|
[1] 欒丕綱 and 陳啟昌. 光子晶體: 從蝴蝶翅膀到奈米光子學. 五南圖書出版股份有限公司, 2005. [2] J. Bamberg, G. Cairns, and D. Kilminster. The crystallographic restriction, permutations, and goldbach’s conjecture. The American mathematical monthly, 110(3):202–209, 2003. [3] F. Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik A Hadrons and Nuclei, 52(7):555–600, 1929. [4] R.-L. Chern, H.-E. Hsieh, T.-M. Huang, W.-W. Lin, and W. Wang. Singular value decompositions for single-curl operators in three-dimensional maxwell’s equations for complex media. SIAM Journal on Matrix Analysis and Applications, 36(1):203–224, 2015. [5] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan. Single-mode photonic band gap guidance of light in air. science, 285(5433):1537–1539, 1999. [6] G. R. Fowles. Introduction to Modern Optics. Dover Publications, 2ndEd., Inc., N. Y., ISBN: 0-486-65957-7, 1989. [7] F. Garcia-Santamaria, C. López, F. Meseguer, F. López-Tejeira, J. Sánchez-Dehesa, and H. T. Miyazaki. Opal-like photonic crystal with diamond lattice. Applied Physics Letters, 79(15):2309–2311, 2001. [8] S. Guo, F. Wu, S. Albin, and R. S. Rogowski. Photonic band gap analysis using finite-difference frequency-domain method. Optics Express, 12(8):1741– 1746, 2004. [9] B. C. Gupta, C.-H. Kuo, and Z. Ye. Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems. Physical Review E, 69(6):066615, 2004. [10] Th. Hahn. International Tables for Crystallography Volume A: Space-group symmetry. 5thEd., Berlin, New York: Springer-Verlag, 2002. [11] D. A. Hill, Jean G. Van B., J. A. Stratton, Y. Zhu, A. C. Cangellaris, L. Josefsson, and P. Persson. Time-harmonic electromagnetic fields. 1961. [12] K. M. Ho, C.-T. Chan, and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters, 65(25):3152, 1990. [13] H.-E. Hsieh. 離散旋度算子的特徵分解及其在馬克斯威爾方程之應用. 臺灣大學數學研究所學位論文, pages 1–109, 2016. [14] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three-dimensional photonic crystals. SIAM Journal on Matrix Analysis and Applications, 34(2):369–391, 2013. [15] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. Matrix representation of the double-curl operator for simulating three dimensional photonic crystals. Mathematical and Computer Modelling, 58(1):379–392, 2013. [16] U. S. Inan and R. A. Marshall. Numerical electromagnetics: the FDTD method. Cambridge University Press, 2011. [17] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic crystals: molding the flow of light. Princeton university press, 2011. [18] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic crystals: putting a new twist on light. Nature, 386(6621):143, 1997. [19] S. John. Strong localization of photons in certain disordered dielectric superlattices. Physical review letters, 58(23):2486, 1987. [20] S. G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis. Optics express, 8(3):173–190, 2001. [21] K. S. Kunz and R. J. Luebbers. The finite difference time domain method for electromagnetics. CRC press, 1993. [22] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of lightwave technology, 18(10):1402–1411, 2000. [23] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić. Weyl points and line nodes in gyroid photonic crystals. Nature photonics, 7(4):294–299, 2013. [24] L. Lu, J. D. Joannopoulos, and M. Soljačić. Topological photonics. Nature Photonics, 8(11):821–829, 2014. [25] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle negative refraction without negative effective index. Physical Review B, 65(20):201104, 2002. [26] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 289(5479):604–606, 2000. [27] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’brien, P.D. Dapkus, and I. Kim. Two-dimensional photonic band-gap defect mode laser. Science, 284(5421):1819–1821, 1999. [28] O. Painter, J. Vučković, and A. Scherer. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. JOSA B, 16(2):275–285, 1999. [29] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, M. Segev, and A. Szameit. Photonic floquet topological insulators. In Lasers and Electro-Optics (CLEO), 2013 Conference on, pages 1–2. IEEE, 2013. [30] M. Reed and B. Simon. Methods of Modern Mathematical Physics. Analysis of Operators, Vol. IV, Academic Press, San Diego, CA, 1978. [31] K. Sakoda. Optical properties of photonic crystals, volume 80. Springer Science & Business Media, 2004. [32] W. Setyawan and S. Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49(2):299–312, 2010. [33] U. Shmueli. International Tables for Crystallography, Volume B: Reciprocal Space. Springer Science & Business Media, 2008. [34] A. Taflove and S. C Hagness. Computational electrodynamics: the finitedifference time-domain method. Artech house, 2005. [35] B. Thidé. Electromagnetic field theory. Upsilon Books Uppsala, 2004. [36] V. Twersky. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. The Journal of the Acoustical Society of America, 24(1):42–46, 1952. [37] F. Xu, Y. Zhang, W. Hong, K. Wu, and T.-J. Cui. Finite-difference frequencydomain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 51(11):2221–2227, 2003. [38] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical review letters, 58(20):2059, 1987. [39] K. Yasumoto. Electromagnetic theory and applications for photonic crystals. CRC press, 2005. [40] K. Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3):302–307, 1966. [41] C.-P. Yu and H.-C. Chang. Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals. Optics Express, 12(7):1397–1408, 2004.
|