帳號:guest(18.118.37.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮俊維
作者(外文):Juan, Michael
論文名稱(中文):對有震盪係數的傳遞方程的多尺度方法
論文名稱(外文):Multiscale method for transport equations with oscillatory coefficients
指導教授(中文):朱家杰
指導教授(外文):Chu, Chia-Chieh
口試委員(中文):王偉成
薛名成
口試委員(外文):Wang, Wei-Cheng
Shiue, Ming-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:101021604
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:20
中文關鍵詞:傳遞方程多尺度HMM平均速度
外文關鍵詞:transport equationmultiscaleHMMaveraged velocity
相關次數:
  • 推薦推薦:1
  • 點閱點閱:287
  • 評分評分:*****
  • 下載下載:40
  • 收藏收藏:0
在這篇論文中,我們考慮一維有震盪係數的純量傳遞方程。由於速度場的快速震盪,用數值方法解問題時我們必需使用很細的網格(ϵ 的尺度)才能得到合理的解,但這樣計算的成本會太高。我們提出一種多尺度方法,利用微觀尺度的資訊得到等效的係數。我們提供線性時的誤差估計,並進行一些數值計算。計算的範例包含單一尺度與兩個尺度形式的線性問題以及Burgers 方程與Buckley–Leverett 方程的非線性通量。我們的分析與數值結果顯示我們的方法是收斂的。此外,我們也準確地描繪非線性問題裡震波的位置。
In this thesis, we consider one-dimensional scalar transport equations with oscillatory coefficients. Due to highly oscillatory velocity field, to solve the equation numerically, we must use very fine grid size (order of ϵ) to get reasonable solutions. However, the computational cost can be very heavy. We propose a multiscale method and derive the effected coefficients from microscale equation. We give the error estimate for linear cases and present some numerical experiments. Examples include one- and two-scaled linear problems and the nonlinear flux of Burgers’ equation and Buckley–Leverett equation. Our analysis and numerical experiments show the convergence of our method. Furthermore, the position of shock wave is captured correctly for nonlinear problems.
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction 1
2 Convergence for linear problems 2
2.1 The solution of linear problems . . . . . . . . . . . . . 2
2.2 Some convergent results . . . . . . . . . . . . . . . . . 3
3 Homogenization for nonlinear problems 6
4 Numerical method 8
4.1 Derivation of the method . . . . . . . . . . . . . . . . 8
4.2 The methodology . . . . . . . . . . . . . . . . . . . . . 9
5 Numerical analysis 9
6 Numerical result 13
6.1 Example of linear case . . . . . . . . . . . . . . . . . 13
6.2 Example of nonlinear case . . . . . . . . . . . . . . . . 15
7 Conclusion 15
Reference 18
A Solution with discontinuous velocity field 19
[1] Luigi Ambrosio and Hermano Frid. Multiscale Young measures in almost periodic homogenization and applications. Arch. Ration. Mech. Anal., 192(1):37–85, 2009.
[2] Jean Silva. On the almost periodic homogenization of non-linear scalar conservation laws. Calc. Var. Partial Differential Equations, 54(4):3623–3641, 2015.
[3] Pierre-Louis Lions, George Papanicolaou, and S. R. Srinivasa Varadhan. Homogenization of hamilton-jacobi equations. Unpublished preprint, 1987.
[4] Weinan E. Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45(3):301–326, 1992.
[5] Thomas Y. Hou and Xue Xin. Homogenization of linear transport equations with oscillatory vector fields. SIAM J. Appl. Math., 52(1):34–45, 1992.
[6] Roberto Peirone. Homogenization of ordinary and linear transport equations. Differential Integral Equations, 9(2):323–334, 1996.
[7] Roberto Peirone. Convergence of solutions of linear transport equations. Ergodic Theory Dynam. Systems, 23(3):919–933, 2003.
[8] Tamir Tassa. Homogenization of two-dimensional linear flows with integral invariance. SIAM J. Appl. Math., 57(5):1390–1405, 1997.
[9] Pierre-Emmanuel Jabin and Athanasios E. Tzavaras. Kinetic decomposition for periodic homogenization problems. SIAM J. Math. Anal., 41(1):360–390, 2009.
[10] Anne-Laure Dalibard. Homogenization of non-linear scalar conservation laws. Arch. Ration. Mech. Anal., 192(1):117–164, 2009.
[11] Ingrid Daubechies, Olof Runborg, and Jing Zou. A sparse spectral method for homogenization multiscale problems. Multiscale Model. Simul., 6(3):711–740, 2007.
[12] Björn Engquist and Olof Runborg. Wavelet-based numerical homogenization. In Highly oscillatory problems, volume 366 of London Math. Soc. Lecture Note Ser., pages 98–126. Cambridge Univ. Press, Cambridge, 2009.
[13] Weinan E and Bjorn Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–132, 2003.
[14] 蘇家寶. 雙曲問題的多尺度方法. Master’s thesis, 臺灣大學, Jan 2010.
[15] Shanqin Chen, Weinan E, and Chi-Wang Shu. The heterogeneous multiscale method based on the discontinuous Galerkin method for hyperbolic and parabolic problems. Multiscale Model. Simul., 3(4):871–894, 2005.
[16] Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, and Eric Vanden-Eijnden. Heterogeneous multiscale methods: a review. Commun. Comput. Phys., 2(3):367– 450, 2007.
[17] Xingye Yue and Weinan E. Numerical methods for multiscale transport equations and application to two-phase porous media flow. J. Comput. Phys., 210(2):656–675, 2005.
[18] H. S. Bhat and R. C. Fetecau. A Hamiltonian regularization of the Burgers equation. J. Nonlinear Sci., 16(6):615–638, 2006.
[19] Greg Norgard and Kamran Mohseni. A regularization of the Burgers equation using a filtered convective velocity. J. Phys. A, 41(34):344016, 21, 2008.
[20] H. S. Bhat and R. C. Fetecau. The Riemann problem for the Leray-Burgers equation. J. Differential Equations, 246(10):3957–3979, 2009.
[21] Greg Norgard and Kamran Mohseni. On the convergence of the convectively filtered Burgers equation to the entropy solution of the inviscid Burgers equation. Multiscale Model. Simul., 7(4):1811–1837, 2009.
[22] Gregory J. Norgard and Kamran Mohseni. An examination of the homentropic Euler equations with averaged characteristics. J. Differential Equations, 248(3):574–593, 2010.
[23] Greg Norgard and Kamran Mohseni. A new potential regularization of the onedimensional Euler and homentropic Euler equations. Multiscale Model. Simul., 8(4):1212–1243, 2010.
[24] John Villavert and Kamran Mohseni. An inviscid regularization of hyperbolic conservation laws. J. Appl. Math. Comput., 43(1-2):55–73, 2013.
[25] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115(1):200–212, 1994.
[26] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126(1):202–228, 1996.
[27] Chi-Wang Shu. High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev., 51(1):82–126, 2009.
[28] Randall J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *