 19709-17. 193. Moglianetti, M.; De Luca, E.; Pedone, D.; Marotta, R.; Catelani, T.; Sartori, B.; Amenitsch, H.; Retta, S. F.; Pompa, P. P., Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale 2016, 8 (6), 3739-52. 194. P. J, S.; Mukherjee, A.; Chandrasekaran, N., DNA damage and mitochondria-mediated apoptosis of A549 lung carcinoma cells induced by biosynthesised silver and platinum nanoparticles. RSC Adv. 2016, 6 (33), 27775-27787. 195. Takara, S.; Masayo, S.; Reiko, H.; Ichizo, Y.; Toshihiro, K., Study of platinum dissolution mechanism using a highly sensitive electrochemical quartz crystal microbalance. Chem. Lett. 2011, 40 (4), 402-404. 196. Matsumoto, M.; Miyazaki, T.; Imai, H., Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J. Phys. Chem. C 2011, 115 (22), 11163-11169. 197. Gallagher, J. R.; Li, T.; Zhao, H.; Liu, J.; Lei, Y.; Zhang, X.; Ren, Y.; Elam, J. W.; Meyer, R. J.; Winans, R. E.; Miller, J. T., In situ diffraction of highly dispersed supported platinum nanoparticles. Catal. Sci. Technol. 2014, 4 (9), 3053-3063. 198. Banerjee, R.; Chen, D. A.; Karakalos, S.; Piedboeuf, M.-L. C.; Job, N.; Regalbuto, J. R., Ambient oxidation of ultrasmall platinum nanoparticles on microporous carbon catalyst supports. ACS Appl. Nano Mater. 2018, 1 (10), 5876-5884. 199. Wexselblatt, E.; Gibson, D., What do we know about the reduction of Pt(IV) pro-drugs? J. Inorg. Biochem. 2012, 117, 220-229. 200. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R., The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39 (35), 8113-8127. 201. Zhu, Y.; Shi, J.; Shen, W.; Dong, X.; Feng, J.; Ruan, M.; Li, Y., Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem. Int. Ed. 2005, 44 (32), 5083-5087. 202. Fang, X.; Zhao, X.; Fang, W.; Chen, C.; Zheng, N., Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 2013, 5 (6), 2205-2218. 203. Lin, C.-Y.; Li, W.-P.; Huang, S.-P.; Yeh, C.-S.; Yang, C.-M., Hollow mesoporous silica nanosphere-supported FePt nanoparticles for potential theranostic applications. J. Mater. Chem. B 2017, 5 (36), 7598-7607. 204. Chen, Z.; Cui, Z.-M.; Niu, F.; Jiang, L.; Song, W.-G., Pd nanoparticles in silica hollow spheres with mesoporous walls: A nanoreactor with extremely high activity. Chem. Commun. 2010, 46 (35), 6524-6526. 205. Tian, M.; Long, Y.; Xu, D.; Wei, S.; Dong, Z., Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. J. Colloid Interface Sci. 2018, 521, 132-140. 206. Ruch, R. J.; Cheng, S. J.; Klaunig, J. E., Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis 1989, 10 (6), 1003-8. 207. Oudenhuijzen, M. K.; Kooyman, P. J.; Tappel, B.; van Bokhoven, J. A.; Koningsberger, D. C., Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3−)2]: A combination of HRTEM, mass spectrometry, and quick EXAFS. J. Catal. 2002, 205 (1), 135-146. 208. Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1 (17), 4059-4063. 209. Bernardi, F.; Alves, M. C. M.; Morais, J., Monitoring of Pt nanoparticle formation by H2 reduction of PtO2: An in situ dispersive X-ray absorption spectroscopy study. J. Phys. Chem. C 2010, 114 (49), 21434-21438. 210. Allen, G. C.; Tucker, P. M.; Capon, A.; Parsons, R., X-ray photoelectron spectroscopy of adsorbed oxygen and carbonaceous species on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1974, 50 (3), 335-343. 211. Şen, F.; Gökaǧaç, G., Different sized platinum nanoparticles supported on carbon: An XPS study on these methanol oxidation catalysts. J. Phys. Chem. C 2007, 111 (15), 5715-5720. 212. Shrestha, B. R.; Tada, E.; Nishikata, A., Effect of chloride on platinum dissolution. Electrochimica Acta 2014, 143, 161-167. 213. Wang, Z.; Tada, E.; Nishikata, A., In situ analysis of chloride effect on platinum dissolution by a channel-flow multi-electrode system. J. Electrochem. Soc. 2014, 161 (9), F845-F849. 214. Dash, S.; Murthy, P. N.; Nath, L.; Chowdhury, P., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67 (3), 217-23. 215. Almaroai, Y. A.; Usman, A. R.; Ahmad, M.; Kim, K. R.; Vithanage, M.; Ok, Y. S., Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environ. Technol. 2013, 34 (5-8), 747-55. 216. Aksu, S.; Doyle, F. M., Electrochemistry of copper in aqueous glycine solutions. J. Electrochem. Soc. 2001, 148 (1), B51-B57. 217. Gondikas, A. P.; Morris, A.; Reinsch, B. C.; Marinakos, S. M.; Lowry, G. V.; Hsu-Kim, H., Cysteine-induced modifications of zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 2012, 46 (13), 7037-7045. 218. Azaroual, M.; Romand, B.; Freyssinet, P.; Disnar, J.-R., Solubility of platinum in aqueous solutions at 25 °C and pHs 4 to 10 under oxidizing conditions. Geochim. Cosmochim. Acta 2001, 65, 4453-4466. 219. Hall, M. D.; Foran, G. J.; Zhang, M.; Beale, P. J.; Hambley, T. W., XANES determination of the platinum oxidation state distribution in cancer cells treated with platinum(IV) anticancer agents. J. Am. Chem. Soc. 2003, 125 (25), 7524-7525. 220. Okamoto, H.; Horii, K.; Fujisawa, A.; Yamamoto, Y., Oxidative deterioration of platinum nanoparticle and its prevention by palladium. Exp. Dermatol. 2012, 21 (s1), 5-7. 221. Lynch, I.; Dawson, K. A., Protein-nanoparticle interactions. Nano Today 2008, 3 (1), 40-47. 222. Taylor, K. M. L.; Rieter, W. J.; Lin, W., Manganese-based nanoscale metal−organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130 (44), 14358-14359. 223. Vestal, C. R.; Zhang, Z. J., Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003, 3 (12), 1739-1743. 224. Yoon, T.-J.; Yu, K. N.; Kim, E.; Kim, J. S.; Kim, B. G.; Yun, S.-H.; Sohn, B.-H.; Cho, M.-H.; Lee, J.-K.; Park, S. B., Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2006, 2 (2), 209-215. 225. Selvan, S. T.; Tan, T. T. Y.; Yi, D. K.; Jana, N. R., Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 2010, 26 (14), 11631-11641. 226. Liu, J.-N.; Bu, W.-B.; Shi, J.-L., Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics. Acc. Chem. Res. 2015, 48 (7), 1797-1805. 227. A first in human study using 89Zr-cRDGY ultrasmall silica particle tracers for malignant brain tumors. https://ClinicalTrials.gov/show/NCT03465618. 228. Targeted silica nanoparticles for real-time image-guided intraoperative mapping of nodal metastases. https://ClinicalTrials.gov/show/NCT02106598. 229. Castillo, R. R.; Colilla, M.; Vallet-Regí, M., Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin. Drug Deliv. 2017, 14 (2), 229-243. 230. He, Q.; Shi, J., Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21 (16), 5845-5855. 231. Mamaeva, V.; Sahlgren, C.; Lindén, M., Mesoporous silica nanoparticles in medicine—recent advances. Adv. Drug Del. Rev. 2013, 65 (5), 689-702. 232. Vallet-Regí, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 2007, 46 (40), 7548-7558. 233. Blanco, E.; Shen, H.; Ferrari, M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941. 234. Beck, M.; Mandal, T.; Buske, C.; Lindén, M., Serum protein adsorption enhances active leukemia stem cell targeting of mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2017, 9 (22), 18566-18574. 235. Shahabi, S.; Döscher, S.; Bollhorst, T.; Treccani, L.; Maas, M.; Dringen, R.; Rezwan, K., Enhancing cellular uptake and doxorubicin delivery of mesoporous silica nanoparticles via surface functionalization: Effects of serum. ACS Appl. Mater. Interfaces 2015, 7 (48), 26880-26891. 236. Lesniak, A.; Fenaroli, F.; Monopoli, M. P.; Åberg, C.; Dawson, K. A.; Salvati, A., Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6 (7), 5845-5857. 237. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E., Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Del. Rev. 2009, 61 (6), 428-437. 238. Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; Mailänder, V., Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16 (4), 1311-1321. 239. Walkey, C. D.; Chan, W. C. W., Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41 (7), 2780-2799. 240. Wolfram, J.; Yang, Y.; Shen, J.; Moten, A.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y., The nano-plasma interface: Implications of the protein corona. Colloids Surf. B. Biointerfaces 2014, 124, 17-24. 241. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012, 7, 5577-91. 242. Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N. E.; Salvatore, F.; Tasciotti, E., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2015, 11 (1), 81-100. 243. Shahabi, S.; Treccani, L.; Dringen, R.; Rezwan, K., Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: Effects of serum. ACS Appl. Mater. Interfaces 2015, 7 (25), 13821-13833. 244. Catalano, F.; Alberto, G.; Ivanchenko, P.; Dovbeshko, G.; Martra, G., Effect of silica surface properties on the formation of multilayer or submonolayer protein hard corona: Albumin adsorption on pyrolytic and colloidal SiO2 nanoparticles. J. Phys. Chem. C 2015, 119 (47), 26493-26505. 245. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K. A., Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133 (8), 2525-2534. 246. Ghavami, M.; Saffar, S.; Abd Emamy, B.; Peirovi, A.; Shokrgozar, M. A.; Serpooshan, V.; Mahmoudi, M., Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv. 2013, 3 (4), 1119-1126. 247. Clemments, A. M.; Botella, P.; Landry, C. C., Protein adsorption from biofluids on silica nanoparticles: Corona analysis as a function of particle diameter and porosity. ACS Appl. Mater. Interfaces 2015, 7 (39), 21682-21689. 248. Saikia, J.; Yazdimamaghani, M.; Hadipour Moghaddam, S. P.; Ghandehari, H., Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl. Mater. Interfaces 2016, 8 (50), 34820-34832. 249. Clemments, A. M.; Muniesa, C.; Landry, C. C.; Botella, P., Effect of surface properties in protein corona development on mesoporous silica nanoparticles. RSC Adv. 2014, 4 (55), 29134-29138. 250. Zhao, Y.; Sun, X.; Zhang, G.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y., Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano 2011, 5 (2), 1366-1375. 251. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chem. Mater. 2016, 28 (12), 4243-4258. 252. Kang, D.; Gho, Y. S.; Suh, M.; Kang, C., Highly sensitive and fast protein detection with Coomassie Brilliant Blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull. Korean Chem. Soc. 2002, 23 (11), 1511-1512. 253. Lee, Y. K.; Choi, E.-J.; Webster, T. J.; Kim, S.-H.; Khang, D., Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomedicine 2015, 10, 97-113. 254. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K., The evolution of the protein corona around nanoparticles: A test study. ACS Nano 2011, 5 (9), 7503-7509. 255. Lord, M. S.; Foss, M.; Besenbacher, F., Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5 (1), 66-78. 256. Rechendorff, K.; Hovgaard, M. B.; Foss, M.; Zhdanov, V. P.; Besenbacher, F., Enhancement of protein adsorption induced by surface roughness. Langmuir 2006, 22 (26), 10885-10888. 257. Scopelliti, P. E.; Borgonovo, A.; Indrieri, M.; Giorgetti, L.; Bongiorno, G.; Carbone, R.; Podestà, A.; Milani, P., The effect of surface nanometre-scale morphology on protein adsorption. PLoS One 2010, 5 (7), e11862. 258. Wells, M. A.; Abid, A.; Kennedy, I. M.; Barakat, A. I., Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology 2012, 6 (8), 837-846. 259. Gebauer, J. S.; Malissek, M.; Simon, S.; Knauer, S. K.; Maskos, M.; Stauber, R. H.; Peukert, W.; Treuel, L., Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir 2012, 28 (25), 9673-9679. 260. Pochert, A.; Vernikouskaya, I.; Pascher, F.; Rasche, V.; Lindén, M., Cargo-influences on the biodistribution of hollow mesoporous silica nanoparticles as studied by quantitative 19F-magnetic resonance imaging. J. Colloid Interface Sci. 2017, 488, 1-9. 261. Gebregeorgis, A.; Bhan, C.; Wilson, O.; Raghavan, D., Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: Morphological, compositional, and interaction studies. J. Colloid Interface Sci. 2013, 389 (1), 31-41. 262. Lavalette, D.; Tétreau, C.; Tourbez, M.; Blouquit, Y., Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys. J. 1999, 76 (5), 2744-2751. 263. Wang, Y.; Li, C.; Pielak, G. J., Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132 (27), 9392-9397. 264. Treuheit, M. J.; Kosky, A. A.; Brems, D. N., Inverse relationship of protein concentration and aggregation. Pharm. Res. 2002, 19 (4), 511-516. 265. Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L. H.; Mahmoudi, M., Nanoparticle and protein corona. In Protein-nanoparticle interactions: The bio-nano interface, Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L. H.; Mahmoudi, M., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 21-44. 266. Gessner, A.; Waicz, R.; Lieske, A.; Paulke, B. R.; Mäder, K.; Müller, R. H., Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. Int. J. Pharm. 2000, 196 (2), 245-249. 267. Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 2007, 104 (7), 2050. 268. Francis, G. A., High-density lipoproteins: Metabolism and protective roles against atherosclerosis. In Biochemistry of lipids, lipoproteins and membranes (sixth edition), Ridgway, N. D.; McLeod, R. S., Eds. Elsevier: Boston, 2016; pp 437-457. 269. Belton, D. J.; Patwardhan, S. V.; Annenkov, V. V.; Danilovtseva, E. N.; Perry, C. C., From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. 2008, 105 (16), 5963. 270. Coradin, T.; Livage, J., Aqueous silicates in biological sol–gel applications: New perspectives for old precursors. Acc. Chem. Res. 2007, 40 (9), 819-826. 271. Zane, A. C.; Michelet, C.; Roehrich, A.; Emani, P. S.; Drobny, G. P., Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity. Langmuir 2014, 30 (24), 7152-7161. 272. LoPresti, C.; Massignani, M.; Fernyhough, C.; Blanazs, A.; Ryan, A. J.; Madsen, J.; Warren, N. J.; Armes, S. P.; Lewis, A. L.; Chirasatitsin, S.; Engler, A. J.; Battaglia, G., Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation. ACS Nano 2011, 5 (3), 1775-1784. 273. Niu, Y.; Yu, M.; Hartono, S. B.; Yang, J.; Xu, H.; Zhang, H.; Zhang, J.; Zou, J.; Dexter, A.; Gu, W.; Yu, C., Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv. Mater. 2013, 25 (43), 6233-6237.
|