帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):亞比夏
作者(外文):Pathak, Abhishek
論文名稱(中文):金屬有機骨架化合物之介電、導電與熱電性質之研究
論文名稱(外文):Dielectric, Electrical and Thermoelectric Investigation of Metal–Organic Frameworks
指導教授(中文):陳福榮
呂光烈
指導教授(外文):Chen, Fu-Rong
Lu, Kuang-Lieh
口試委員(中文):陳洋元
陳貴賢
廖建能
口試委員(外文):Chen, Yang-Yuan
Chen, Kuei-Hsien
Chen, Chien-Neng
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011866
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:155
中文關鍵詞:金屬有機骨架材料介電常數高電導率熱電
外文關鍵詞:Metal–Organic FrameworksCopperDielectric constantElectrical conductivitySamariumThermoelectric
相關次數:
  • 推薦推薦:0
  • 點閱點閱:118
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文採用水熱反應合成釤、銅基金屬有機骨架化合物,並探討釤基金屬有機骨架(Sm-MOF)的介電性質與銅基金屬有機骨架材料(Cu-MOF)的導電與熱電性質。化合物 [Sm2(bhc)(H2O)6]n (1) 是藉由硝酸釤samarium(III) nitrate 與有機配子benzenehexacarboxylic acid(bhc)以水、乙醇的混合液作為溶劑,並使用水熱法反應合成三維結構之金屬有機骨架。單晶X繞射檢測顯示化合物1的空間群為Pnmn並且是以(4, 8)連接而成三維結晶。經由不同溫度下對介電性質量測顯示化合物1屬於高介電材料,在5 kHz的頻率與310 K的溫度下化合物1具有高介電常數(κ = 45.1),相當於大部分常見的無機金屬氧化物 (如Sm2O3、Ta2O5、HfO2、ZrO2) 之介電數值。此外,將配位的水分子在化合物1中除去後,化合物1在5 kHz頻率與310 K的溫度下仍具有高介電常數(κ = 38.1),化合物1具有低電導率,在頻率為5 kHz約為2.15 × 10–7 S/cm,並同時具有低漏電流(Ileakage = 8.13 × 10–12 Amm–2)。此釤基金屬有機骨架的介電性質研究成果,有希望提供開發高介電材料更為有效的研究方向。
目前在能量儲存和發電的各項能源研究領域中,設計高導電的金屬有機骨架(MOF)為一項具潛在應用價值而受到極大關注的主題。本研究藉由設計銅硫(–Cu–S–)n二維平面於MOF結構內的策略,實現高導電MOF的特性。在水熱反應的條件下,有機物6,6’-dithiodinicotinic acid因原位裂解S–S鍵形成6-mercaptonicotinic acid (1,6-Hmna)與6-mercaptonicotinate (6-mn),並與硝酸銅反應合成化合物{[Cu2(6-Hmna)(6-mn)]·NH4}n (2)。經由單晶X射線繞射分析,化合物2結晶的空間群為Pna21,並由(–Cu–S–)n 組成二維平面結構。此外,化合物2單晶具有低活化能(6 meV),小帶隙(1.34 eV)與高電導率(10.96 S cm−1)的特性。這種材料適用於電池、熱電、超級電容器與相關領域,為生產高導電MOF提供理想的方向,因此在未來極具應用潛力。
化合物2在本研究中同時被研究於熱電性質之應用,為了進一步提高化合物2之導電性質,化合物2在400 °C與500 °C下被熱裂解藉以獲得Cu2S奈米片狀結構與石墨之複合物。熱裂解之粉末經由冷壓而形成錠片,在溫度45 °C下測量400 °C與500 °C下被熱裂解之化合物2在之熱電特性,其中電導率由0.5 S/m提升至4260 S/m (400 °C)與861 S/m (500 °C),Seebeck係數也從25 μV/K提升至56.6 μV/K (400 °C) 與144.7 μV/K (500 °C),導熱率由0.15 W/mK增加至0.58 W/mK (400 °C) 與0.44 W/mK (500 °C),其熱電優值1.3 × 10−2 (400 °C) 與7.3 × 10−3 (500 °C)遠高於熱裂解前之化合物2 (ZT = 1.2 × 10−6),超過1000倍的提升。
本論文研究首先以水熱法合成Sm-MOF與Cu-MOF化合物,並經由介電性質對不同溫度與不同頻率的測量證實,Sm-MOF的高介電性質足以成為其它高介電材料之替代物質。此外,Cu-MOF藉著熱裂解的方式有效提高其導電性質,而獲得遠高於Cu-MOF之熱電特性。
Designing highly conducting metal–organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. In this thesis, samarium and copper based metal–organic frameworks (MOFs) compound were synthesized by hydrothermal reactions. Samarium based metal–organic frameworks have been investigated for their high-κ dielectric properties and copper based metal–organic frameworks were studied for their electrical conductivity as well as their thermoelectric properties. Compound [Sm2(bhc)(H2O)6]n (1) is a three dimensional samarium based metal–organic framework that was synthesized by reacting Sm(NO3)3·6H2O with benzenehexacarboxylic acid (bhc) in a mixture of H2O–EtOH under hydrothermal conditions. A single crystal X-ray analysis of compound 1 showed that it crystallizes in a Pnmn space group and adopted a 3D structure with (4,8) connected nets. Temperature dependent dielectric measurements showed that compound 1 behaves as a high dielectric material with a high dielectric constant (κ = 45.1) at 5 kHz and 310 K, which is comparable to the values for some of the most commonly available dielectric inorganic metal oxides such as Sm2O3, Ta2O5, HfO2, and ZrO2. After the removal of the coordinated polar water molecule from compound 1, it showed a high dielectric constant (κ = 38.1) at 5 kHz and 310 K. In addition, electrical measurements of 1 revealed an electrical conductivity of approximately 2.15 × 10–7 S/cm at a frequency of 5 kHz with a low leakage current (Ileakage = 8.13 × 10–12 Amm–2). Dielectric investigations of the Sm-based MOFs provide an effective path for the development of high dielectric materials in the future.
A strategic design in which a metal–sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. Compound {[Cu2(6-Hmna)(6-mn)]·NH4}n (2, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (–Cu–S–)n plane, was synthesized from the reaction of Cu(NO3)2, and 6,6-dithiodinicotinic acid via the in situ cleavage of an S–S bond under hydrothermal conditions. A single-crystal X-ray diffraction analysis of 2 revealed that it crystallizes in the orthorhombic space group Pna21. A single crystal of the MOF was found to have a low activation energy (6 meV), a small bandgap (1.34 eV) and the highest electrical conductivity (10.96 S cm−1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.
Compound 2 was also investigated for use in thermoelectric applications. To further improve the electrical conductivity of compound 2, it was pyrolyzed at 400 °C and 500 °C to obtain composites containing Cu2S nanosheets and graphitic carbon. The electrical conductivity of the cold pressed pellet was improved from 0.5 S/m to 4260 S/m at 45 °C in the case of the pyrolysed Cu-MOF at 400 °C and 861 S/m for 500 °C pyrolysed Cu-MOF. The Seebeck coefficient for the pyrolyzed Cu-MOF cold pressed pellet at 400 °C was also improved from 25 μV/K to 56.6 μV/K and 144.7 μV/K for 500 °C pyrolysed Cu-MOF at 45 °C. The thermal conductivity of the pristine Cu-MOF cold pressed pellet was 0.15 W/mK at 45 °C. After pyrolysis at 400 °C the thermal conductivity of the Cu-MOF cold pressed pellet was found to be increased by 0.58 W/mK and for 500 °C pyrolysed Cu-MOF was 0.44 W/mK at 45 °C. The ZT value of the pyrolyzed Cu- MOF cold pressed pellet at 400 °C was 7.3 × 10−3 and for pyrolysed Cu-MOF at 500 °C was 1.3 × 10−2, which was improved more than ~1000 times from pristine Cu-MOF cold pressed pellet (ZT = 1.2 × 10−6).
This thesis describes the synthesis of alternate materials with high-κ dielectric values and a systematic approach for improving the electrical conductivity of metal–organic frameworks and for their use in thermoelectric energy generation applications.
Table of Contents

Acknowledgement...................................................i
Abstract(Chinese)................................................ii
Abstract (English)..............................................iii
Table of Content.................................................vi
List of Figures..................................................ix
List of Tables..................................................xiv
Chapter 1 Introduction............................................1
1.1 Background....................................................1
1.2 Introduction of dielectric material...........................6
1.3 Polarization Mechanisms in Dielectrics........................8
1.3.1 Interface or space charge polarization......................9
1.3.2 Dipole or orientation polarization..........................9
1.3.3 Ionic Polarization..........................................9
1.3.4 Electronic or Atomic Polarization...........................9
1.4 Frequency dependence dielectric constant or complex permittivity .................................................................10
1.5 Application of dielectric materials..........................11
1.6 High-κ materials.............................................12
1.7 Need for High-κ dielectrics..................................12
1.8 Metal–Organic Frameworks as High-κ dielectrics...............13
1.9 Conductive metal–organic frameworks..........................15
1.9.1 The “Through-Bond” Approach to Charge Transport............16
1.9.2 The “Through-Space” Approach to Charge Transport...........23
1.9.3 2D π‐Conjugated MOFs.......................................26
1.10 Thermoelectric materials....................................31
1.11 Thermoelectric metal–organic frameworks.....................35
1.12 Research Motivation.........................................41
Chapter 2 Experimental Section...................................43
2.1 Introduction.................................................43
2.2 Synthesis....................................................43
2.2.1 Crystallization............................................44
2.2.2 Water bath reaction........................................44
2.2.3 Solvothermal reaction......................................44
2.3 Characterization.............................................45
2.3.1 Single crystal X-ray diffraction...........................45
2.3.2 Powder X-ray diffraction...................................47
2.3.3 Fourier transform infrared spectroscopy....................48
2.3.4 Thermogravimetric analysis.................................49
2.3.5 Elemental analysis.........................................50
2.3.6 Solid-state cyclic voltammetry.............................50
2.3.7 Ultraviolet diffuse reflectance spectroscopy...............51
2.3.8 Brunauer-Emmett-Teller (BET) analyzer......................52
2.3.9 Electrical resistivity and Seebeck coefficient measurement .................................................................57
2.4 Chemical Lists...............................................59
Chapter 3 High-κ Samarium-Based Metal–Organic Framework for Gate Dielectric Applications
.................................................................60
3.1 Introduction.................................................60
3.2 Experimental section.........................................61
3.2.1 Materials and methods......................................61
3.2.2 Synthesis of [Sm2(bhc)(H2O)6]n (1).........................63
3.3 Results and Discussion.......................................64
3.3.1 Crystal structure..........................................64
3.3.2 Powder X-ray Diffraction and Thermogravimetric Analysis....67
3.3.3 Dielectric investigation...................................68
3.3.4 Electrical Conductivity Measurements.......................70
3.3.5 Impedance behavior.........................................71
3.3.6 Leakage Current Measurement................................73
3.4 Conclusion...................................................73
Chapter 4 Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity...................75
4.1 Introduction.................................................75
4.2 Methods......................................................77
4.2.1 Electrical measurement and fabrication of single crystal...77
4.2.2 Electrochemical measurements...............................77
4.2.3 X-ray photoelectron spectroscopy measurements..............78
4.2.4 Details of DFT simulations.................................78
4.2.5 PXRD characterization......................................78
4.3 Result and Discussion........................................79
4.3.1 Synthesis of {[Cu2(6-Hmna)(6-mn)]·NH4}n....................79
4.3.2 Crystal structure..........................................82
4.3.3 Electrical conductivity measurement........................86
4.3.4 Bandgap investigations.....................................90
4.3.5 Electrochemical measurements...............................91
4.3.6 Theoretical DFT study of Cu-MOF............................92
4.4 Conclusion...................................................97
Chapter 5 MOF Driven Graphitic Carbon and Cu2S Nanosheets for Thermoelectric Energy Conversion.................................99
5.1 Introduction.................................................99
5.2 Experimental................................................100
5.3 Result and Discussion.......................................101
5.3.1 Thermoelectric properties of Cu-MOF.......................105
5.4 Conclusion..................................................108
Chapter 6 Summary and Conclusion...............................110
References......................................................112
Appendices......................................................129
1. Hoskins, B. F.; Robson, R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964.

2. Hoskins, B.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N (CH3) 4][CuIZnII (CN) 4] and CuI [4, 4', 4'', 4'''-tetracyanotetraphenylmethane] BF4. xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.

3. Yaghi, O.; Li, H., Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

4. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276.

5. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674.

6. Kitagawa, S., Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

7. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry, 2011, 17, 11372–11388.

8. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.

9. Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K., Beyond post- synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev. 2014, 43, 5896–5912.

10. Tanabe, K. K.; Cohen, S. M., Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev. 2011, 40, 498–519.

11. Chen, Q.; Guo, P.-C.; Zhao, S.-P.; Liu, J.-L.; Ren, X.-M., A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2, 5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm 2013, 15, 1264–1270.

12. Ye, Q.; Song, Y.-M.; Wang, G.-X.; Chen, K.; Fu, D.-W.; Hong Chan, P. W.; Zhu, J.-S.; Huang, S. D.; Xiong, R.-G., Ferroelectric Metal−Organic Framework with a High Dielectric Constant. J. Am. Chem. Soc. 2006, 128, 6554–6555.
13. Li, W.-J.; Liu, J.; Sun, Z.-H.; Liu, T.-F.; Lü, J.; Gao, S.-Y.; He, C.; Cao, R.; Luo, J.-H., Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat. Commun. 2016, 7, 11830.

14. Reynolds, J. R.; Chien, J. C. W.; Lillya, C. P., Intrinsically electrically conducting poly(metal tetrathiooxalates). Macromolecules 1987, 20, 1184–1191.

15. Sun, Y.; Sheng, P.; Di, C.; Jiao, F.; Xu, W.; Qiu, D.; Zhu, D., Organic Thermoelectric Materials and Devices Based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 2012, 24, 932–937.

16. Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H., Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorg. Chem. 2009, 48, 9048–9050.

17. Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R., Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework. Chem. Mater. 2010, 22, 4120–4122.

18. Hao, Z.; Yang, G.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Song, S.; Zhang, H., A europium(iii) based metal–organic framework: bifunctional properties related to sensing and electronic conductivity. J. Mater. Chem. A 2014, 2, 237–244.

19. Chae, S. H.; Kim, H.-C.; Lee, Y. S.; Huh, S.; Kim, S.-J.; Kim, Y.; Lee, S. J., Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal. Cryst. Growth Des. 2015, 15, 268–277.

20. Holliday, B. J.; Swager, T. M., Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem. Commun. 2005, 1, 23–36.

21. Turner, D. L.; Vaid, T. P.; Stephens, P. W.; Stone, K. H.; DiPasquale, A. G.; Rheingold, A. L., Semiconducting Lead−Sulfur−Organic Network Solids. J. Am. Chem. Soc. 2008, 130, 14–15.

22. Turner, D. L.; Stone, K. H.; Stephens, P. W.; Walsh, A.; Singh, M. P.; Vaid, T. P., Synthesis, Characterization, and Calculated Electronic Structure of the Crystalline Metal–Organic Polymers [Hg(SC6H4S)(en)]n and [Pb(SC6H4S)(dien)]n. Inorg.Chem. 2012, 51, 370–376.

23. Dietzel, P. D. C.; Morita, Y.; Blom, R.; Fjellvåg, H., An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal–Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal–Oxygen Chains. Angew. Chem. Int. Ed. 2005, 44, 6354–6358.

24. Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvåg, H., Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 2006, 9, 959–961.

25. Dietzel, P. D. C.; Blom, R.; Fjellvåg, H., Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand. Eur. J. Inorg. Chem. 2008, 23, 3624–3632.

26. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M., Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 1504–1518.

27. Zhou, W.; Wu, H.; Yildirim, T., Enhanced H2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. J. Am. Chem. Soc. 2008, 130, 15268–15269.

28. Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.; Maximoff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean, F.; Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R., Selective Binding of O2 over N2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites. J. Am. Chem. Soc. 2011, 133, 14814–14822.

29. Sanz, R.; Martínez, F.; Orcajo, G.; Wojtas, L.; Briones, D., Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour. Dalton Trans. 2013, 42, 2392–2398.

30. Sun, L.; Miyakai, T.; Seki, S.; Dincă, M., Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−)∞ Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc. 2013, 135, 8185–8188.

31. Zhang, Q.; Li, B.; Chen, L., First-Principles Study of Microporous Magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the Role of Metal Centers. Inorg. Chem. 2013, 52, 9356–9362.

32. Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M., Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.

33. Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O'Keeffe, M.; Yaghi, O. M., Porous, Conductive Metal-Triazolates and Their Structural Elucidation by the Charge-Flipping Method. Chem. Eur. J. 2012, 18, 10595–10601.

34. Tiana, D.; Hendon, C. H.; Walsh, A.; Vaid, T. P., Computational screening of structural and compositional factors for electrically conductive coordination polymers. Phys. Chem. Chem. Phys. 2014, 16, 14463–14472.

35. Zhou, X. H.; Peng, Y.-H.; Du, X.-D.; Zuo, J.-L.; You, X.-Z., Hydrothermal syntheses and structures of three novel coordination polymers assembled from 1,2,3-triazolate ligands. CrystEngComm 2009, 11, 1964–1970.

36. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.,Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66– 69.

37. Allendorf, M. D.; Foster, M. E.; Léonard, F.; Stavila, V.; Feng, P. L.; Doty, F. P.; Leong, K.; Ma, E. Y.; Johnston, S. R.; Talin, A. A., Guest-Induced Emergent Properties in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195.

38. Erickson, K. J.; Léonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.; Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A., Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Adv. Mater. 2015, 27, 3453–3459.

39. Hendon, C. H.; Walsh, A., Chemical principles underpinning the performance of the metal–organic framework HKUST-1 Chem. Sci. 2015, 6, 3674–3683.

40. Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H., Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949.

41. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49, 1210–1212.

42. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.

43. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors. Adv. Mater. 2013, 25, 6158–6183.

44. Saito, G.; Yoshida, Y., Topics in Current Chemistry, Springer, Berlin, Heidelberg, 2011, 67 –126.

45. Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D., Charge-transfer complexes: new perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076.

46. Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R., New Insight into the Nature of Cu(TCNQ):  Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior. Inorg. Chem. 1999, 38, 144–156.

47. Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R.; Dramatically Different Conductivity Properties of Metal–Organic Frameworks Polymorfs of Tl(TCNQ): an Unexpected Room-Temperature Crystal-to- Crystal Phase Transition. Angew. Chem. Int. Ed. 2011, 50, 6543–6547.

48. Ballesteros-Rivas, M.; Ota, A.; Reinheimer, E.; Prosvirin, A.; Valdés-Martinez, J.; Dunbar, K. R., Highly Conducting Coordination Polymers Based on Infinite M(4,4′-bpy) Chains Flanked by Regular Stacks of Non-Integer TCNQ Radicals. Angew. Chem. Int. Ed. 2011, 50, 9703–9707.

49. Zhang, Z.; Zhao, H.; Kojima, H.; Mori, T.; Dunbar, K. R., Conducting Organic Frameworks Based on a Main-Group Metal and Organocyanide Radicals. Chem. Eur. J. 2013, 19, 3348–3357.

50. Gándara, F.; Snejko, N.; Andrés, A. d.; Fernandez, J. R.; Gómez-Sal, J. C.; Gutierrez-Puebla, E.; Monge, A., Stable organic radical stacked by in situ coordination to rare earth cations in MOF materials. RSC Adv. 2012, 2, 949–955.

51. Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M., High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal–Organic Framework. J. Am. Chem. Soc. 2012, 134, 12932–12935.

52. Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M., Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777.

53. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604–615.

54. Spitler, E. L.; Dichtel, W. R., Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672.

55. Dogru, M.; Sonnauer, A.; Gavryushin, A.; Knochel, P.; Bein, T., A Covalent Organic Framework with 4 nm open pores. Chem. Commun. 2011, 47, 1707–1709.

56. Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.; Gao, J.; Jiang, D., Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 2013, 4, 2736.

57. Colson, J. W.; Dichtel, W. R., Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453.
58. Gutzler, R.; Perepichka, D. F., π-Electron Conjugation in Two Dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594.

59. Chaudhuri, P.; Verani, C. N.; Bill, E.; Bothe, E.; Weyhermüller, T.; Wieghardt, K., Electronic Structure of Bis(o-iminobenzosemiquinonato) metal Complexes (Cu, Ni, Pd). The Art of Establishing Physical Oxidation States in Transition-Metal Complexes Containing Radical Ligands. J. Am. Chem. Soc. 2001, 123, 2213–2223.

60. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M., New Porous Crystals of Extended Metal-Catecholates. Chem. Mater. 2012, 24, 3511–3513.

61. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H., π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.

62. Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H., Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator. J. Am. Chem. Soc. 2014, 136, 14357–14360.

63. Pal, T.; Kambe, T.; Kusamoto, T.; Foo, M. L.; Matsuoka, R.; Sakamoto, R.; Nishihara, H., Interfacial Synthesis of Electrically Conducting Palladium Bis(dithiolene) Complex Nanosheet. ChemPlusChem 2015, 80, 1255–1258.

64. Cui, J.; Xu, Z., An electroactive porous network from covalent metal–dithiolene links. Chem. Commun. 2014, 50, 3986–3988.

65. Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C., Two-Dimensional Metal–Organic Surfaces for Efficient Hydrogen Evolution from Water. J. Am. Chem. Soc. 2015, 137, 118–121.

66. Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X., Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 12058–12063.

67. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M., High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.

68. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M., Cu3(hexaimino triphenylene)2: An Electrically Conductive 2D Metal–Organic Framework for Chemiresistive Sensing. Angew. Chem. Int. Ed. 2015, 54, 4349–4352.

69. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M., Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783.

70. Liu, J.; Sun, Q., Enhanced Ferromagnetism in a Mn3C12N12H12 Sheet. ChemPhysChem 2015, 16, 614–620.

71. Wang, Z. F.; Su, N.; Liu, F., Prediction of a Two-Dimensional Organic Topological Insulator. Nano Lett. 2013, 13, 2842–2845.

72. Zhao, B.; Zhang, J.; Feng, W.; Yao, Y.; Yang, Z., Quantum spin Hall and Z2 metallic states in an organic material. Phys. Rev. B 2014, 90, 201403.

73. Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Nat. Mater. 2008, 7, 105.

74. Tritt, T. M. Advances in Thermoelectric Materials: Pt. I (Semiconductors and Semimetals). (Academic Press Inc) 2000, 326.

75. Kanatzidis, M. G. Semiconductors and Semimetals (ed M. Tritt Terry) (Elsevier) 2001, 69, 51–100.

76. Tritt, T. M., Thermoelectric Phenomena, Materials, and Applications. Ann. Rev. Mater. Res. 2011, 41, 433–448.

77. Kidalov, S. V.; Shakhov, F. M., Thermal Conductivity of Diamond Composites. Materials 2009, 2, 2467–2495.

78. Bentien, A.; Christensen, M.; Bryan, J. D.; Sanchez, A.; Paschen, S.; Steglich, F.; Stucky, G. D.; Iversen, B. B., Thermal conductivity of thermoelectric clathrates. Phys. Rev. B 2004, 69, 045107.

79. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.

80. Min, G.; Rowe, D. M., Cooling performance of integrated thermoelectric microcooler. Solid State Electron. 1999, 43, 923–929.

81. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638.

82. Fleurial, J. P. Short Course of Thermoelectrics (ITS, Japan,) 1993.

83. Yim, W. M.; Rosi, F. D., Compound tellurides and their alloys for peltier cooling—A review. Solid State Electron. 1972, 15, 1121–1140.

84. Kuznetsov, V.; Kuznetsova, L. A.; Kaliazin, A. E.; M. Rowe, D., Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds. J. Appl. Phys. 2000, 87, 7871–7875.

85. Poon, G. J. Semiconductors and Semimetals (ed M. Tritt Terry) (Elsevier) 2001, 70, 37–75.

86. Fleurial, J. P. B. A.; Caillat, T.; Morelli, D.T.; Meisner, G. P., 15th International Conference on Thermoelectrics. 1996, 91–95.

87. Luo, W.; li, H.; Yonggao, Y.; Lin, Z.; Tang, X.; Zhang, Q.; Uher, C., Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. Intermetallics 2011, 19, 404–408.

88. Shikano, M.; Funahashi, R., Electrical and Thermal Properties of Single-Crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 Structure. Appl. Phys. Lett. 2003, 82, 1851–1853.

89. Culebras, M.; Gómez, C. M.; Cantarero, A., Review on Polymers for Thermoelectric Applications. Materials 2014, 7, 6701–6732.

90. Lowhorn, N.; Wong-Ng ,W.; Lu, Z. Q.; Thomas, E. ; Otani, M.; Green, M.; Dilley, N. ; Sharp, J.; Tran, T. N., Development of a seebeck coefficient standard reference material. Appl. Phys. A 2009 , 96, 511.

91. Sun, L.; Campbell, M. G.; Dincă, M., Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579.

92. Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stach, E. A.; Zakharov, D.; Stavila, V.; Talin, A. A.; Ge, Y.; Allendorf, M. D.; Chen, G.; Léonard, F.; Dincă, M., A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule 2017, 1, 168–177.

93. Walton, R. I., "Subcritical Solvothermal Synthesis of Condensed Inorganic Materials." Chem. Soc. Rev. 2002, 31, 230–238.

94. Wilson, A. J. C.; Prince, E., Editors. International Tables for Crystallography, Vol. C, 2nd ed. 1999.

95. Muller, P., Crystal Structure Refinement: A Crystallographer’s Guide to SHELXT, Oxford University Press, 2006.

96. Sheldrick, G. M., "A short history of SHELX." Acta Cryst. Sec. A: Foundations of Crystallography 2008, 64, 112–122.

97. Brandenburg, H. P. K., DIAMOND, Impact C. Crystal Impact, Kreuzherrenstr. 102, 53227 Bonn, Germany, 2006.

98. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J., "Mercury: visualization and analysis of crystal structures." J. Appl. Crystallogr. 2006, 39, 453–457.

99. McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louër, D.; Scardi., P., "Rietveld refinement guidelines." J. Appl. Crystallogr. 1999, 32, 36–50.

100. Fleming, I.; Williams, D. H., Spectroscopic methods in organic chemistry, 1966.

101. Graham, D. J., Standard operating procedures for cyclic voltammetry, 2018.

102. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 2017, 95, 197–206.

103. Skoog, D. A.; West, D.M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, Thomson Brook/Cole, 2004.

104. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.

105. https://andyjconnelly.wordpress.com/2017/03/13/bet-surface-area/

106. https://advance-riko.com/en/products/zem-3/

107. https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/

108. Jaeger, R. C. Introduction to Microelectronic Fabrication; Prentice Hall: NJ, 2002; Vol. 5, Chapter 2.

109. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-k/Metal–Gate St ack and its MOSFET Characteristics IEEE Electron Device Lett. 2004, 25, 408–410.

110. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid Gate Dielectric Materials for Unconventional Electronic Circuitry Acc. Chem. Res. 2014, 47, 1019–1028.

111. Moore, G. E. Progress in Digital Integrated Electronics IEEE Int. Electron Devices Meet., Technol. Dig.1975, 21, 11–13.

112. Singh, R.; Ulrich, R. K. High and Low Dielectric Constant Materials Electrochem. Soc. Interface. 1999, 8, 26–30.

113. Baldwin, A. F.; Ma, R.; Mannodi-Kanakkithodi, A.; Huan, T. D.; Wang, C.; Tefferi, M.; Marszalek, J. E.; Cakmak, M.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Poly(Dimethyltin Glutarate) as a Prospective Material for High Dielectric Applications Adv. Mater. 2015, 27, 346–351.

114. Facchetti, A.; Yoon, M. H.; Marks, T. J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics Adv. Mater. 2005, 17, 1705–1725.

115. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Low-Voltage Organic Transistors on Plastic Comprising High–Dielectric Constant Gate Insulators Science 1999, 283, 822–824.

116. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional Porous Coordination Polymers Angew. Chem., Int. Ed. 2004, 43, 2334– 2375.

117. Féreya, G. Hybrid Porous Solids: Past, Present, Future Chem. Soc. Rev. 2008, 37, 191–214.

118. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal–Organic Frameworks Chem. Soc. Rev. 2009, 38, 1477–1504.

119. Murray, L. J.; Dinca, M.; Long, J. R. Hydrogen Storage in Metal–Organic Frameworks Chem. Soc. Rev. 2009, 38, 1294–1314.

120. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. A Roadmap to Implementing Metal–Organic Frameworks in Electronic Devices: Challenges and Critical Directions Chem. - Eur. J. 2011, 17, 11372–11388.

121. Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-Based Electronic and Optoelectronic Devices Chem. Soc. Rev. 2014, 43, 5994–6010.

122. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal–Org anic Frameworks Prospective Industrial Applications J. Mater. Chem. 2006, 16, 626–636.

123. Usman, M.; Lee, C. H.; Hung, D. S.; Lee, S. F.; Wang, C. C.; Luo, T. T.; Zhao, L.; Wu, M. K.; Lu, K. L. Intrinsic Low Dielectric Behaviour of a Highly Thermally Stable Sr-Based Metal–Organic Framework for Interlayer Dielectric Materials J. Mater. Chem. C 2014, 2, 3762–3768.
124. Usman, M.; Mendiratta, S.; Lu, K. L. Metal–Organic Frameworks: New Interlayer Diele ctric Materials Chem Electro Chem 2015, 2, 786–788.

125. Mendiratta, S.; Usman, M.; Luo, T. T.; Chang, B. C.; Lee, S. F.; Lin, Y. C.; Lu, K. L. An ion-Controlled Dielectric Behavior of Homochiral Tryptophan-Based Metal–Organic Frameworks Cryst. Growth Des. 2014,14, 1572–1579.

126. Hendon, C. H.; Walsh, A.; Dinca, M. Frontier Orbital Engineering of Metal–Organic Framework with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides Inorg. Chem. 2016, 55, 7265–7269.

127. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E. Metal–Organic Framework ZIF-8 Films as Low-κ Dielectrics in Microelectronics Chem. Mater. 2013, 25, 27–33.

128. Zhou, B.; Kobayashi, A.; Wang, Z. M.; Long, L. S.; Kobayashi, H. Anomalous Dielectric Behaviour and Thermal Motion of Water Molecules Incorporated in Porous Crystals Phys. Status Solidi C 2012, 9, 1216–1218.

129. Ye, Q.; Song, Y. M.; Wang, G. X.; Chen, K.; Fu, D. W.; Hong Chan, P. W.; Zhu, J. S.; Huang, S. D.; Xiong, R. G. Ferroelectric Metal–Organic Framework with a High Dielectric Constant J. Am. Chem. Soc. 2006, 128, 6554–6555.

130. Fu, D. W.; Dai, J.; Ge, J. Z.; Ye, H. Y.; Qu, Z. R. Synthesis, Structure and Dielectric Properties of the First 1D Ba-Tetrazole Complex [Ba(4-TPA)2(H2O)4·3.5(H2O)]n Inorg. Chem. Commun. 2010, 13, 282–285.

131. Plummer, J. D.; Griffin, P. B. Material and Process Limits in Silicon VLSI Technology Proc. IEEE 2001, 89, 240–258.

132. Houssa, M.; Pantisano, L.; Ragnarsson, L. Å.; Degraeve, R.; Schram, T.; Pourtois, G.; De Gendt, S.; Groeseneken, G.; Heyns, M. M. Electrical Properties of High-κ Gate Dielectrics: Challenges, Current Issues, and Possible Solutions Mater. Sci. Eng., R 2006, 51, 37–85.

133. Li, W. J.; Liu, J.; Sun, Z. H.; Liu, T. F.; Lü, J.; Gao, S. Y.; He, C.; Cao, R.; Luo, J. H. Integration of Metal–Organic Frameworks into an Electrochemical Dielectric Thin Film for Electronic Applications Nat. Commun. 2016, 7, 11830–11838.

134. Sheldrick, G. M. SHELXL-97, Program for Structure Refinement; University of Göttingen: Germany, 1997.

135. Wu, L. P.; Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y. Synthesis, Crystal Structures and Magnetic Behavior of Polymeric Lanthanide Complexes with Benzenehexacarboxylic Acid (Mellitic Acid) Inorg. Chim. Acta 1996, 249, 183–189.

136. Rodrigues, M. O.; Paz, F. A. A.; Freire, R. O.; de Sá, G. F.; Galembeck, A.; Montenegro, M. C.; Araújo, A. N.; Alves, S., Jr Modeling, Structural, and Spectroscopic Studies of Lanthanide–Organic Frameworks J. Phys. Chem. B 2009, 113, 12181–12188.

137. Spek, A. L. Single-Crystal Structure Validation with the Program PLATON J. Appl. Crystallogr. 2003, 36, 7–13.

138. Cui, H. B.; Takahashi, K.; Okano, Y.; Kobayashi, H.; Wang, Z.; Kobayashi, A. Dielectric Properties of Porous Molecular Crystals that Contain Polar Molecules Angew. Chem., Int. Ed. 2005, 44, 6508–6512.

139. Zhou, B.; Kobayashi, A.; Cui, H.B.; Long, L.S.; Fujimori, H.; Kobayashi, H. Anomalous Dielectric Behavior and Thermal Motion of Water Molecules Confined in Channels of Porous Coordination Polymer Crystals J. Am. Chem. Soc. 2011, 133, 5736–5739.

140. Cardarelli, F. Materials Handbook: A Concise Desktop Reference; Springer: London. 2008.

141. Patil, D. R.; Lokare, S. A.; Devan, R. S.; Chougule, S. S.; Kanamadi, C. M.; Kolekar, Y. D.; Chougule, B. K. Studies on Electrical and Dielectric Properties of Ba1–xSrxTiO3 Mater. Chem. Phys. 2007, 104, 254–257.

142. Qu, B. T.; Lai, J. C.; Liu, S.; Liu, F.; Gao, Y. D.; You, X. Z. Cu-and Ag-Based Metal–Organic Frameworks with 4-Pyranone-2,6-Dicarboxylic Acid: Syntheses, Crystal Structures, and Dielectric Properties Cryst. Growth Des. 2015, 15, 1707–1713.

143. Ghosh, A. Frequency-Dependent Conductivity in Bismuth-Vanadate Glassy Semi -conductors Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41, 1479–1488.

144. Sánchez-Andújar, M.; Yáñez-Vilar, S.; Pato-Doldán, B.; Gómez-Aguirre, C.; Castro-Garc ía, S.; Señarís-Rodríguez, M. A. Apparent Colossal Dielectric Constants in Nanoporous Metal–Organic Frameworks J. Phys. Chem. C 2012, 116, 13026–13032.

145. Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R. CaCu3Ti4O12: One-Step Intern al Barrier Layer Capacitor Appl. Phys. Lett. 2002, 80, 2153–2155.

146. Pato-Doldán, B.; Sánchez-Andújar, M.; Gómez-Aguirre, L. C.; Yáñez-Vilar, S.; Lopez-B ec eiro, J.; Gracia-Fernández, C.; Señarís-Rodríguez, M. A. Near Room Temperature Dielectric Transition in the Perovskite Formate Framework [(CH3)2NH2][Mg(HCOO)3] Phys. Chem. Chem. Phys. 2012, 14, 8498–8501.

147. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

148. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.

149. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2016, 16, 220.

150. Castaldelli, E.; Imalka Jayawardena, K. D. G.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nat. Commun. 2017, 8, 2139.

151. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal –organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125.

152. Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y., Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144.

153. Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T., Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 2016, 138, 10088–10091.

154. Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F., Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115–147.

155. Usman, M.; Mendiratta, S.; Lu, K. L., Semiconductor Metal–Organic Frameworks: Future Low‐Bandgap Materials. Adv. Mater. 2017, 29, 1605071.

156. Shimizu, G. K.; Taylor, J. M.; Kim, S., Proton conduction with metal-organic frameworks. Science 2013, 341, 354–355.

157. Chen, D.; Xing, H.; Su, Z.; Wang, C., Electrical conductivity and electroluminescence of a new anthracene-based metal–organic framework with π-conjugated zigzag chains. Chem. Commun. 2016, 52, 2019–2022.
158. Dou, J.-H.; Sun, L.; Ge, Y.; Li, W.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dincă, M., Signature of metallic behavior in the metal–organic frameworks M3 (hexaiminobenzene) 2 (M= Ni, Cu). J. Am. Chem. Soc. 2017, 139, 13608–13611.

159. Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R., Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703–15711.

160. D'Alessandro, D., Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chem. Commun. 2016, 52, 8957–8971.

161. Xie, L. S.; Sun, L.; Wan, R.; Park, S. S.; DeGayner, J. A.; Hendon, C. H.; Dincă, M., Tunable Mixed-Valence Doping towards Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. J. Am. Chem. Soc. 2018, 140, 7411–7414.

162. Liu, J.-J.; Guan, Y.-F.; Li, L.; Chen, Y.; Dai, W.-X.; Huang, C.-C.; Lin, M.-J., Constructio n of a bicontinuous donor–acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs. Chem. Commun. 2017, 53, 4481–4484.

163. Dong, R.; Zhang, Z.; Tranca, D. C.; Zhou, S.; Wang, M.; Adler, P.; Liao, Z.; Liu, F.; Sun, Y.; Shi, W., A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, 2637.

164. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M., π-Conjugated nickel bis (dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.

165. Clough, A. J.; Skelton, J. M.; Downes, C. A.; De La Rosa, A. A.; Yoo, J. W.; Walsh, A.; Melot, B. C.; Marinescu, S. C., Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 2017, 139, 10863–10867.

166. Huang, J.; He, Y.; Yao, M.-S.; He, J.; Xu, G.; Zeller, M.; Xu, Z., A semiconducting gyro idal metal-sulfur framework for chemiresistive sensing. J. Mater. Chem. A 2017, 5, 16139–16143.

167. Fanning, J. C.; Brooks, B. C.; Hoeglund, A. B.; Pelletier, D. A.; Wadford, J. A., The reduction of nitrate and nitrite ions in basic solution with sodium borohydride in the presence of copper (II) ions. Inorg. Chim. Acta 2000, 310, 115–119.

168. Fanning, J. C., The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 2000, 199, 159–179.
169. Nefedov, V.; Salyn, Y. V.; Shtemenko, A.; Kotelnikova, A., X-ray photoelectron study of trans-influence of the ReRe multiple bond. Inorg. Chim. Acta 1980, 45, 49–50.

170. Sholl, D. S.; Lively, R. P., Defects in metal–organic frameworks: challenge or opportunity ? J. Phys. Chem. Lett. 2015, 6, 3437–3444.

171. Huang, Y.; Chen, R.; Zhang, J.; Huang, Y., Electronic transport in NbSe 2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity. Nanoscale 2015, 7, 18964–18970.

172. Zhang, Q.; Zhang, C.; Cao, L.; Wang, Z.; An, B.; Lin, Z.; Huang, R.; Zhang, Z.; Wang, C.; Lin, W., Förster Energy Transport in Metal–Organic Frameworks Is Beyond Step-by-Step Hopping. J. Am. Chem. Soc. 2016, 138, 5308–5315.

173. Morales-García, A.; Soares, A. L.; Dos Santos, E. C.; de Abreu, H. A.; Duarte, H. A., Firs t-Principles Calculations and Electron Density Topological Analysis of Covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.

174. Usman, M.; Mendiratta, S.; Batjargal, S.; Haider, G.; Hayashi, M.; Rao Gade, N.; Chen, J.-W.; Chen, Y.-F.; Lu, K.-L., Semiconductor behavior of a three-dimensional strontium-based metal–organic framework. ACS Appl. Mater. Interfaces 2015, 7, 22767–22774.

175. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculatio ns using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

176. Dolgopolova, E. A.; Brandt, A. J.; Ejegbavwo, O. A.; Duke, A. S.; Maddumapatabandi, T. D.; Galhenage, R. P.; Larson, B. W.; Reid, O. G.; Ammal, S. C.; Heyden, A., Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201–5209.

177. Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C.-J.; Darago, L. E.; Mason, J. A.; Baeg, J.-O., Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 2018, 17, 625.

178. Hendon, C. H.; Rieth, A. J.; Korzyński, M. D.; Dincă, M., Grand challenges and future opportunities for metal–organic frameworks. ACS Cent. Sci. 2017, 3, 554–563.

179. Butler, K. T.; Hendon, C. H.; Walsh, A., Electronic structure modulation of metal–organic frameworks for hybrid devices. ACS Appl. Mater. Interfaces 2014, 6, 22044–22050.
180. Goldsmid, H.J., (Ed.), Introduction to Thermoelectricity, Springer, Heidelberg, Germany 2016, 9–24.

181. Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G., Bulk nanostructured thermoeletric materials: current research and future prospects Energy Environ. Sci. 2009, 2, 466–479.

182. Liu, W.; Yan, X.; Chen, G.; Ren, Z., Recent advances in thermoelectric nanocomposites Nano Energy 2012, 1, 42–56.

183. Liao, B.; Chen, G.; Nanocomposites for thermoelectrics and thermal engineering MRS Bull. 2015, 40, 746–752.

184. Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D., Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently Adv. Mater. 2014, 26, 6829–6851.

185. Huang, B. L.; Ni, Z.; Millward, A.; McGaughey, A. J. H.; Uher, C.; Kaviany, M.; Yaghi, O. M., Thermal conductivity of a metal-organic framework (MOF-5): part II. Measurement Int. J. Heat Mass. Transf. 2007, 50, 405–411.

186. D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, D. J. Siegel MOF-5 composites exhibiting improved thermal conductivity Int. J. Hydrogen Energy 2012, 37, 6109–6117.

187. Purewal, J. J.; Liu, D.; Yang, J.; Sudik, A.; Siegel, D. J.; Maurer, S.; Müller, U., Increased volumetric hydrogen uptake of MOF-5 by powder densification Int. J. Hydrogen Energy 2012, 37, 2723–2727.

188. Jeremias F.; Fröhlich, D.; Janiak, C.; Henninger, S. K., Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF RSC Adv. 2014, 4, 24073–24082.

189. Schlemminger, C.; Næss, E.; Bünger, U., Adsorption hydrogen storage at cryogenic temperature—material properties and hydrogen ortho-para conversion matters Int. J. Hydrogen Energy, 2015, 40, 6606–6625.

190. Nandasiri, M. I.; Liu, J.; McGrail, B. P.; Jenks, J.; Schaef, H. T.; Shutthanandan, V.; Nie, Z.; Martin, P. F.; Nune, S. K., Increased thermal conductivity in metal-organic heat carrier nanofluids Sci. Rep. 2016, 6, 27805.

191. Erickson, K. J.; Léonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.; Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A., Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity Adv. Mater. 2015, 27, 3453–3459.
192. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R., An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors Chem. Soc. Rev. 2017, 46, 3185–3241.

193. Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R.; Wang, F.; Walsh, A.; Dincă, M., Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 2017, 8, 4450–4457.

194. Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y.; Sun, Y.; A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior Nat. Commun. 2015, 6, 7408.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *