帳號:guest(3.22.77.68)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹姆士
作者(外文):Reyes, Aaron James F.
論文名稱(中文):結合特定位點胜肽和串聯式質譜方法能夠在奈米細胞層級進行快速受質激酶測定
論文名稱(外文):Integrating Site-specific Peptide Reporters and Targeted Mass Spectrometry Enables Rapid Substrate-specific Kinase Assay at the Nanogram Cell Level
指導教授(中文):陳玉如
林俊成
指導教授(外文):CHEN, Yu-Ju
LIN, Chun-Cheng
口試委員(中文):孟子青
俞松良
涂熊林
口試委員(外文):Meng, Tzu-Ching
Yu, Sung-Liang
Tu, Hsiung-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023457
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:124
中文關鍵詞:激酶活性磷酸化質譜肺癌
外文關鍵詞:Kinase activityPhosphorylationMass spectrometryLung cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:300
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磷酸化介導的信號傳遞調節異常,導致許多疾病的發生與進程。受質激酶測定法,因能夠量化其隨著表型受質而改變的特定胺基酸位點磷酸化,而提供了更好的專一性來監測疾病的狀態。本研究結合特定胺基酸位點胜肽和多反應監測質譜(MRM-MS) 技術平台,靈敏且快速地相對定量和絕對定量奈米莫耳濃度的激酶與奈米細胞層級中受質激酶的活性。我們使用非小細胞肺癌作為概念驗證,設計了三種選自腫瘤組成型磷酸化的受質胜肽(HDGF-S165、RALY-S135和NRD1-S94)來證明此構想的可行性。在PC9非小細胞肺癌中,測得的HDGF-S165活性為3.2±0.2 fmol μg-1 min-1,而RALY-S135和NRD1-S94在25 ng和5 ng細胞裂解液的分別顯示出高於4倍和20倍的活性。實驗結果除了顯示此方法具有良好的準確度(小於15%的標準偏差) 以及再現性(小於15%的變異係數) 之外,且也暗示著不同受質胜肽具有不同的內生性激酶。另外,此實驗方法有別於以往散彈槍式蛋白質體學的流程,從細胞裂解至質譜儀的數據採集流程僅需3個小時。在多重分析實驗結果揭示了六種非小細胞肺癌細胞株之中,隨著表型受質而改變的磷酸化表現之差異性,並也暗示HDGF-S165和NRD1-S94與酪氨酸激酶抑制劑抗藥性的潛在關聯性。


Dysregulation of phosphorylation-mediated signaling drives the initiation and progression of many diseases. Though the mass spectrometry (MS)-based phosphoproteomics provided large-scale identification and quantification of altered phosphorylation associated with disease mechanisms, the complex sample preparation limits its general applicability in clinical specimens. A substrate-specific kinase assay capable of quantifying the altered site-specific phosphorylation of its phenotype-dependent substrates provides better specificity to monitor a disease state. To address the unmet need, we report a sensitive and rapid substrate-specific kinase assay by integrating site-specific peptide reporter and multiple reaction monitoring (MRM)-MS platform for relative and absolute quantification of substrate-specific kinase activity at the sensitivity of nanomolar kinase and nanogram cell lysate. Using non-small cell lung cancer (NSCLC) as a proof-of-concept, in the first part of thesis, three substrate peptides were selected from overly constitutive phosphorylation in tumors (HDGF-S165, RALY-S135, and NRD1-S94) and designed to demonstrate the feasibility. All three proteins were found to be either associated with poor prognosis and advanced phenotypes of NSCLC or highly expressed in other cancer. The kinase specificity were validated and kinase reactions were optimized. In the second part of the thesis, the assay was developed and showed good accuracy (<15% nominal deviation) and reproducibility (<15% CV). In PC9 cells, the measured activity for HDGF-S165 was 3.2±0.2 fmol μg-1 min-1, while RALY-S135 and NRD1-S94 showed 4- and 20-fold higher activity at the sensitivity of 25 ng and 5 ng lysate, respectively, these results suggest different endogenous kinases for each substrate peptide. In contrast to conventional shotgun phosphoproteomics workflow, the overall pipeline from cell lysate to MS data acquisition only takes 3 hours. The multiplexed analysis revealed differences in the phenotype-dependent substrate phosphorylation profiles across six NSCLC cell lines and suggested a potential association of HDGF-S165 and NRD1-S94 with TKI resistance. Encouraged by the ease of design, sensitivity, accuracy, and reproducibility, in the third part of the thesis, we further implemented the assay to potentially enable analysis of candidate phosphosite biomarkers in clinical samples such as serum. We performed a preliminary experiment adapting our assay into the MALDI-MS platform without the IMAC enrichment step. Using PKA and NRD1-S94 as model kinase-substrate pair, we were able to detect kinase activity in a gastric cancer serum pool, but further optimization is needed to boost the phosphopeptide signal for reliable quantitation. These new results open the possibility of a rapid and non-invasive kinase assay to target specific diseases with aberrant kinase activity such as cancer. Nevertheless, some key issues need to be improved. On the analytical perspective, substrates with multiple phosphorylation sites, and the variability of endogenous kinases in cells and samples may introduce challenges. In summary, the developed assay is generic to apply to other candidate phosphosite biomarkers as an efficient validation platform.
Contents

Cover Page 1
ACKNOWLEDGEMENTS 2
中文摘要: 3
ABSTRACT 4
LIST OF FIGURES 8
LIST OF TABLES 11
LIST OF ABBREVIATIONS 12
Chapter 1: Introduction 15
1.1 Introduction to Protein Phosphorylation 15
1.2 Analysis of Aberrant Phosphorylation by MS-based Phosphoproteomics 15
1.3 Kinase Activity Assays and Their Traditional Platforms 20
1.4 Mass Spectrometry-based Kinase Activity Assays 23
1.5 Thesis Objectives 27
Chapter 2: Experimental Section 31
2.1 Chemicals and Reagents 31
2.2 Cell Culture and Patient Tissues 32
2.3 Kinase Prediction 33
2.4 Kinase Reaction 33
2.5 Phosphopeptide Enrichment 34
2.6 MALDI-TOF-MS 34
2.7 LC-MS/MS Analysis 35
2.8 Multiple Reaction Monitoring Mass Spectrometry (MRM-MS) 36
2.9 Calculation of Kinase Activity 37
Chapter 3 Results 38
3.1 Design of the Targeted Substrate-specific MRM Assay 38
3.2 Validation of Peptide Substrate Phosphorylation 41
3.2.1 Selection of Target Peptides 41
3.2.2 Validation of HDGF-S165 Phosphorylation 43
3.2.3 Validation of RALY-S135 and NRD1-S94 Phosphorylation 45
3.2.4 Evaluation of the Specificities of the Three Substrate Peptides 46
3.3 Optimization and Selection of Kinase Reaction Conditions 54
3.4 Analytical Performance of the Substrate-specific Assay 57
3.4.1Assay Linear Working Range Using ERK2 and HDGF-S165 57
3.4.2 Assay Accuracy and Precision 58
3.4.3 Assay Sensitivity 59
3.4.4 Potential Utility in Phosphosite Validation 59
3.5 Multiplexed Substrate-specific Profiling in NSCLC Non-small Cell Lung Cancer Cells 68
3.5.1 Absolute Substrate-specific Profiles =Across Various NSCLC cells 68
3.5.2 Hierarchical Clustering Analysis Potential Biological Associations 69
3.5.3 Possible Sources of the Kinase Activities in NSCLC cells. 70
3.5.4 Summary of the Biological Analysis and Future Outlook 71
3.6 Other Potential Phosphosite Targets and Challenges 73
3.7 Adapting the Assay to the MALDI-MS Platform 80
3.8 Substrate- specific MALDI-MS Assay for Serum Analysis 82
3.9 Discussion 88
Chapter 4 Conclusions 91
Appendices 94



(1) Ubersax, J. A.; Ferrell, J. E., Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007, 8 (7), 530-41.
(2) Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017, 40 (2), 271-280.
(3) Schwartz, P. A.; Murray, B. W. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011, 39 (5-6), 192-210.
(4) Humphrey, S. J.; James, D. E.; Mann, M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 2015, 26 (12), 676-687.
(5) Meggio, F.; Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J 2003, 17 (3), 349-68.
(6) Zhang, Y.; Yan, Z.; Farooq, A.; Liu, X.; Lu, C.; Zhou, M. M.; He, C., Molecular basis of distinct interactions between Dok1 PTB domain and tyrosine-phosphorylated EGF receptor. J Mol Biol 2004, 343 (4), 1147-55.
(7) Sorkin, A.; Waters, C.; Overholser, K. A.; Carpenter, G., Multiple autophosphorylation site mutations of the epidermal growth factor receptor. Analysis of kinase activity and endocytosis. J Biol Chem 1991, 266 (13), 8355-62.
(8) Sorkin, A.; Helin, K.; Waters, C. M.; Carpenter, G.; Beguinot, L., Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors. J Biol Chem 1992, 267 (12), 8672-8.
(9) Osinalde, N.; Aloria, K.; Omaetxebarria, M. J.; Kratchmarova, I., Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017, 1055-1056, 29-38.
(10) Wills, M. K.; Tong, J.; Tremblay, S. L.; Moran, M. F.; Jones, N., The ShcD signaling adaptor facilitates ligand-independent phosphorylation of the EGF receptor. Mol Biol Cell 2014, 25 (6), 739-52.
(11) Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74.
(12) Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P. A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; Zecha, J.; Reiter, K.; Qiao, H.; Helm, D.; Koch, H.; Schoof, M.; Canevari, G.; Casale, E.; Depaolini, S. R.; Feuchtinger, A.; Wu, Z.; Schmidt, T.; Rueckert, L.; Becker, W.; Huenges, J.; Garz, A. K.; Gohlke, B. O.; Zolg, D. P.; Kayser, G.; Vooder, T.; Preissner, R.; Hahne, H.; Tonisson, N.; Kramer, K.; Gotze, K.; Bassermann, F.; Schlegl, J.; Ehrlich, H. C.; Aiche, S.; Walch, A.; Greif, P. A.; Schneider, S.; Felder, E. R.; Ruland, J.; Medard, G.; Jeremias, I.; Spiekermann, K.; Kuster, B. The target landscape of clinical kinase drugs. Science 2017, 358 (6367).
(13) Tong, M.; Yu, C.; Shi, J.; Huang, W.; Ge, S.; Liu, M.; Song, L.; Zhan, D.; Xia, X.; Liu, W.; Feng, J.; Shi, W.; Ji, J.; Gao, J.; Shi, T.; Zhu, W.; Ding, C.; Wang, Y.; He, F.; Shen, L.; Li, T.; Qin, J. Phosphoproteomics Enables Molecular Subtyping and Nomination of Kinase Candidates for Individual Patients of Diffuse-Type Gastric Cancer. iScience 2019, 22, 44-57.
(14) Dermit, M.; Dokal, A.; Cutillas, P. R. Approaches to identify kinase dependencies in cancer signalling networks. FEBS Lett 2017, 591 (17), 2577-2592.
(15) Wu, X.; Xing, X.; Dowlut, D.; Zeng, Y.; Liu, J.; Liu, X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J Proteomics 2019, 191, 68-79.
(16) Francavilla, C.; Lupia, M.; Tsafou, K.; Villa, A.; Kowalczyk, K.; Rakownikow Jersie-Christensen, R.; Bertalot, G.; Confalonieri, S.; Brunak, S.; Jensen, L. J.; Cavallaro, U.; Olsen, J. V. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer. Cell Rep 2017, 18 (13), 3242-3256.
(17) Chen, Y. J.; Roumeliotis, T. I.; Chang, Y. H.; Chen, C. T.; Han, C. L.; Lin, M. H.; Chen, H. W.; Chang, G. C.; Chang, Y. L.; Wu, C. T.; Lin, M. W.; Hsieh, M. S.; Wang, Y. T.; Chen, Y. R.; Jonassen, I.; Ghavidel, F. Z.; Lin, Z. S.; Lin, K. T.; Chen, C. W.; Sheu, P. Y.; Hung, C. T.; Huang, K. C.; Yang, H. C.; Lin, P. Y.; Yen, T. C.; Lin, Y. W.; Wang, J. H.; Raghav, L.; Lin, C. Y.; Chen, Y. S.; Wu, P. S.; Lai, C. T.; Weng, S. H.; Su, K. Y.; Chang, W. H.; Tsai, P. Y.; Robles, A. I.; Rodriguez, H.; Hsiao, Y. J.; Chang, W. H.; Sung, T. Y.; Chen, J. S.; Yu, S. L.; Choudhary, J. S.; Chen, H. Y.; Yang, P. C.; Chen, Y. J. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2020, 182 (1), 226-244 e17.
(18) Narumi, R.; Murakami, T.; Kuga, T.; Adachi, J.; Shiromizu, T.; Muraoka, S.; Kume, H.; Kodera, Y.; Matsumoto, M.; Nakayama, K.; Miyamoto, Y.; Ishitobi, M.; Inaji, H.; Kato, K.; Tomonaga, T. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples. J Proteome Res 2012, 11 (11), 5311-22.
(19) M.D. Shults, B. Imperiali, Versatile fluorescence probes of protein kinase activity,
J. Am. Chem. Soc. 125 (47) (2003) 14248e14249.
(20) R. Seethala, R. Menzel, A fluorescence polarization competition immunoassay
for tyrosine kinases, Anal. Biochem. 255 (2) (1998) 257e262.
(21) J. Kwan, A. Ling, E. Papp, D. Shaw, J.M. Bradshaw, A fluorescence resonance energy transfer-based binding assay for characterizing kinase inhibitors: important role for C-terminal biotin tagging of the kinase, Anal. Biochem. 395.
(22) M. Koresawa, T. Okabe, High-throughput screening with quantitation of ATP
consumption: a universal non-radioisotope, homogeneous assay for protein
kinase, Assay Drug Dev. Technol. 2 (2) (2004) 153e160.
(23) E. Amit, R. Obena, Y.T. Wang, R. Zhuravel, A.J.F. Reyes, S. Elbaz, D. Rotem, D. Porath, A. Friedler, Y.J. Chen, S. Yitzchaik Integrating proteomics with electrochemistry for identifying kinase biomarkers, Chem. Sci. 6 (8) (2015)
4756e4766.
(24) H. Matsumoto, E.S. Kahn, N. Komori, Nonradioactive phosphopeptide assay by
matrix-assisted laser desorption ionization time-of-flight mass spectrometry:
application to calcium/calmodulin-dependent protein kinase II, Anal. Biochem.
260 (2) (1998) 188e194.
(25) D.-H. Min, J. Su, M. Mrksich, Profiling kinase activities by using a peptide chip
and mass spectrometry, Angew. Chem. Int. Ed. 43 (44) (2004) 5973e5977.
(26) P.R. Cutillas, A. Khawaja, M. Graupera, W. Pearce, S. Gharbi, M. Waterfield,
B. Vanhaesebroeck, Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry,
Proc. Natl. Acad. Sci. U. S. A. 103 (24) (2006) 8959e8964.
(27) Y. Yu, R. Anjum, K. Kubota, J. Rush, J. Villen, S.P. Gygi, A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution
mass spectrometry, Proc. Natl. Acad. Sci. U. S. A. 106 (28) (2009) 11606e11611.
(28) K. Kubota, R. Anjum, Y. Yu, R.C. Kunz, J.N. Andersen, M. Kraus, H. Keilhack,
K. Nagashima, S. Krauss, C. Paweletz, R.C. Hendrickson, A.S. Feldman, C.L. Wu,
J. Rush, J. Villen, S.P. Gygi, Sensitive multiplexed analysis of kinase activities
and activity-based kinase identification, Nat. Biotechnol. 27 (10) (2009) 933e940.
(29) R.C. Kunz, F.E. McAllister, J. Rush, S.P. Gygi, A high-throughput, multiplexed
kinase assay using a benchtop orbitrap mass spectrometer to investigate the
effect of kinase inhibitors on kinase signaling pathways, Anal. Chem. 84 (14)
(2012) 6233e6239.
(30) Reyes, A. J. F.; Kitata, R. B.; Dela Rosa, M. A. C.; Wang, Y. T.; Lin, P. Y.; Yang, P. C.; Friedler, A.; Yitzchaik, S.; Chen, Y. J., Integrating site-specific peptide reporters and targeted mass spectrometry enables rapid substrate-specific kinase assay at the nanogram cell level. Anal Chim Acta 2021, 1155, 338341.
(31) Hastie, C. J.; McLauchlan, H. J.; Cohen, P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 2006, 1 (2), 968-71.
(32) Wang, Y.; Ma, H., Protein kinase profiling assays: a technology review. Drug Discov Today Technol 2015, 18, 1-8.
(33) Li, Y.; Xie, W.; Fang, G. Fluorescence detection techniques for protein kinase assay. Anal Bioanal Chem 2008, 390 (8), 2049-57.
(34) Lea, W. A.; Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 2011, 6 (1), 17-32.
(35) Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S. A., ADP-Glo: A Bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev Technol 2009, 7 (6), 560-72.
(36) Hewitt, S. H.; Parris, J.; Mailhot, R.; Butler, S. J. A continuous luminescence assay for monitoring kinase activity: signalling the ADP/ATP ratio using a discrete europium complex. Chem Commun (Camb) 2017, 53 (94), 12626-12629.
(37) Martic, S.; Labib, M.; Kraatz, H. B. Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations. Analyst 2011, 136 (1), 107-12.
(38) Wilner, O. I.; Guidotti, C.; Wieckowska, A.; Gill, R.; Willner, I. Probing kinase activities by electrochemistry, contact-angle measurements, and molecular-force interactions. Chemistry 2008, 14 (26), 7774-81.
(39) Snir, E.; Joore, J.; Timmerman, P.; Yitzchaik, S., Monitoring selectivity in kinase-promoted phosphorylation of densely packed peptide monolayers using label-free electrochemical detection. Langmuir 2011, 27 (17), 11212-21.
(40) Wang, J.; Shen, M.; Cao, Y.; Li, G. Switchable "On-Off" electrochemical technique for detection of phosphorylation. Biosens Bioelectron 2010, 26 (2), 638-42.
(41) Monzo, J.; Insua, I.; Fernandez-Trillo, F.; Rodriguez, P. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst 2015, 140 (21), 7116-28.
(42) Meyer, J. G.; Schilling, B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 2017, 14 (5), 419-429.
(43) Yi, L.; Shi, T.; Gritsenko, M. A.; X’Avia Chan, C. Y.; Fillmore, T. L.; Hess, B. M.; Swensen, A. C.; Liu, T.; Smith, R. D.; Wiley, H. S.; Qian, W. J. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Anal Chem 2018, 90 (8), 5256-5263.
(44) Waniwan, J. T.; Chen, Y. J.; Capangpangan, R.; Weng, S. H.; Chen, Y. J. Glycoproteomic Alterations in Drug-Resistant Non-Small Cell Lung Cancer Cells Revealed by Lectin Magnetic Nanoprobe-Based Mass Spectrometry. J Proteome Res 2018, 17 (11), 3761-3773.
(45) Tsai, C. F.; Wang, Y. T.; Chen, Y. R.; Lai, C. Y.; Lin, P. Y.; Pan, K. T.; Chen, J. Y.; Khoo, K. H.; Chen, Y. J. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 2008, 7 (9), 4058-69.
(46) Tsou, C. C.; Tsai, C. F.; Tsui, Y. H.; Sudhir, P. R.; Wang, Y. T.; Chen, Y. J.; Chen, J. Y.; Sung, T. Y.; Hsu, W. L. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 2010, 9 (1), 131-44
(47) Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.; Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A. C.; Tabata, T.; Sugiyama, N.; Goto, S.; Ishihama, Y. jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res 2017, 45 (D1), D1107-D1111.
(48) Vizcaino, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; Binz, P. A.; Xenarios, I.; Eisenacher, M.; Mayer, G.; Gatto, L.; Campos, A.; Chalkley, R. J.; Kraus, H. J.; Albar, J. P.; Martinez-Bartolome, S.; Apweiler, R.; Omenn, G. S.; Martens, L.; Jones, A. R.; Hermjakob, H. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 2014, 32 (3), 223-6.
(49) Obenauer, J. C.; Cantley, L. C.; Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003, 31 (13), 3635-41.
(50) Blom, N.; Sicheritz-Ponten, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004, 4 (6), 1633-49.
(51) Hornbeck, P. V.; Zhang, B.; Murray, B.; Kornhauser, J. M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015, 43 (Database issue), D512-20.
(52) Prasad, T. S.; Kandasamy, K.; Pandey, A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 2009, 577, 67-79.
(53) Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2007, 2 (8), 1896-906.
(54) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20 (18), 3551-67.
(55) Pino, L. K.; Searle, B. C.; Bollinger, J. G.; Nunn, B.; MacLean, B.; MacCoss, M. J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev 2020, 39 (3), 229-244.
(56) Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R. The PeptideAtlas project. Nucleic Acids Res 2006, 34 (Database issue), D655-8.
(57) Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M. Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016, 13 (9), 731-40.
(58) Morgillo, F.; Della Corte, C. M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 2016, 1 (3), e000060.
(59) Wang, Y. T.; Tsai, C. F.; Hong, T. C.; Tsou, C. C.; Lin, P. Y.; Pan, S. H.; Hong, T. M.; Yang, P. C.; Sung, T. Y.; Hsu, W. L.; Chen, Y. J. An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 2010, 9 (11), 5582-971.
(60) Zhang, G.; Liu, Z.; Chen, Y.; Zhang, Y. High Serum HDGF Levels Are Predictive of Bone Metastasis and Unfavorable Prognosis in Non-Small Cell Lung Cancer. Tohoku J Exp Med 2017, 242 (2), 101-108.
(61) Song, G.; Guo, G.; Du, T.; Li, X.; Wang, J.; Yan, Y.; Zhao, Y. RALY may cause an aggressive biological behavior and a dismal prognosis in non-small-cell lung cancer. Exp Cell Res 2020, 389 (2), 111884.
(62) Coffill, C. R.; Muller, P. A.; Oh, H. K.; Neo, S. P.; Hogue, K. A.; Cheok, C. F.; Vousden, K. H.; Lane, D. P.; Blackstock, W. P.; Gunaratne, J. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 2012, 13 (7), 638-44.
(63) Thakar, K.; Krocher, T.; Savant, S.; Gollnast, D.; Kelm, S.; Dietz, F. Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 2010, 391 (12), 1401-10.
(64) Bao, C. H.; Liu, K.; Wang, X. T.; Ma, W.; Wang, J. B.; Wang, C.; Jia, Y. B.; Wang, N. N.; Tan, B. X.; Song, Q. X.; Cheng, Y. F., Prognostic role of hepatoma-derived growth factor in solid tumors of Eastern Asia: a systematic review and meta- analysis. Asian Pac J Cancer Prev 2015, 16 (5), 1803-11.
(65) Zhang, J.; Chen, N.; Qi, J.; Zhou, B.; Qiu, X., HDGF and ADAM9 are novel molecular staging biomarkers, prognostic biomarkers and predictive biomarkers for adjuvant chemotherapy in surgically resected stage I non-small cell lung cancer. J Cancer Res Clin Oncol 2014, 140 (8), 1441-9.
(66) Iwasaki, T.; Nakagawa, K.; Nakamura, H.; Takada, Y.; Matsui, K.; Kawahara, K., Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncol Rep 2005, 13 (6), 1075-80.
(67) Ren, H.; Tang, X.; Lee, J. J.; Feng, L.; Everett, A. D.; Hong, W. K.; Khuri, F. R.; Mao, L., Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 2004, 22 (16), 3230-7.
(68) Zhang, A.; Long, W.; Guo, Z.; Liu, G.; Hu, Z.; Huang, Y.; Li, Y.; Grabinski, T. M.; Yang, J.; Zhao, P. X.; Everett, A. D.; Zhang, Y.; Cao, B. B., Development and clinical evaluation of a multi-purpose mAb and a sandwich ELISA test for hepatoma-derived growth factor in lung cancer patients. J Immunol Methods 2010, 355 (1-2), 61-7.
(69) Meng, J.; Xie, W.; Cao, L.; Hu, C.; Zhe, Z., shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2010, 42 (1), 52-7.
(70) Zhao, W. Y.; Wang, Y.; An, Z. J.; Shi, C. G.; Zhu, G. A.; Wang, B.; Lu, M. Y.; Pan, C. K.; Chen, P., Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun 2013, 435 (3), 466-71.
(71) Ke, Y.; Zhao, W.; Xiong, J.; Cao, R., Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett 2013, 587 (18), 3153-7.
(72) Flores-Perez, A.; Marchat, L. A.; Sanchez, L. L.; Romero-Zamora, D.; Arechaga-Ocampo, E.; Ramirez-Torres, N.; Chavez, J. D.; Carlos-Reyes, A.; Astudillo-de la Vega, H.; Ruiz-Garcia, E.; Gonzalez-Perez, A.; Lopez-Camarillo, C., Differential proteomic analysis reveals that EGCG inhibits HDGF and activates apoptosis to increase the sensitivity of non-small cells lung cancer to chemotherapy. Proteomics Clin Appl 2016, 10 (2), 172-82.
(73) Morita, Y.; Ohno, M.; Nishi, K.; Hiraoka, Y.; Saijo, S.; Matsuda, S.; Kita, T.; Kimura, T.; Nishi, E., Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017, 7 (1), 14801.
(74) Choong, L. Y.; Lim, S. K.; Chen, Y.; Loh, M. C.; Toy, W.; Wong, C. Y.; Salto-Tellez, M.; Shah, N.; Lim, Y. P., Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation. Genes Chromosomes Cancer 2011, 50 (10), 837-47.
(75) Kanda, K.; Komekado, H.; Sawabu, T.; Ishizu, S.; Nakanishi, Y.; Nakatsuji, M.; Akitake-Kawano, R.; Ohno, M.; Hiraoka, Y.; Kawada, M.; Kawada, K.; Sakai, Y.; Matsumoto, K.; Kunichika, M.; Kimura, T.; Seno, H.; Nishi, E.; Chiba, T., Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-alpha. EMBO Mol Med 2012, 4 (5), 396-411.
(76) Kanda, K.; Sakamoto, J.; Matsumoto, Y.; Ikuta, K.; Goto, N.; Morita, Y.; Ohno, M.; Nishi, K.; Eto, K.; Kimura, Y.; Nakanishi, Y.; Ikegami, K.; Yoshikawa, T.; Fukuda, A.; Kawada, K.; Sakai, Y.; Ito, A.; Yoshida, M.; Kimura, T.; Chiba, T.; Nishi, E.; Seno, H., Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation. JCI Insight 2018, 3 (8).
(77) Kasai, Y.; Toriguchi, K.; Hatano, E.; Nishi, K.; Ohno, M.; Yoh, T.; Fukuyama, K.; Nishio, T.; Okuno, M.; Iwaisako, K.; Seo, S.; Taura, K.; Kurokawa, M.; Kunichika, M.; Uemoto, S.; Nishi, E., Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer science 2017, 108 (5), 910-917.
(78) Uraoka, N.; Oue, N.; Sakamoto, N.; Sentani, K.; Oo, H. Z.; Naito, Y.; Noguchi, T.; Yasui, W., NRD1, which encodes nardilysin protein, promotes esophageal cancer cell invasion through induction of MMP2 and MMP3 expression. Cancer Sci 2014, 105 (1), 134-40.
(79) https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html last accessed June 9, 2021.
(80) Kang, J. H.; Asai, D.; Toita, R.; Kitazaki, H.; Katayama, Y., Plasma protein kinase C (PKC)alpha as a biomarker for the diagnosis of cancers. Carcinogenesis 2009, 30 (11), 1927-31.
(81) Mannhold, R.; Kubinyi, H.; Folkers, G.; Klebl, B.; Müller, G.; Hamacher, M. Protein Kinases as Drug Targets. John Wiley & Sons, Weinheim, Germany, 49
(82) Costa, M.; Marchi, M.; Cardarelli, F.; Roy, A.; Beltram, F.; Maffei, L.; Ratto, G. M. Dynamic regulation of ERK2 nuclear translocation and mobility in living cells. J Cell Sci 2006, 119 (Pt 23), 4952-63.
(83) Yang, T. Y.; Eissler, C. L.; Hall, M. C.; Parker, L. L. A multiple reaction monitoring (MRM) method to detect Bcr-Abl kinase activity in CML using a peptide biosensor. PLoS One 2013, 8 (2), e56627.
(84) Almeida, A. M.; Castel-Branco, M. M.; Falcao, A. C. Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2002, 774 (2), 215-22.
(85) Catenacci, D. V.; Liao, W. L.; Thyparambil, S.; Henderson, L.; Xu, P.; Zhao, L.; Rambo, B.; Hart, J.; Xiao, S. Y.; Bengali, K.; Uzzell, J.; Darfler, M.; Krizman, D. B.; Cecchi, F.; Bottaro, D. P.; Karrison, T.; Veenstra, T. D.; Hembrough, T.; Burrows, J. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue. PLoS One 2014, 9 (7), e100586.
(86) Huang, K.-Y.; Kao, S.-H.; Wang, W.-L.; Chen, C.-Y.; Hsiao, T.-H.; Salunke, S. B.; Chen, J. J. W.; Su, K.-Y.; Yang, S.-C.; Hong, T.-M.; Chen, C.-S.; Yang, P.-C. Small Molecule T315 Promotes Casitas B-Lineage Lymphoma–Dependent Degradation of Epidermal Growth Factor Receptor via Y1045 Autophosphorylation. American Journal of Respiratory and Critical Care Medicine 2016, 193 (7), 753-766.
(87) Zhao, J.; Ma, M. Z.; Ren, H. Liu, Z.; Edelman, M. J.; Pan, H.; Mao, L. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res 2013, 19 (13), 3567-76.
(88) Tsofack, S. P.; Garand, C.; Sereduk, C.; Chow, D.; Aziz, M.; Guay, D.; Yin, H. H.; Lebel, M. NONO and RALY proteins are required for YB-1 oxaliplatin induced resistance in colon adenocarcinoma cell lines. Mol Cancer 2011, 10, 145.
(89) Lee, Y. Y.; Kim, H. P.; Kang, M. J.; Cho, B. K.; Han, S. W.; Kim, T. Y.; Yi, E. C. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med 2013, 45, e64.
(90) The UniProt Consort. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019, 47 (D1), D506-D515.
(91) Hornbeck, P. V.; Zhang, B. Murray, B.; Kornhauser, J. M.; Latham, V.; Skrzypek, E., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015, 43 (Database issue), D512-20.
(92) Noh, S. J.; Baek, H. A.; Park, H. S.; Jang, K. Y.; Moon, W. S.; Kang, M. J.; Lee, D. G.; Kim, M. H.; Lee, J. H.; Chung, M. J. Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract 2013, 209 (6), 365-70.
(93) Zhang, L.; Liu, T.; Huang, Y.; Liu, J. microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 2011, 28 (3), 381-8.
(94) Yang, H. J.; Youn, H.; Seong, K. M.; Jin, Y. W.; Kim, J.; Youn, B. Phosphorylation of ribosomal protein S3 and antiapoptotic TRAF2 protein mediates radioresistance in non-small cell lung cancer cells. J Biol Chem 2013, 288 (5), 2965-75.
(95) Zhou, G.; Khan, F.; Dai, Q.; Sylvester, J. E.; Kron, S. J. Photocleavable peptide-oligonucleotide conjugates for protein kinase assays by MALDI-TOF MS. Mol Biosyst 2012, 8 (9), 2395-404.
(96) Liu, Z.; Zhang, Y.; Niu, Y.; Li, K.; Liu, X.; Chen, H.; Gao, C. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS One 2014, 9 (8), e103910.
(97) Duffy, M. J.; O'Byrne, K. Tissue and Blood Biomarkers in Lung Cancer: A Review. Adv Clin Chem 2018, 86, 1-21.
(98) Yotsukura, S.; Mamitsuka, H. Evaluation of serum-based cancer biomarkers: a brief review from a clinical and computational viewpoint. Crit Rev Oncol Hematol 2015, 93 (2), 103-15.
(99) Kita, T.; Goydos, J.; Reitman, E.; Ravatn, R.; Lin, Y.; Shih, W. C.; Kikuchi, Y.; Chin, K. V. Extracellular cAMP-dependent protein kinase (ECPKA) in melanoma. Cancer Lett 2004, 208 (2), 187-91.
(100) Wang, H.; Li, M.; Lin, W.; Wang, W.; Zhang, Z.; Rayburn, E. R.; Lu, J.; Chen, D.; Yue, X.; Shen, F.; Jiang, F.; He, J.; Wei, W.; Zeng, X.; Zhang, R. Extracellular activity of cyclic AMP-dependent protein kinase as a biomarker for human cancer detection: distribution characteristics in a normal population and cancer patients. Cancer Epidemiol Biomarkers Prev 2007, 16 (4), 789-95.
(101) Takano, S.; Sogawa, K.; Yoshitomi, H.; Shida, T.; Mogushi, K.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Ohtsuka, M.; Kato, A.; Ishihara, T.; Tanaka, H.; Yokosuka, O.; Nomura, F.; Miyazaki, M. Increased circulating cell signalling phosphoproteins in sera are useful for the detection of pancreatic cancer. Br J Cancer 2010, 103 (2), 223-31.
(102) Kang, J. H.; Mori, T.; Kitazaki, H.; Niidome, T.; Takayama, K.; Nakanishi, Y.; Katayama, Y. Kinase activity of protein kinase calpha in serum as a diagnostic biomarker of human lung cancer. Anticancer Res 2013, 33 (2), 485-8.
(103) Leveridge, M.; Collier, L.; Edge, C.; Hardwicke, P.; Leavens, B.; Ratcliffe, S.; Rees, M.; Stasi, L. P.; Nadin, A.; Reith, A. D. A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry. J Biomol Screen 2016, 21 (2), 145-55.
(104) US Food and Drug Administration, Bioanalytical Method Validation, Guidance for Industry. 2018.
(105) Schmidlin, T.; Garrigues, L.; Lane, C. S.; Mulder, T. C.; van Doorn, S.; Post, H.; de Graaf, E. L.; Lemeer, S.; Heck, A. J.; Altelaar, A. F. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics 2016, 16 (15-16), 2193-205.
(106) Whiteaker, J. R.; Zhao, L.; Yan, P.; Ivey, R. G.; Voytovich, U. J.; Moore, H. D.; Lin, C.; Paulovich, A. G. Peptide Immunoaffinity Enrichment and Targeted Mass Spectrometry Enables Multiplex, Quantitative Pharmacodynamic Studies of Phospho-Signaling. Mol Cell Proteomics 2015, 14 (8), 2261-73.
(107) Narumi, R.; Tomonaga, T. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM). Methods Mol Biol 2016, 1355, 85-101.
(108) Kennedy, J. J.; Yan, P.; Zhao, L.; Ivey, R. G.; Voytovich, U. J.; Moore, H. D.; Lin, C.; Pogosova-Agadjanyan, E. L.; Stirewalt, D. L.; Reding, K. W. Whiteaker, J. R.; Paulovich, A. G., Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling. Mol Cell Proteomics 2016, 15 (2), 726-39.




 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *