帳號:guest(18.118.166.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佾明
作者(外文):Tsai, I-Ming
論文名稱(中文):bu^BSO(2n) 的代數穩定分解
論文名稱(外文):The algebraic splitting of bu^BSO(2n)
指導教授(中文):顏東勇
指導教授(外文):Yan, Dong-Yung
口試委員(中文):翁秉仁
李華倫
王信華
陳正忠
口試委員(外文):Ong, Ping-Zen
Li, Hua-Lun
Wang, Shin-Hwa
Chen, Jeng-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:數學系
學號:101021802
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:21
中文關鍵詞:穩定分解連通K-理論廣義下同調分類空間
外文關鍵詞:Stable splittingconnective K-theorygeneralised homologyClassifying spaceModules
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們將證明bu^BSO(2n)的上同調群同構於一系列E–模的直和,E=Z/2<Q_(0),Q_(1)>, n>=2。這將會給出BSO(2n)的連通K–理論的代數穩定分解。
We show that the mod 2 cohomology of bu^BSO(2n) is isomorphic to a direct sum of E-modules, E=Z/2<Q_(0),Q_(1)>, n>=2. This would give the algebraic splitting of the complex connective K-theory of BSO(2n).
誌謝
摘要
Abstract
1.Motivation---------------------------------------1
2.Introduction-------------------------------------2
3.Background and main result-----------------------5
4.Basic Notions------------------------------------9
5.Algebraic splitting of the spectra---------------12
6.Addendum-----------------------------------------19
Bibliography
[1] J. F. Adams, Stable homotopy and generalized homology, Chicago Lecture notes in Math, University of Chicago Press, 1974.
[2] J. F. Adams, Inifinite loop spaces, Hermann Weyl Lectures, The Institute for Ad- vanced Study, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1978, 96-131.
[3] J. F. Adams and S. B. Priddy, Uniqueness of BSO, Math. Proc. Camb. Phil. Soc.,80, 1976, 475-509.
[4] J. C. Becker and D.H. Gottlieb, The transfer map and fiber bundles, Topology, Vol. 14, Pergamon Press, 1975, 1-12.
[5] R. R. Bruner and J. P. C. Greenlees, The connective K-Theory of finite groups, 1991.
[6] R. M. Kane, Operations in connective K-theory, Memoirs of the American Mathe- matical Society, vol 34, Number 254, Providence, Rhode Island, USA, 1981.
[7] A. Liulevicius, The cohomology of Massey-Peterson algebras, Math. Zeitschr., 105, 1968, 226-256.
[8] E. Ossa, Connective K-theory of elementary abelian groups, In: Kawakubo K.(eds) Transformation Groups. Springer Lecture Notes in Mathmatics, vol 1375, 1989, 269-274.
[9] H. R. Margolis, Spectra and the Steenrod Algebra, North-Holland Mathematical Library, Elsevier Science Publishers B.V., vol 29, 1983.
[10] J. Milnor, The Steenrod Algebra and its dual, The Annals of Mathematics, 2nd Ser., vol 67, No.1., 1958, 150-171.
[11] J. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974, 145.
[12] N. E. Steenrod, Cohomology Operations, Princeton University Press, Annals of Mathematics Studies, No.50, 1962.
[13] R. M. Switzer, Algebraic Topology-Homotopy and Homology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 212, Springer-Verlag, Berlin Heidelberg New York, 1975.
[14] W. Stephen Wilson, The complex cobordism of BO(n), J. London Math. Soc. (2), 29, 1984, 352-366.
[15] T. H. Wu, Stable splittings of the complex connective K-theory of BSO(2n+1), Math- ematical Journal of Okayama University, 60, 2018, 73-89.
[16] W. T. Wu, Classes caract´eristiques et i-carr´es d’une vari´et´e, Comptes Rendus, 230, 1950, 508-511.
[17] W. Stephen Wilson and D. Y. Yan, Stable splitting of the complex connective K- theory of BO(n), Topology and its Applications, 159, 2012, 1409-1414.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *