|
(1) Ubersax, J. A.; Ferrell, J. E., Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007, 8 (7), 530-41. (2) Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017, 40 (2), 271-280. (3) Schwartz, P. A.; Murray, B. W. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011, 39 (5-6), 192-210. (4) Humphrey, S. J.; James, D. E.; Mann, M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 2015, 26 (12), 676-687. (5) Meggio, F.; Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J 2003, 17 (3), 349-68. (6) Zhang, Y.; Yan, Z.; Farooq, A.; Liu, X.; Lu, C.; Zhou, M. M.; He, C., Molecular basis of distinct interactions between Dok1 PTB domain and tyrosine-phosphorylated EGF receptor. J Mol Biol 2004, 343 (4), 1147-55. (7) Sorkin, A.; Waters, C.; Overholser, K. A.; Carpenter, G., Multiple autophosphorylation site mutations of the epidermal growth factor receptor. Analysis of kinase activity and endocytosis. J Biol Chem 1991, 266 (13), 8355-62. (8) Sorkin, A.; Helin, K.; Waters, C. M.; Carpenter, G.; Beguinot, L., Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors. J Biol Chem 1992, 267 (12), 8672-8. (9) Osinalde, N.; Aloria, K.; Omaetxebarria, M. J.; Kratchmarova, I., Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017, 1055-1056, 29-38. (10) Wills, M. K.; Tong, J.; Tremblay, S. L.; Moran, M. F.; Jones, N., The ShcD signaling adaptor facilitates ligand-independent phosphorylation of the EGF receptor. Mol Biol Cell 2014, 25 (6), 739-52. (11) Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74. (12) Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P. A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; Zecha, J.; Reiter, K.; Qiao, H.; Helm, D.; Koch, H.; Schoof, M.; Canevari, G.; Casale, E.; Depaolini, S. R.; Feuchtinger, A.; Wu, Z.; Schmidt, T.; Rueckert, L.; Becker, W.; Huenges, J.; Garz, A. K.; Gohlke, B. O.; Zolg, D. P.; Kayser, G.; Vooder, T.; Preissner, R.; Hahne, H.; Tonisson, N.; Kramer, K.; Gotze, K.; Bassermann, F.; Schlegl, J.; Ehrlich, H. C.; Aiche, S.; Walch, A.; Greif, P. A.; Schneider, S.; Felder, E. R.; Ruland, J.; Medard, G.; Jeremias, I.; Spiekermann, K.; Kuster, B. The target landscape of clinical kinase drugs. Science 2017, 358 (6367). (13) Tong, M.; Yu, C.; Shi, J.; Huang, W.; Ge, S.; Liu, M.; Song, L.; Zhan, D.; Xia, X.; Liu, W.; Feng, J.; Shi, W.; Ji, J.; Gao, J.; Shi, T.; Zhu, W.; Ding, C.; Wang, Y.; He, F.; Shen, L.; Li, T.; Qin, J. Phosphoproteomics Enables Molecular Subtyping and Nomination of Kinase Candidates for Individual Patients of Diffuse-Type Gastric Cancer. iScience 2019, 22, 44-57. (14) Dermit, M.; Dokal, A.; Cutillas, P. R. Approaches to identify kinase dependencies in cancer signalling networks. FEBS Lett 2017, 591 (17), 2577-2592. (15) Wu, X.; Xing, X.; Dowlut, D.; Zeng, Y.; Liu, J.; Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J Proteomics 2019, 191, 68-79. (16) Francavilla, C.; Lupia, M.; Tsafou, K.; Villa, A.; Kowalczyk, K.; Rakownikow Jersie-Christensen, R.; Bertalot, G.; Confalonieri, S.; Brunak, S.; Jensen, L. J.; Cavallaro, U.; Olsen, J. V. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer. Cell Rep 2017, 18 (13), 3242-3256. (17) Chen, Y. J.; Roumeliotis, T. I.; Chang, Y. H.; Chen, C. T.; Han, C. L.; Lin, M. H.; Chen, H. W.; Chang, G. C.; Chang, Y. L.; Wu, C. T.; Lin, M. W.; Hsieh, M. S.; Wang, Y. T.; Chen, Y. R.; Jonassen, I.; Ghavidel, F. Z.; Lin, Z. S.; Lin, K. T.; Chen, C. W.; Sheu, P. Y.; Hung, C. T.; Huang, K. C.; Yang, H. C.; Lin, P. Y.; Yen, T. C.; Lin, Y. W.; Wang, J. H.; Raghav, L.; Lin, C. Y.; Chen, Y. S.; Wu, P. S.; Lai, C. T.; Weng, S. H.; Su, K. Y.; Chang, W. H.; Tsai, P. Y.; Robles, A. I.; Rodriguez, H.; Hsiao, Y. J.; Chang, W. H.; Sung, T. Y.; Chen, J. S.; Yu, S. L.; Choudhary, J. S.; Chen, H. Y.; Yang, P. C.; Chen, Y. J. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2020, 182 (1), 226-244 e17. (18) Narumi, R.; Murakami, T.; Kuga, T.; Adachi, J.; Shiromizu, T.; Muraoka, S.; Kume, H.; Kodera, Y.; Matsumoto, M.; Nakayama, K.; Miyamoto, Y.; Ishitobi, M.; Inaji, H.; Kato, K.; Tomonaga, T. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples. J Proteome Res 2012, 11 (11), 5311-22. (19) M.D. Shults, B. Imperiali, Versatile fluorescence probes of protein kinase activity, J. Am. Chem. Soc. 125 (47) (2003) 14248e14249. (20) R. Seethala, R. Menzel, A fluorescence polarization competition immunoassay for tyrosine kinases, Anal. Biochem. 255 (2) (1998) 257e262. (21) J. Kwan, A. Ling, E. Papp, D. Shaw, J.M. Bradshaw, A fluorescence resonance energy transfer-based binding assay for characterizing kinase inhibitors: important role for C-terminal biotin tagging of the kinase, Anal. Biochem. 395. (22) M. Koresawa, T. Okabe, High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase, Assay Drug Dev. Technol. 2 (2) (2004) 153e160. (23) E. Amit, R. Obena, Y.T. Wang, R. Zhuravel, A.J.F. Reyes, S. Elbaz, D. Rotem, D. Porath, A. Friedler, Y.J. Chen, S. Yitzchaik Integrating proteomics with electrochemistry for identifying kinase biomarkers, Chem. Sci. 6 (8) (2015) 4756e4766. (24) H. Matsumoto, E.S. Kahn, N. Komori, Nonradioactive phosphopeptide assay by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: application to calcium/calmodulin-dependent protein kinase II, Anal. Biochem. 260 (2) (1998) 188e194. (25) D.-H. Min, J. Su, M. Mrksich, Profiling kinase activities by using a peptide chip and mass spectrometry, Angew. Chem. Int. Ed. 43 (44) (2004) 5973e5977. (26) P.R. Cutillas, A. Khawaja, M. Graupera, W. Pearce, S. Gharbi, M. Waterfield, B. Vanhaesebroeck, Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry, Proc. Natl. Acad. Sci. U. S. A. 103 (24) (2006) 8959e8964. (27) Y. Yu, R. Anjum, K. Kubota, J. Rush, J. Villen, S.P. Gygi, A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry, Proc. Natl. Acad. Sci. U. S. A. 106 (28) (2009) 11606e11611. (28) K. Kubota, R. Anjum, Y. Yu, R.C. Kunz, J.N. Andersen, M. Kraus, H. Keilhack, K. Nagashima, S. Krauss, C. Paweletz, R.C. Hendrickson, A.S. Feldman, C.L. Wu, J. Rush, J. Villen, S.P. Gygi, Sensitive multiplexed analysis of kinase activities and activity-based kinase identification, Nat. Biotechnol. 27 (10) (2009) 933e940. (29) R.C. Kunz, F.E. McAllister, J. Rush, S.P. Gygi, A high-throughput, multiplexed kinase assay using a benchtop orbitrap mass spectrometer to investigate the effect of kinase inhibitors on kinase signaling pathways, Anal. Chem. 84 (14) (2012) 6233e6239. (30) Reyes, A. J. F.; Kitata, R. B.; Dela Rosa, M. A. C.; Wang, Y. T.; Lin, P. Y.; Yang, P. C.; Friedler, A.; Yitzchaik, S.; Chen, Y. J., Integrating site-specific peptide reporters and targeted mass spectrometry enables rapid substrate-specific kinase assay at the nanogram cell level. Anal Chim Acta 2021, 1155, 338341. (31) Hastie, C. J.; McLauchlan, H. J.; Cohen, P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 2006, 1 (2), 968-71. (32) Wang, Y.; Ma, H., Protein kinase profiling assays: a technology review. Drug Discov Today Technol 2015, 18, 1-8. (33) Li, Y.; Xie, W.; Fang, G. Fluorescence detection techniques for protein kinase assay. Anal Bioanal Chem 2008, 390 (8), 2049-57. (34) Lea, W. A.; Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 2011, 6 (1), 17-32. (35) Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S. A., ADP-Glo: A Bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev Technol 2009, 7 (6), 560-72. (36) Hewitt, S. H.; Parris, J.; Mailhot, R.; Butler, S. J. A continuous luminescence assay for monitoring kinase activity: signalling the ADP/ATP ratio using a discrete europium complex. Chem Commun (Camb) 2017, 53 (94), 12626-12629. (37) Martic, S.; Labib, M.; Kraatz, H. B. Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations. Analyst 2011, 136 (1), 107-12. (38) Wilner, O. I.; Guidotti, C.; Wieckowska, A.; Gill, R.; Willner, I. Probing kinase activities by electrochemistry, contact-angle measurements, and molecular-force interactions. Chemistry 2008, 14 (26), 7774-81. (39) Snir, E.; Joore, J.; Timmerman, P.; Yitzchaik, S., Monitoring selectivity in kinase-promoted phosphorylation of densely packed peptide monolayers using label-free electrochemical detection. Langmuir 2011, 27 (17), 11212-21. (40) Wang, J.; Shen, M.; Cao, Y.; Li, G. Switchable "On-Off" electrochemical technique for detection of phosphorylation. Biosens Bioelectron 2010, 26 (2), 638-42. (41) Monzo, J.; Insua, I.; Fernandez-Trillo, F.; Rodriguez, P. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst 2015, 140 (21), 7116-28. (42) Meyer, J. G.; Schilling, B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 2017, 14 (5), 419-429. (43) Yi, L.; Shi, T.; Gritsenko, M. A.; X’Avia Chan, C. Y.; Fillmore, T. L.; Hess, B. M.; Swensen, A. C.; Liu, T.; Smith, R. D.; Wiley, H. S.; Qian, W. J. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Anal Chem 2018, 90 (8), 5256-5263. (44) Waniwan, J. T.; Chen, Y. J.; Capangpangan, R.; Weng, S. H.; Chen, Y. J. Glycoproteomic Alterations in Drug-Resistant Non-Small Cell Lung Cancer Cells Revealed by Lectin Magnetic Nanoprobe-Based Mass Spectrometry. J Proteome Res 2018, 17 (11), 3761-3773. (45) Tsai, C. F.; Wang, Y. T.; Chen, Y. R.; Lai, C. Y.; Lin, P. Y.; Pan, K. T.; Chen, J. Y.; Khoo, K. H.; Chen, Y. J. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 2008, 7 (9), 4058-69. (46) Tsou, C. C.; Tsai, C. F.; Tsui, Y. H.; Sudhir, P. R.; Wang, Y. T.; Chen, Y. J.; Chen, J. Y.; Sung, T. Y.; Hsu, W. L. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 2010, 9 (1), 131-44 (47) Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.; Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A. C.; Tabata, T.; Sugiyama, N.; Goto, S.; Ishihama, Y. jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res 2017, 45 (D1), D1107-D1111. (48) Vizcaino, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P. A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos, A.; Chalkley, R. J.; Kraus, H. J.; Albar, J. P.; Martinez-Bartolome, S.; Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 2014, 32 (3), 223-6. (49) Obenauer, J. C.; Cantley, L. C.; Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003, 31 (13), 3635-41. (50) Blom, N.; Sicheritz-Ponten, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004, 4 (6), 1633-49. (51) Hornbeck, P. V.; Zhang, B.; Murray, B.; Kornhauser, J. M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015, 43 (Database issue), D512-20. (52) Prasad, T. S.; Kandasamy, K.; Pandey, A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 2009, 577, 67-79. (53) Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2007, 2 (8), 1896-906. (54) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20 (18), 3551-67. (55) Pino, L. K.; Searle, B. C.; Bollinger, J. G.; Nunn, B.; MacLean, B.; MacCoss, M. J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 2020, 39 (3), 229-244. (56) Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Res 2006, 34 (Database issue), D655-8. (57) Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016, 13 (9), 731-40. (58) Morgillo, F.; Della Corte, C. M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 2016, 1 (3), e000060. (59) Wang, Y. T.; Tsai, C. F.; Hong, T. C.; Tsou, C. C.; Lin, P. Y.; Pan, S. H.; Hong, T. M.; Yang, P. C.; Sung, T. Y.; Hsu, W. L.; Chen, Y. J. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 2010, 9 (11), 5582-971. (60) Zhang, G.; Liu, Z.; Chen, Y.; Zhang, Y. High Serum HDGF Levels Are Predictive of Bone Metastasis and Unfavorable Prognosis in Non-Small Cell Lung Cancer. Tohoku J Exp Med 2017, 242 (2), 101-108. (61) Song, G.; Guo, G.; Du, T.; Li, X.; Wang, J.; Yan, Y.; Zhao, Y. RALY may cause an aggressive biological behavior and a dismal prognosis in non-small-cell lung cancer. Exp Cell Res 2020, 389 (2), 111884. (62) Coffill, C. R.; Muller, P. A.; Oh, H. K.; Neo, S. P.; Hogue, K. A.; Cheok, C. F.; Vousden, K. H.; Lane, D. P.; Blackstock, W. P.; Gunaratne, J. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 2012, 13 (7), 638-44. (63) Thakar, K.; Krocher, T.; Savant, S.; Gollnast, D.; Kelm, S.; Dietz, F. Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 2010, 391 (12), 1401-10. (64) Bao, C. H.; Liu, K.; Wang, X. T.; Ma, W.; Wang, J. B.; Wang, C.; Jia, Y. B.; Wang, N. N.; Tan, B. X.; Song, Q. X.; Cheng, Y. F., Prognostic role of hepatoma-derived growth factor in solid tumors of Eastern Asia: a systematic review and meta- analysis. Asian Pac J Cancer Prev 2015, 16 (5), 1803-11. (65) Zhang, J.; Chen, N.; Qi, J.; Zhou, B.; Qiu, X., HDGF and ADAM9 are novel molecular staging biomarkers, prognostic biomarkers and predictive biomarkers for adjuvant chemotherapy in surgically resected stage I non-small cell lung cancer. J Cancer Res Clin Oncol 2014, 140 (8), 1441-9. (66) Iwasaki, T.; Nakagawa, K.; Nakamura, H.; Takada, Y.; Matsui, K.; Kawahara, K., Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncol Rep 2005, 13 (6), 1075-80. (67) Ren, H.; Tang, X.; Lee, J. J.; Feng, L.; Everett, A. D.; Hong, W. K.; Khuri, F. R.; Mao, L., Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 2004, 22 (16), 3230-7. (68) Zhang, A.; Long, W.; Guo, Z.; Liu, G.; Hu, Z.; Huang, Y.; Li, Y.; Grabinski, T. M.; Yang, J.; Zhao, P. X.; Everett, A. D.; Zhang, Y.; Cao, B. B., Development and clinical evaluation of a multi-purpose mAb and a sandwich ELISA test for hepatoma-derived growth factor in lung cancer patients. J Immunol Methods 2010, 355 (1-2), 61-7. (69) Meng, J.; Xie, W.; Cao, L.; Hu, C.; Zhe, Z., shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2010, 42 (1), 52-7. (70) Zhao, W. Y.; Wang, Y.; An, Z. J.; Shi, C. G.; Zhu, G. A.; Wang, B.; Lu, M. Y.; Pan, C. K.; Chen, P., Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun 2013, 435 (3), 466-71. (71) Ke, Y.; Zhao, W.; Xiong, J.; Cao, R., Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett 2013, 587 (18), 3153-7. (72) Flores-Perez, A.; Marchat, L. A.; Sanchez, L. L.; Romero-Zamora, D.; Arechaga-Ocampo, E.; Ramirez-Torres, N.; Chavez, J. D.; Carlos-Reyes, A.; Astudillo-de la Vega, H.; Ruiz-Garcia, E.; Gonzalez-Perez, A.; Lopez-Camarillo, C., Differential proteomic analysis reveals that EGCG inhibits HDGF and activates apoptosis to increase the sensitivity of non-small cells lung cancer to chemotherapy. Proteomics Clin Appl 2016, 10 (2), 172-82. (73) Morita, Y.; Ohno, M.; Nishi, K.; Hiraoka, Y.; Saijo, S.; Matsuda, S.; Kita, T.; Kimura, T.; Nishi, E., Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017, 7 (1), 14801. (74) Choong, L. Y.; Lim, S. K.; Chen, Y.; Loh, M. C.; Toy, W.; Wong, C. Y.; Salto-Tellez, M.; Shah, N.; Lim, Y. P., Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation. Genes Chromosomes Cancer 2011, 50 (10), 837-47. (75) Kanda, K.; Komekado, H.; Sawabu, T.; Ishizu, S.; Nakanishi, Y.; Nakatsuji, M.; Akitake-Kawano, R.; Ohno, M.; Hiraoka, Y.; Kawada, M.; Kawada, K.; Sakai, Y.; Matsumoto, K.; Kunichika, M.; Kimura, T.; Seno, H.; Nishi, E.; Chiba, T., Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-alpha. EMBO Mol Med 2012, 4 (5), 396-411. (76) Kanda, K.; Sakamoto, J.; Matsumoto, Y.; Ikuta, K.; Goto, N.; Morita, Y.; Ohno, M.; Nishi, K.; Eto, K.; Kimura, Y.; Nakanishi, Y.; Ikegami, K.; Yoshikawa, T.; Fukuda, A.; Kawada, K.; Sakai, Y.; Ito, A.; Yoshida, M.; Kimura, T.; Chiba, T.; Nishi, E.; Seno, H., Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation. JCI Insight 2018, 3 (8). (77) Kasai, Y.; Toriguchi, K.; Hatano, E.; Nishi, K.; Ohno, M.; Yoh, T.; Fukuyama, K.; Nishio, T.; Okuno, M.; Iwaisako, K.; Seo, S.; Taura, K.; Kurokawa, M.; Kunichika, M.; Uemoto, S.; Nishi, E., Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer science 2017, 108 (5), 910-917. (78) Uraoka, N.; Oue, N.; Sakamoto, N.; Sentani, K.; Oo, H. Z.; Naito, Y.; Noguchi, T.; Yasui, W., NRD1, which encodes nardilysin protein, promotes esophageal cancer cell invasion through induction of MMP2 and MMP3 expression. Cancer Sci 2014, 105 (1), 134-40. (79) https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html last accessed June 9, 2021. (80) Kang, J. H.; Asai, D.; Toita, R.; Kitazaki, H.; Katayama, Y., Plasma protein kinase C (PKC)alpha as a biomarker for the diagnosis of cancers. Carcinogenesis 2009, 30 (11), 1927-31. (81) Mannhold, R.; Kubinyi, H.; Folkers, G.; Klebl, B.; Müller, G.; Hamacher, M. Protein Kinases as Drug Targets. John Wiley & Sons, Weinheim, Germany, 49 (82) Costa, M.; Marchi, M.; Cardarelli, F.; Roy, A.; Beltram, F.; Maffei, L.; Ratto, G. M. Dynamic regulation of ERK2 nuclear translocation and mobility in living cells. J Cell Sci 2006, 119 (Pt 23), 4952-63. (83) Yang, T. Y.; Eissler, C. L.; Hall, M. C.; Parker, L. L. A multiple reaction monitoring (MRM) method to detect Bcr-Abl kinase activity in CML using a peptide biosensor. PLoS One 2013, 8 (2), e56627. (84) Almeida, A. M.; Castel-Branco, M. M.; Falcao, A. C. Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 774 (2), 215-22. (85) Catenacci, D. V.; Liao, W. L.; Thyparambil, S.; Henderson, L.; Xu, P.; Zhao, L.; Rambo, B.; Hart, J.; Xiao, S. Y.; Bengali, K.; Uzzell, J.; Darfler, M.; Krizman, D. B.; Cecchi, F.; Bottaro, D. P.; Karrison, T.; Veenstra, T. D.; Hembrough, T.; Burrows, J. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue. PLoS One 2014, 9 (7), e100586. (86) Huang, K.-Y.; Kao, S.-H.; Wang, W.-L.; Chen, C.-Y.; Hsiao, T.-H.; Salunke, S. B.; Chen, J. J. W.; Su, K.-Y.; Yang, S.-C.; Hong, T.-M.; Chen, C.-S.; Yang, P.-C. Small Molecule T315 Promotes Casitas B-Lineage Lymphoma–Dependent Degradation of Epidermal Growth Factor Receptor via Y1045 Autophosphorylation. American Journal of Respiratory and Critical Care Medicine 2016, 193 (7), 753-766. (87) Zhao, J.; Ma, M. Z.; Ren, H. Liu, Z.; Edelman, M. J.; Pan, H.; Mao, L. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res 2013, 19 (13), 3567-76. (88) Tsofack, S. P.; Garand, C.; Sereduk, C.; Chow, D.; Aziz, M.; Guay, D.; Yin, H. H.; Lebel, M. NONO and RALY proteins are required for YB-1 oxaliplatin induced resistance in colon adenocarcinoma cell lines. Mol Cancer 2011, 10, 145. (89) Lee, Y. Y.; Kim, H. P.; Kang, M. J.; Cho, B. K.; Han, S. W.; Kim, T. Y.; Yi, E. C. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med 2013, 45, e64. (90) The UniProt Consort. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019, 47 (D1), D506-D515. (91) Hornbeck, P. V.; Zhang, B. Murray, B.; Kornhauser, J. M.; Latham, V.; Skrzypek, E., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015, 43 (Database issue), D512-20. (92) Noh, S. J.; Baek, H. A.; Park, H. S.; Jang, K. Y.; Moon, W. S.; Kang, M. J.; Lee, D. G.; Kim, M. H.; Lee, J. H.; Chung, M. J. Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract 2013, 209 (6), 365-70. (93) Zhang, L.; Liu, T.; Huang, Y.; Liu, J. microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 2011, 28 (3), 381-8. (94) Yang, H. J.; Youn, H.; Seong, K. M.; Jin, Y. W.; Kim, J.; Youn, B. Phosphorylation of ribosomal protein S3 and antiapoptotic TRAF2 protein mediates radioresistance in non-small cell lung cancer cells. J Biol Chem 2013, 288 (5), 2965-75. (95) Zhou, G.; Khan, F.; Dai, Q.; Sylvester, J. E.; Kron, S. J. Photocleavable peptide-oligonucleotide conjugates for protein kinase assays by MALDI-TOF MS. Mol Biosyst 2012, 8 (9), 2395-404. (96) Liu, Z.; Zhang, Y.; Niu, Y.; Li, K.; Liu, X.; Chen, H.; Gao, C. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS One 2014, 9 (8), e103910. (97) Duffy, M. J.; O'Byrne, K. Tissue and Blood Biomarkers in Lung Cancer: A Review. Adv Clin Chem 2018, 86, 1-21. (98) Yotsukura, S.; Mamitsuka, H. Evaluation of serum-based cancer biomarkers: a brief review from a clinical and computational viewpoint. Crit Rev Oncol Hematol 2015, 93 (2), 103-15. (99) Kita, T.; Goydos, J.; Reitman, E.; Ravatn, R.; Lin, Y.; Shih, W. C.; Kikuchi, Y.; Chin, K. V. Extracellular cAMP-dependent protein kinase (ECPKA) in melanoma. Cancer Lett 2004, 208 (2), 187-91. (100) Wang, H.; Li, M.; Lin, W.; Wang, W.; Zhang, Z.; Rayburn, E. R.; Lu, J.; Chen, D.; Yue, X.; Shen, F.; Jiang, F.; He, J.; Wei, W.; Zeng, X.; Zhang, R. Extracellular activity of cyclic AMP-dependent protein kinase as a biomarker for human cancer detection: distribution characteristics in a normal population and cancer patients. Cancer Epidemiol Biomarkers Prev 2007, 16 (4), 789-95. (101) Takano, S.; Sogawa, K.; Yoshitomi, H.; Shida, T.; Mogushi, K.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; Kato, A.; Ishihara, T.; Tanaka, H.; Yokosuka, O.; Nomura, F.; Miyazaki, M. Increased circulating cell signalling phosphoproteins in sera are useful for the detection of pancreatic cancer. Br J Cancer 2010, 103 (2), 223-31. (102) Kang, J. H.; Mori, T.; Kitazaki, H.; Niidome, T.; Takayama, K.; Nakanishi, Y.; Katayama, Y. Kinase activity of protein kinase calpha in serum as a diagnostic biomarker of human lung cancer. Anticancer Res 2013, 33 (2), 485-8. (103) Leveridge, M.; Collier, L.; Edge, C.; Hardwicke, P.; Leavens, B.; Ratcliffe, S.; Rees, M.; Stasi, L. P.; Nadin, A.; Reith, A. D. A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry. J Biomol Screen 2016, 21 (2), 145-55. (104) US Food and Drug Administration, Bioanalytical Method Validation, Guidance for Industry. 2018. (105) Schmidlin, T.; Garrigues, L.; Lane, C. S.; Mulder, T. C.; van Doorn, S.; Post, H.; de Graaf, E. L.; Lemeer, S.; Heck, A. J.; Altelaar, A. F. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics 2016, 16 (15-16), 2193-205. (106) Whiteaker, J. R.; Zhao, L.; Yan, P.; Ivey, R. G.; Voytovich, U. J.; Moore, H. D.; Lin, C.; Paulovich, A. G. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling. Mol Cell Proteomics 2015, 14 (8), 2261-73. (107) Narumi, R.; Tomonaga, T. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM). Methods Mol Biol 2016, 1355, 85-101. (108) Kennedy, J. J.; Yan, P.; Zhao, L.; Ivey, R. G.; Voytovich, U. J.; Moore, H. D.; Lin, C.; Pogosova-Agadjanyan, E. L.; Stirewalt, D. L.; Reding, K. W. Whiteaker, J. R.; Paulovich, A. G., Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling. Mol Cell Proteomics 2016, 15 (2), 726-39.
|