帳號:guest(3.129.249.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李威德
作者(外文):Li, Wei-De
論文名稱(中文):模擬三維光子晶體時各種晶格中離散旋度算子的特徵值問題
論文名稱(外文):Eigenvalue Problems of Discrete Curl Operators on Various Lattices for Simulating Three Dimensional Photonic Crystals
指導教授(中文):林文偉
朱家杰
指導教授(外文):Lin, Wen-Wei
Chu, Chia-Chieh
口試委員(中文):王偉成
王偉仲
黃聰明
口試委員(外文):Wang, Wei-Cheng
Wang, Wei-Chung
Huang, Tsung-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:數學系
學號:101021804
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:128
中文關鍵詞:馬克斯威爾方程光子晶體Yee's scheme布拉非晶格特徵分解零空間免除法
外文關鍵詞:Maxwell's EquationsPhotonic CrystalYee's SchemeBravais latticesEigen-decompositionNullspace-free Method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:89
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
光子晶體是光電科技中最重要的材料之一,它是介電質模仿原子在晶體中的排列方式生成。光子晶體基本的光學特性就是具有光子能隙,尋找光子能隙必須使用數值方法去計算。電磁波在光子晶體中的傳播行為受到馬克斯威爾方程控制,在時間諧波的條件下,此控制方程變成與時間無關的頻域問題。數值計算的方法有許多種,經過比較後我們發現 Yee's scheme 是目前最好的離散方法,至今為止這套方法只能適用於簡單立方晶格與面心立方晶格,但三維空間中共有14種布拉非晶格,本論文的第一個重要的工作是將這套方法推廣到所有的布拉非晶格上。利用 Yee's scheme 將馬克斯威爾方程離散後,可得到一組廣義特徵值問題,我們將對此廣義特徵值問題進行分析。本論文的第二個重要工作,是尋找離散旋度算子的特徵分解,經過一系列繁雜的計算後,我們發現所有的晶格可歸納出兩種分解。我們有興趣的特徵值是最小的一些正實數,但此特徵值問題龐大的零空間嚴重影響了數值計算的收斂性,我們採用一種叫作零空間免除法的技巧,避開了這個困擾,但這個技巧使得我們的問題從稀疏矩陣便成了稠密矩陣,幸運的是我們得到的特徵分解與離散傅立業轉換有關,大幅提升了數值計算的效率。最後我們計算了光子晶體在各種晶格上的能帶結構,並在GPU叢集上實現了高效能的計算。
Photonic crystal is one of the most important materials in optoelectronics technology, it is made up of periodic dielectrics and imitates the arrangement of atoms in the crystal. The basic optical property of a photonic crystal is band gap, it is necessary to use the numerical method when computing the band gap. The propagation behavior of electromagnetic waves in photonic crystals is governed by Maxwell's equations, applying the time harmonic assumption, the governing equations will become a time-independent frequency domain problem. There are many numerical methods, after comparison, we believe that Yee's scheme is the best discrete method. So far, this method can only be applied to simple cubic lattice and face-centered cubic lattice, but there are 14 Bravais lattices in three-dimensional space. The first important work of this dissertation is to extend this method to all of the Bravais lattices.

Using the Yee's scheme to discretize the Maxwell's equations, we can get a general eigenvalue problem, and we will analyze this general eigenvalue problem. The second important task of this article is to find the eigen-decomposition of the discrete curl operator, after a series of complicated calculations, we find that all the lattices can be summed up into two kinds of decomposition. We are interested in finding the several few smallest real eigenvalues, but the large dimension of null space is 1/3 of all, this seriously affected the convergence of calculation, we use a technique which is called nullspace-free method to avoid this trouble. But this technique transforms the sparse matrix in our problem to a dense matrix, fortunately, the eigenvectors we found before are related to discrete Fourier transformation. The efficiency of calculation has been significantly improved by using the fast Fourier transformation. Finally, we calculate the band structures of photonic crystals on various lattices, and implement high performance calculations on the GPU.
1 Introduction 1
1.1 Photonic Crystal 1
1.2 Governing Equations 2
1.3 Numerical Methods 5
1.4 Yee’s Scheme 6
1.5 Notations and Overview 8
2 Background 10
2.1 Crystallographic Restriction Theorem 10
2.2 Bravais lattice 11
2.3 Primitive Translation Vectors 21
2.4 Reciprocal Lattice and Brillouin Zone 25
2.5 Point Groups and Space Groups 26
3 Explicit matrix representation of the curl operator 29
3.1 Matrix representation of curl operator for simple cases 30
3.2 Matrix representation of curl operator for general cases 32
3.2.1 Matrix representation of ∇×E = ιωμ0H 48
3.2.2 Matrix representation of ∇×H = -ιωεE 64
4 Eigen-decomposition of the partial derivative operators 74
4.1 Eigen-decomposition of the partial derivative operators for simple cases 74
4.2 Eigen-decomposition of the partial derivative operators for general cases 77
5 Singular Value Decomposition and the Fast Solver 89
5.1 Singular value decompositions for discrete curl operators 89
5.2 Null space free method 91
5.3 FFT based matrix-vector multiplication 93
6 Numerical Results 97
7 Conclusions 107
A Appendix 109
[1] 欒丕綱 and 陳啟昌. 光子晶體: 從蝴蝶翅膀到奈米光子學. 五南圖書出版股份有限公司, 2005.
[2] J. Bamberg, G. Cairns, and D. Kilminster. The crystallographic restriction, permutations, and goldbach’s conjecture. The American mathematical monthly, 110(3):202–209, 2003.
[3] F. Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik A Hadrons and Nuclei, 52(7):555–600, 1929.
[4] R.-L. Chern, H.-E. Hsieh, T.-M. Huang, W.-W. Lin, and W. Wang. Singular value decompositions for single-curl operators in three-dimensional maxwell’s equations for complex media. SIAM Journal on Matrix Analysis and Applications, 36(1):203–224, 2015.
[5] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan. Single-mode photonic band gap guidance of light in air. science, 285(5433):1537–1539, 1999.
[6] G. R. Fowles. Introduction to Modern Optics. Dover Publications, 2ndEd., Inc., N. Y., ISBN: 0-486-65957-7, 1989.
[7] F. Garcia-Santamaria, C. López, F. Meseguer, F. López-Tejeira, J. Sánchez-Dehesa, and H. T. Miyazaki. Opal-like photonic crystal with diamond lattice. Applied Physics Letters, 79(15):2309–2311, 2001.
[8] S. Guo, F. Wu, S. Albin, and R. S. Rogowski. Photonic band gap analysis using finite-difference frequency-domain method. Optics Express, 12(8):1741– 1746, 2004.
[9] B. C. Gupta, C.-H. Kuo, and Z. Ye. Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems. Physical Review E, 69(6):066615, 2004.
[10] Th. Hahn. International Tables for Crystallography Volume A: Space-group symmetry. 5thEd., Berlin, New York: Springer-Verlag, 2002.
[11] D. A. Hill, Jean G. Van B., J. A. Stratton, Y. Zhu, A. C. Cangellaris, L. Josefsson, and P. Persson. Time-harmonic electromagnetic fields. 1961.
[12] K. M. Ho, C.-T. Chan, and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters, 65(25):3152, 1990.
[13] H.-E. Hsieh. 離散旋度算子的特徵分解及其在馬克斯威爾方程之應用. 臺灣大學數學研究所學位論文, pages 1–109, 2016.
[14] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three-dimensional photonic crystals. SIAM Journal on Matrix Analysis and Applications, 34(2):369–391, 2013.
[15] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Matrix representation of the double-curl operator for simulating three dimensional photonic crystals. Mathematical and Computer Modelling, 58(1):379–392, 2013.
[16] U. S. Inan and R. A. Marshall. Numerical electromagnetics: the FDTD method. Cambridge University Press, 2011.
[17] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic crystals: molding the flow of light. Princeton university press, 2011.
[18] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic crystals: putting a new twist on light. Nature, 386(6621):143, 1997.
[19] S. John. Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 58(23):2486, 1987.
[20] S. G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis. Optics express, 8(3):173–190, 2001.
[21] K. S. Kunz and R. J. Luebbers. The finite difference time domain method for electromagnetics. CRC press, 1993.
[22] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of lightwave technology, 18(10):1402–1411, 2000.
[23] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić. Weyl points and line nodes in gyroid photonic crystals. Nature photonics, 7(4):294–299, 2013.
[24] L. Lu, J. D. Joannopoulos, and M. Soljačić. Topological photonics. Nature Photonics, 8(11):821–829, 2014.
[25] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle negative refraction without negative effective index. Physical Review B, 65(20):201104, 2002.
[26] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289(5479):604–606, 2000.
[27] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’brien, P.D. Dapkus, and I. Kim. Two-dimensional photonic band-gap defect mode laser. Science, 284(5421):1819–1821, 1999.
[28] O. Painter, J. Vučković, and A. Scherer. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. JOSA B, 16(2):275–285, 1999.
[29] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, M. Segev, and A. Szameit. Photonic floquet topological insulators. In Lasers and Electro-Optics (CLEO), 2013 Conference on, pages 1–2. IEEE, 2013.
[30] M. Reed and B. Simon. Methods of Modern Mathematical Physics. Analysis of Operators, Vol. IV, Academic Press, San Diego, CA, 1978.
[31] K. Sakoda. Optical properties of photonic crystals, volume 80. Springer Science & Business Media, 2004.
[32] W. Setyawan and S. Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49(2):299–312, 2010.
[33] U. Shmueli. International Tables for Crystallography, Volume B: Reciprocal Space. Springer Science & Business Media, 2008.
[34] A. Taflove and S. C Hagness. Computational electrodynamics: the finitedifference time-domain method. Artech house, 2005.
[35] B. Thidé. Electromagnetic field theory. Upsilon Books Uppsala, 2004.
[36] V. Twersky. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. The Journal of the Acoustical Society of America, 24(1):42–46, 1952.
[37] F. Xu, Y. Zhang, W. Hong, K. Wu, and T.-J. Cui. Finite-difference frequencydomain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 51(11):2221–2227, 2003.
[38] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58(20):2059, 1987.
[39] K. Yasumoto. Electromagnetic theory and applications for photonic crystals. CRC press, 2005.
[40] K. Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302–307, 1966.
[41] C.-P. Yu and H.-C. Chang. Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals. Optics Express, 12(7):1397–1408, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *