帳號:guest(3.148.104.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳煜達
作者(外文):Chen, Yu-Da
論文名稱(中文):微腔體和生物物質的光散射和發射特性
論文名稱(外文):Light Scattering and Emission Properties of Micro-Cavities and Biological Objects
指導教授(中文):張亞中
曾繁根
指導教授(外文):Chang, Yia-Chung
Tseng, Fan-Gang
口試委員(中文):李超煌
魏培坤
陳壁彰
口試委員(外文):Lee, Chau-Hwang
Wei, Pei-Kuen
Chen, Bi-Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011867
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:114
中文關鍵詞:橢圓偏振技術光致激發光影像式橢圓偏振技術散射光微共振腔體細胞
外文關鍵詞:EllipsometryPhotoluminescenceMIEScatteringMicrocavityCell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
影像式橢圓偏振技術和光致激發光譜是我在這篇論文主要用來研究類六角形截面氧化鋅微米柱、腸癌細胞的藥物反應現象、裸光纖圓柱、矽微米求以及氧化鋅微米球的實驗工具。在第一項研究當中,各種規格的氧化鋅微米柱使用電子顯微鏡來做初步研究(包含內部半徑、邊圓角修飾、和傾斜程度)。我們使用光致激發光譜在可見光光譜(能量在1.77電子伏特到2.76電子伏特之間)來做量測,並且將實驗結果與使用一組完整基底內的格林函數推導出來的理論分析交叉比較來得到實際的結構資訊。
在第二項研究當中,腸癌細胞的藥物反應透過探索橢圓儀在可見光範圍(波長從500奈米到750奈米)的特徵頻譜(Ψ和cos∆)作探討,並且在反射量測模式量測橢圓偏振影像(包含tanΨ、sin∆、s-和p-偏振反射率(Is和Ip)。橢圓偏振影像顯示出一些鏈波狀結構和尖銳的針尖結構,有可能是來自於腸癌細胞在服用藥物後,細胞內部所產生的共振腔電磁波或是細胞核直接產生的散射光。
在第三項研究當中,裸光纖圓柱體的邊緣效應藉由光致激發光峰值強度在空間中的分布來做研究,同時也擷取橢圓偏振儀在三種工作模式(反射模式、垂直入社的散射模式、垂直收光的散射模式)所產生的橢圓偏振影像來瞭解來分析來自裸光纖圓柱體的直接反射訊號和散射光訊號。
在第四項研究當中,矽微米球和氧化鋅微米球使用橢圓偏振系統加裝垂直方向電控奈米平移台來做研究。每當從第一個焦平面移動到第二十個焦平面的過程當中,微米球從外到內一層層的結構及共振資訊都能藉由橢圓偏振影像顯現出來。
Microscopic Imaging Ellipsometry (MIE) and Photoluminescence (PL) are two system we introduced to discover scattering properties of hexagonal-like microrod, drug-treated colon cancer cell, bare fiber rod, silica microsphere, and ZnO microsphere.
ZnO microrods of various sizes are fabricated and their individual geometric information (including the inner radius, edge profile modification, and tilt angle) are characterized via scanning electron microscopy (SEM). The Photoluminescence (PL) spectra in visible range (with energies between 1.77eV and 2.76eV) are compared with theoretical simulation based on Green function calculation within a nearly complete set of basis functions.
Drug-treated colon cancer cell is investigated via the spectra of characteristic parameters (Ψ and cos∆) in the visible (with wavelength between 500 nm and 750 nm) and related microscopic images, including tanΨ, sin∆, s- and p-polarized reflectances (Is and Ip) in specular-reflection mode. The MIE images revealed ripple-like outer diffraction patterns and sharp spikes related to cavity resonance modes or light scattering from nucleus inside single colon cells, which changed significantly after drug treatment.
Bare fiber rod is explored with its edge effect by PL peak count distribution and MIE spectra and images in three modes (specular, off-specular: normal detection, and off-specular: normal incidence) were investigated to realize the signal from both direct reflection and scattering emission.
Silica microsphere and ZnO microsphere are studied via MIE system with a z-axis nano-stage. As moving from the focal plane 1 to the focal plane 20, MIE images were captured layer by layer to understand their resonances and morphology from top of microsphere toward inside microsphere.
摘要………………………………………………………………………………………………………………………………………………………………… ii
Abstract……………………………………………………………………………………………………………………………………………………… iii
Acknowledgements………………………………………………………………………………………………………………………………… iv
Chapter 1. Introduction…………………………………………………………………………………………………………… 1
1.1 Photoluminescence of Zinc Oxide………………………………………………………… 1
1.2 Ellipsometry…………………………………………………………………………………………………………… 1 Chapter 2. Microscopic Imaging Ellipsometry……………………………………………………… 3
2.1 System Design………………………………………………………………………………………………………… 3
2.2 Data Processing Based on Jones’ Matrices and Fourier
Analysis……………………………………………………………………………………………………………………… 6
Chapter 3. Emission Spectra of Hexagonal Zinc Oxide Microrods
Due to Resonant Modes…………………………………………………………………………………… 10
3.1 Sample Preparation…………………………………………………………………………………………… 11
3.2 SEM Characterization……………………………………………………………………………………… 11
3.3 PL Emission Spectra………………………………………………………………………………………… 16
3.4 Theoretical Analysis……………………………………………………………………………………… 17
3.4.1 Green Function of Cylindrical Microrods………………………… 17
3.4.2 Green Function of Rods with Hexagonal Cross-
Section……………………………………………………………………………………………………………… 21
3.4.3 Emission Intensity………………………………………………………………………………… 23
3.5 Comparison between Theory and Experiment………………………………… 25
3.5.1 Best Fitting Results…………………………………………………………………………… 25
3.5.2 Analysis of WGM Analysis………………………………………………………………… 28
3.6 Conclusion………………………………………………………………………………………………………………… 32
Chapter 4. Spectroscopic Microscale Imaging Ellipsometry for
Studying Effects of Drug Treatment in Colon Cancer
Cells……………………………………………………………………………………………………………………………… 34
4.1 Sample Preparation…………………………………………………………………………………………… 35
4.2 Experimental Results and Analysis…………………………………………………… 37
4.2.1 Ψ and Δ Spectra………………………………………………………………………………………… 39
4.2.2 MIE Images……………………………………………………………………………………………………… 43
4.3 Conclusion………………………………………………………………………………………………………………… 48
Chapter 5. Scattering Properties of a Bare Fiber Rod……………………………… 50
5.1 Theoretical Derivation………………………………………………………………………………… 50
5.1.1 S-polarized Emission…………………………………………………………………………… 51
5.1.2 P-polarized Emission…………………………………………………………………………… 55
5.1.3 Calculate Ψ and Δ Spectra……………………………………………………………… 60
5.2 PL Emission near Fiber End……………………………………………………………………… 61
5.2.1 Experimental Design……………………………………………………………………………… 61
5.2.2 PL Peak Analysis……………………………………………………………………………………… 62
5.3 MIE Images of a Bare Fiber Rod…………………………………………………………… 66
5.3.1 Measurement Setup…………………………………………………………………………………… 66
5.3.2 Specular MIE Spectra and Images……………………………………………… 67
5.3.3 Off-Specular MIE Spectra and Images for Normal
Detection Case…………………………………………………………………………………………… 70
5.3.4 Off-Specular MIE Spectra and Images for Normal
Incidence Case…………………………………………………………………………………………… 74
5.4 Conclusion………………………………………………………………………………………………………………… 77
Chapter 6. Scattering Images at Brewster’s Angle for Silica
Microsphere and ZnO Microsphere via Microscopic
Imaging Ellipsometry……………………………………………………………………………………… 78
6.1 Sample Preparation…………………………………………………………………………………………… 78
6.2 Calculate Brewster’s Angle……………………………………………………………………… 79
6.3 Measurement Setup……………………………………………………………………………………………… 80
6.4 MIE Image of Silica Microsphere………………………………………………………… 81
6.4.1 Specular Images………………………………………………………………………………………… 81
6.4.2 Off-Specular Images……………………………………………………………………………… 90
6.5 MIE Image of ZnO Microsphere………………………………………………………………… 97
6.5.1 Ψ and Δ Spectra………………………………………………………………………………………… 97
6.5.2 Specular Images………………………………………………………………………………………… 98
6.6 Conclusion…………………………………………………………………………………………………………………100
Chapter 7. Conclusion and Future Work………………………………………………………………………101
References…………………………………………………………………………………………………………………………………………………102
Appendix………………………………………………………………………………………………………………………………………………………112
1. Y.-D. Chen, T. H.-B. Ngo, Y.-C. Chang, D.-J. Lin, and H.-C. Hsu,
“Emission Spectra of Hexagonal Zinc Oxide Microrods Due to
Resonant Modes,” J. Opt. Soc. Am. B 35, 2228-2236, 2018.
2. Y.-D. Chen, C.-H. Wu, H. Y. Hsu, D.-J. Lin, H.-C. Hsu, M. I.
Khaleel, Y.-C. Chang, and H.-C. Wu., “Spectroscopic Microscale
Imaging Ellipsometry for Studying Effects of Drug Treatment in
Colon Cancer Cells,” IJPERA., 2019 (Accepted).
3. K. Vanheusden, C. H. Seager, W. T. Warren, D. R. Tallant, and J.
A. Voigt, “Correlation Between Photoluminescence and Oxygen
Vacancies in ZnO Phosphors,” Applied physics letters, 68(3), 403-
405, 1996.
4. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S.
Doğan, V. Avrutin, S.-J. Cho, and H. A. Morkoç, “Comprehensive
Review of ZnO Materials and Devices,” Journal of applied physics,
98(4), 11, 2005.
5. J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M.
Novotný, and J. Bulíř, “Origin of Green Luminescence in
Hydrothermally Grown ZnO Single Crystals,” Applied Physics
Letters, 106(25), 251902, 2015.
6. Q. Li, Z. Kang, B. Mao, E. Wang, C. Wang, C. Tian, and S. Li,
“One-Step Polyoxometalate-Assisted Solvothermal Synthesis of ZnO
Microspheres and Their Photoluminescence Properties,” Materials
Letters, 62(16), 2531-2534, 2008.
7. R. S. Moirangthem, P.-J. Cheng, P. C.-H. Chien, T. H. Ngo, S.-W.
Chang, C.-H. Tien, and Y. C. Chang, “Optical Cavity Modes of a
Single Crystalline Zinc Oxide Microsphere,” Optics Exp., 21, 3010–
3020, 2013.
8. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered
Semiconductor ZnO Nanowire Arrays and Their Photoluminescence
Properties,” Applied Physics Letters, 76(15), 2011-2013, 2000.
9. Y.-D. Chen, H. Y. Hsu, M. I. Khaleel, Y.-C. Chang, C.-H. Wu, and
H.-C. Wu, “Study of Biological Reaction in Cancer Cell with
Spectroscopic Imaging Ellipsometry,” Proceedings of SPIE
Conference on Optics+Photonics 992505-992513, 2016.
10. Y.-C. Chang, H.-Y. Xie, A. F.-C. Hsiao, Y.-D. Chen, and T. H.-B.
Ngo, “Optical Sensing of Nanoscale Objects via Computation-Aided
Microscopic Imaging Ellipsometry,” Sci. Lett., 5, 229, 2016.
11. G. Jin, P. Tengvall, I. Lundstro¨m, and H. Arwin, “A Biosensor
Concept Based on Imaging Ellipsometry for Visualization of
Biomolecular Interactions,” Anal. Biochem. 232, 69-72 1995.
12. W. Wang, C. Qi, T.-F. Kang, Y. Niu, G. Jin, Y.-Q. Ge, and Y.
Chen, “Analysis of The Interaction Between Tropomyosin Allergens
and Antibodies Using a Biosensor Based on Imaging Ellipsometry,”
Anal. Chem. 85, 4446-4452, 2013.
13. I. An, “Application of Imaging Ellipsometry to The Detection of
Latent Fingermarks,” Forensic Sci. Int. 253, 28-32, 2015.
14. Z.-H. Wang and G. Jin, “Covalent Immobilization of Proteins for
The Biosensor Based on Imaging Ellipsometry,” J. Immunol Methods
285, 237-243, 2015.
15. H. Sun, C. Qi, Y. Niu, T. Kang, Y. Wei, G. Jin, X. Dong, C. Wang,
and W. Zhu, “Detection of Cytomegalovirus Antibodies Using a
Biosensor Based on Imaging Ellipsometry,” PLoS ONE 10(8):
e0136253, 2015.
16. M. M. B. Nielsen and A. C. Simonsen, “Imaging Ellipsometry of
Spin-Coated Membranes: Mapping of Multilamellar Films, Hydrated
Membranes, and Fluid Domains,” Langmuir 29, 1525-1532, 2013.
17. P. De Beule and A. Miranda, "Anisotropy Imaging of Supported
Lipid Bilayers via Spectroscopic Imaging Ellipsometry," in Optics
in the Life Sciences, OSA Technical Digest (online) (Optical
Society of America), paper JT3A.42, 2015.
18. Z. H. Wang and G. Lin, “A Label-Free Multisensing Immunosensor
Based on Imaging Ellipsometry,” Anal. Chem. 75, 6119-6123, 2003.
19. L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging
Ellipsometry: Quantitative Analysis,” Phys. Status Solidi A 205,
764–771, 2008.
20. Note that we have adopted the notation in physics community,
which leads to a flip of sign in Δ in comparison to the notation
used in optics community.
21. C. Qi, Y. Lin, J. Feng, Z.-H. Wang, C.-F. Zhu, Y.-H. Meng, X.-Y.
Yan, L.-J. Wan, and G. Jin, “Phage M13KO7 Detection with Biosensor
Based on Imaging Ellipsometry and AFM Microscopic Confirmation,”
Virus Res. 140 79-84, 2009.
22. G. Jin, Y.-H. Meng, L. Liu, Y. Niu, S. Chen, Q. Cai, and T.-J.
Jiang, “Development of Biosensor Based on Imaging Ellipsometry and
Biomedical Applications,” Thin Solid Films 519 2750-2757, 2011.
23. S. Munteanu, N. Garraud, J. P. Roger, F. Amiot, J. Shi, Y. Chen,
C. Combellas, and F. Kanoufi, “In Situ, Real Time Monitoring of
Surface Transformation: Ellipsometric Microscopy Imaging of
Electrografting at Microstructured Gold Surfaces,” Analytical
Chemistry 85 1965-1971, 2013.
24. J.-Y. Fan, H.-X. Li, and F.-Q. Wu, “A Study on Transmitted
Intensity of Disturbance for Air-Spaced Glan-Type Polarizing
Prisms,” Optics Communications 223 11–16, 2003.
25. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered
Semiconductor ZnO Nanowire Arrays and Their Photoluminescence
Properties,” Applied Physics Letters, 76(15), 2011-2013, 2000.
26. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber,
“Highly Polarized Photoluminescence and Photodetection from Single
Indium Phosphide Nanowires,” Science, 293(5534), 1455-1457, 2001.
27. H. B. Dias, M. I. B. Bernardi, M. A. D. S. Ramos, T. C. Trevisan,
T. M. Bauab, A. C. Hernandes, and A. N. de Souza Rastelli, “Zinc
Oxide 3D Microstructures As an Antimicrobial Filler Content for
Composite Resins,” Microscopy Research and Technique, 80(6), 634-
643, 2017.
28. Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang,
Z. Tang, and L. Jiang, “Accurate Control of Multishelled ZnO
Hollow Microspheres for Dye‐Sensitized Solar Cells with High
Efficiency,” Advanced materials, 24(8), 1046-1049, 2012.
29. C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, and D. B.
Kuang, “Sonochemical Preparation of Hierarchical ZnO Hollow
Spheres for Efficient Dye‐Sensitized Solar Cells,” Chemistry-A
European Journal, 16(29), 8757-8761, 2010.
30. X. Kang, C. Jia, Z. Wan, J. Zhuang, and J. Feng, “A novel Tri-
Layered Photoanode of Hierarchical ZnO Microspheres on 1D ZnO
Nanowire Arrays for Dye-Sensitized Solar Cells,” RSC Advances,
5(22), 16678-16683, 2015.
31. G. Yang, Q. Wang, C. Miao, Z. Bu, and W. Guo, “Enhanced
Photovoltaic Performance of Dye-Sensitized Solar Cells Based on
ZnO Microrod Array/TiO 2 Nanoparticle Hybrid Films,” Journal of
Materials Chemistry A, 1(9), 3112-3117, 2013.
32. J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs,
“Integration of ZnO Microcrystals with Tailored Dimensions Forming
Light Emitting Diodes and UV Photovoltaic Cells,” Nano letters,
8(5), 1477-1481, 2008.
33. S. Okamoto, Y. Minowa, and M. Ashida, “White-Light Lasing in ZnO
Microspheres Fabricated by Laser Ablation,” In Oxide-based
Materials and Devices III (Vol. 8263, p. 82630K), International
Society for Optics and Photonics, 2012.
34. K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D.
Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet Whispering-
Gallery-Mode Lasing in ZnO Micro/Nano Sphere Crystal,” Applied
Physics Letters, 101(21), 211105, 2012.
35. J. Dai, C. X. Xu, and X. W. Sun, “ZnO‐Microrod/p‐GaN
Heterostructured Whispering‐Gallery‐Mode Microlaser Diodes,”
Advanced Materials, 23(35), 4115-4119, 2011.
36. H. Dong, Y. Liu, J. Lu, Z. Chen, J. Wang, and L. Zhang, “Single-
Crystalline Tower-Like ZnO Microrod UV Lasers,” Journal of
Materials Chemistry C, 1(2), 202-206, 2013.
37. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering
Gallery-Mode Lasing in ZnO Microrods at Room Temperature,” Applied
physics letters, 95(24), 241110, 2009.
38. J. Dai, C. X. Xu, R. Ding, K. Zheng, Z. L. Shi, C. G. Lv, and Y.
P. Cui, “Combined Whispering Gallery Mode Laser from Hexagonal ZnO
Microcavities,” Applied physics letters, 95(19), 191117, 2009.
39. G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S.
Tian, and G. F. Chen, “Ultraviolet electroluminescence from
Horizontal ZnO Microrods/GaN Heterojunction Light-Emitting Diode
Array,” Applied Physics Letters, 101(4), 041110, 2012.
40. K. S. Kim, S. M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung,
“Enhancement of Light Extraction Through the Wave‐Guiding Effect
of ZnO Sub‐microrods in InGaN Blue Light‐Emitting Diodes,”
Advanced Functional Materials, 20(7), 1076-1082, 2010.
41. Z. Guo, H. Li, L. Zhou, D. Zhao, Y. Wu, Z. Zhang, C. Li, and J.
Yao, “Large‐Scale Horizontally Aligned ZnO Microrod Arrays with
Controlled Orientation, Periodic Distribution as Building Blocks
for Chip‐in Piezo‐Phototronic LEDs,” small, 11(4), 438-445, 2015.
42. X. Lu, H. Zhang, Y. Ni, Q. Zhang, and J. Chen, “Porous Nanosheet-
Based ZnO Microspheres for The Construction of Direct
Electrochemical Biosensors,” Biosensors and bioelectronics, 24(1),
93-98, 2008.
43. X. Feng, Y. Liu, Q. Kong, J. Ye, X. Chen, J. Hu, and Z. Chen,
“Direct Electrochemistry of Myoglobin Immobilized on Chitosan-
Wrapped Rod-Constructed ZnO Microspheres and Its Application to
Hydrogen Peroxide Biosensing,” Journal of Solid State
Electrochemistry, 14(6), 923-930, 2010.
44. Y. Zhao, X. Yan, Z. Kang, P. Lin, X. Fang, Y. Lei, S. Ma, and Y.
Zhang, “Highly Sensitive Uric Acid Biosensor Based on Individual
Zinc Oxide Micro/Nanowires,” Microchimica Acta, 180(9-10), 759-
766, 2013.
45. C. Xia, N. Wang, L. Lidong, and G. Lin, “Synthesis and
Characterization of Waxberry-Like Microstructures ZnO for
Biosensors,” Sensors and Actuators B: Chemical, 129(1), 268-273,
2008.
46. T. L. Wu, T. H. Meen, S. M. Chao, L. W. Ji, L. C. Shih, C. H.
Huang, J. K. Tsai, and T. C. Wu, “Application of ZnO Micro Rods on
The Composite Photo-Electrode of Dye Sensitized Solar Cells,”
Microsystem Technologies, 1-5, 2017.
47. Q. Zhu, F. Qin, J. Lu, Z. Zhu, H. Nan, Z. Shi, Z. Ni, and C. Xu,
“Synergistic Graphene/Aluminum Surface Plasmon Coupling for Zinc
Oxide Lasing Improvement,” Nano Research, 1-9, 2017.
48. G. Zhu, “Investigation of The Mode Structures of Multiphoton
Induced Ultraviolet Laser in a ZnO Microrod,” Journal of
Nanotechnology, 2017.
49. F. Alam, and K. Balani, “Role of Silver/Zinc Oxide in Affecting
De-Adhesion Strength of Staphylococcus Aureus on Polymer
Biocomposites,” Materials Science and Engineering: C, 75, 1106-
1114, 2017.
50. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga‐Pérez, C.
Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering
Gallery Modes in Zinc Oxide Micro‐and Nanowires,” physica status
solidi (b), 247(6), 1282-1293, 2010.
51. H. Dong, Y. Liu, S. Sun, Z. Chen, and L. Zhang, “Optical
Modulation in Microsized Optical Resonators with Irregular
Hexagonal Cross-Section,” Journal of Materials Chemistry C, 2(42),
8976-8982, 2014.
52. J. Wiersig, “Hexagonal Dielectric Resonators and Microcrystal
Lasers,” Physical Review A, 67(2), 023807, 2003.
53. C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H.
C. Hsu, "Ultraviolet/Blue Light-Emitting Diodes Based on Single
Horizontal ZnO Microrod/GaN Heterojunction", Nanoscale Research
Letters 9, 446, 2014.
54. C. T. Tai, “Dyadic Green Functions in Electromagnetic Theory”,
2nd ed. IEEE, (New York, 1993).
55. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and
Products, 2nd ed., (Academic Press, New York, 2007) ; 8.477.
56. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of
Light by Small Particles” (Wiley, New York, 1983).
57. P. W. Barber and S. C. Hill, “Light Scattering by Particles:
Computational Methods” (World Scientific, Sigapore, 1990).
58. V. A. Markel, “Introduction to The Maxwell Garnett Approximation:
Tutorial,” J. Opt. Soc. Am. A 33(7), 1244–1256, 2016.
59. A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J.
K. Gohagan, and A. F. Laine, “A Review of Imaging Techniques for
Systems Biology,” Bmc. Syst. Biol. 2 74, 2008.
60. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of Obtaining
Optical Sectioning by Using Structured Light in a Conventional
Microscope,” Opt. Lett. 22 1905-1907, 1997.
61. N. de Jonge and F. M. Ross, “Electron Microscopy of Specimens in
Liquid,” Nat. Nanotechnol. 6 695-704, 2011.
62. P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E.
Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma,
“Tapping Mode Atomic-Force Microscopy in Liquid,” Appl. Phys.
Lett. 64 2454-2456, 1994.
63. D. Ling, M. J. Hackett, and T. Hyeon, “Cancer Imaging Lighting up
Tumours,” Nat. Mater. 13 122-124, 2014.
64. J. V. Frangioni, “New Technologies for Human Cancer Imaging,” J.
Clin. Oncol. 26 4012-4021, 2008.
65. M. Gabriel, C. Decristoforo, D. Kendler, G. Dobrozemsky, D.
Heute, C. Uprimny, P. Kovacs, E. V. Guggenberg, R. Bale, and I. J.
Virgolini, “68Ga-DOTA-Tyr3-octreotide PET in Neuroendocrine
Tumors: Comparison with Somatostatin Receptor Scintigraphy and
CT,” J. Nucl. Med. 48 508-518, 2007.
66. K. Golman, M. Lerche, R. Pehrson, and J. H. Ardenkjaer-Larsen,
“Metabolic Imaging by Hyperpolarized 13C Magnetic Resonance
Imaging for In Vivo Tumor Diagnosis,” Cancer Res. 66 10855-10860,
2006.
67. T. Jonischkeit, U. Bommerich, J. Stadler, and K. Woelk,
“Generating Long-Lasting 1H and 13C Hyperpolarization in Small
Molecules with Parahydrogen-Induced Polarization,” J. Chem. Phys.
124 201109, 2006.
68. J.-H. Park, H.-J. Cho, H. Y. Yoon, I.-S. Yoon, S.-H. Ko, J.-S.
Shim, J.-H. Cho, J. H. Park, K. Kim, I. C. Kwon, and D.-D. Kim,
“Hyaluronic Acid Derivative-Coated Nanohybrid Liposomes for Cancer
Imaging and Drug Delivery,” J. Control. Release 174 98-108, 2014.
69. J. V. Jokerst, A. J. Cole, D. Van de Sompel, and S. S. Gambhir,
“Gold Nanorods for Ovarian Cancer Detection with Photoacoustic
Imaging and Resection Guidance via Raman Imaging in Living Mice,”
ACS nano 6 10366-10377, 2012.
70. X. Wu, M. Wu, and J. X. Zhao, “Recent Development of Silica
Nanoparticles as Delivery Vectors for Cancer Imaging and Therapy,”
Nanomed.-Nanotechnol. 10 297-312, 2014.
71. E. Passaglia, R. R. Stromberg, and J. Kruger, “Ellipsometry in
the Measurement of Surfaces and Thin Films,” Symposium Proceedings
256, 1964.
72. D. A. Holmes, “On the Calculation of Thin Film Refractive Index
and Thickness by Ellipsometry,” Appl. Opt. 6 168-169, 1967.
73. D. E. Aspnes and J. B. Theeten, “Investigation of Effective-
Medium Models of Microscopic Surface-Roughness by Spectroscopic
Ellipsometry,” Phys. Rev. B 20 3292-3302, 1979.
74. G. Lucovsky and M. J. Mantini, “Low-Temperature Growth of Silicon
Dioxide Films - a Study of Chemical Bonding by Ellipsometry and
Infrared-Spectroscopy,” J. Vac. Sci. Technol. B 5 530-537, 1987.
75. V. Meera and G. S. Setlur, “Ellipsometry of Graphene on a
Substrate,” J. Appl. Phys. 107, 2010.
76. C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J. G.
Lunney, and G. S. Duesberg, “Investigation of the Optical
Properties of MoS2 Thin Films Using Spectroscopic Ellipsometry,”
Appl. Phys. Lett. 104 103114, 2014.
77. C. H. Wu, Y. H. Kuo, R. L. Hong, and H. C. Wu, “α-Enolase-Binding
Peptide Enhances Drug Delivery Efficiency and Therapeutic Efficacy
Against Colorectal Cancer,” Science Translational Medicine 7,
290ra91, 1-14, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *