|
1. Hoskins, B. F.; Robson, R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964.
2. Hoskins, B.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N (CH3) 4][CuIZnII (CN) 4] and CuI [4, 4', 4'', 4'''-tetracyanotetraphenylmethane] BF4. xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.
3. Yaghi, O.; Li, H., Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.
4. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276.
5. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674.
6. Kitagawa, S., Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.
7. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A., A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry, 2011, 17, 11372–11388.
8. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.
9. Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K., Beyond post- synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev. 2014, 43, 5896–5912.
10. Tanabe, K. K.; Cohen, S. M., Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev. 2011, 40, 498–519.
11. Chen, Q.; Guo, P.-C.; Zhao, S.-P.; Liu, J.-L.; Ren, X.-M., A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2, 5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm 2013, 15, 1264–1270.
12. Ye, Q.; Song, Y.-M.; Wang, G.-X.; Chen, K.; Fu, D.-W.; Hong Chan, P. W.; Zhu, J.-S.; Huang, S. D.; Xiong, R.-G., Ferroelectric Metal−Organic Framework with a High Dielectric Constant. J. Am. Chem. Soc. 2006, 128, 6554–6555. 13. Li, W.-J.; Liu, J.; Sun, Z.-H.; Liu, T.-F.; Lü, J.; Gao, S.-Y.; He, C.; Cao, R.; Luo, J.-H., Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat. Commun. 2016, 7, 11830.
14. Reynolds, J. R.; Chien, J. C. W.; Lillya, C. P., Intrinsically electrically conducting poly(metal tetrathiooxalates). Macromolecules 1987, 20, 1184–1191.
15. Sun, Y.; Sheng, P.; Di, C.; Jiao, F.; Xu, W.; Qiu, D.; Zhu, D., Organic Thermoelectric Materials and Devices Based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 2012, 24, 932–937.
16. Takaishi, S.; Hosoda, M.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Nakanishi, Y.; Kitagawa, Y.; Yamaguchi, K.; Kobayashi, A.; Kitagawa, H., Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorg. Chem. 2009, 48, 9048–9050.
17. Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R., Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework. Chem. Mater. 2010, 22, 4120–4122.
18. Hao, Z.; Yang, G.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Song, S.; Zhang, H., A europium(iii) based metal–organic framework: bifunctional properties related to sensing and electronic conductivity. J. Mater. Chem. A 2014, 2, 237–244.
19. Chae, S. H.; Kim, H.-C.; Lee, Y. S.; Huh, S.; Kim, S.-J.; Kim, Y.; Lee, S. J., Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal. Cryst. Growth Des. 2015, 15, 268–277.
20. Holliday, B. J.; Swager, T. M., Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem. Commun. 2005, 1, 23–36.
21. Turner, D. L.; Vaid, T. P.; Stephens, P. W.; Stone, K. H.; DiPasquale, A. G.; Rheingold, A. L., Semiconducting Lead−Sulfur−Organic Network Solids. J. Am. Chem. Soc. 2008, 130, 14–15.
22. Turner, D. L.; Stone, K. H.; Stephens, P. W.; Walsh, A.; Singh, M. P.; Vaid, T. P., Synthesis, Characterization, and Calculated Electronic Structure of the Crystalline Metal–Organic Polymers [Hg(SC6H4S)(en)]n and [Pb(SC6H4S)(dien)]n. Inorg.Chem. 2012, 51, 370–376.
23. Dietzel, P. D. C.; Morita, Y.; Blom, R.; Fjellvåg, H., An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal–Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal–Oxygen Chains. Angew. Chem. Int. Ed. 2005, 44, 6354–6358.
24. Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvåg, H., Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 2006, 9, 959–961.
25. Dietzel, P. D. C.; Blom, R.; Fjellvåg, H., Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand. Eur. J. Inorg. Chem. 2008, 23, 3624–3632.
26. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M., Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 1504–1518.
27. Zhou, W.; Wu, H.; Yildirim, T., Enhanced H2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. J. Am. Chem. Soc. 2008, 130, 15268–15269.
28. Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.; Maximoff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean, F.; Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R., Selective Binding of O2 over N2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites. J. Am. Chem. Soc. 2011, 133, 14814–14822.
29. Sanz, R.; Martínez, F.; Orcajo, G.; Wojtas, L.; Briones, D., Synthesis of a honeycomb-like Cu-based metal–organic framework and its carbon dioxide adsorption behaviour. Dalton Trans. 2013, 42, 2392–2398.
30. Sun, L.; Miyakai, T.; Seki, S.; Dincă, M., Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−)∞ Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc. 2013, 135, 8185–8188.
31. Zhang, Q.; Li, B.; Chen, L., First-Principles Study of Microporous Magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the Role of Metal Centers. Inorg. Chem. 2013, 52, 9356–9362.
32. Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M., Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137, 6164–6167.
33. Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O'Keeffe, M.; Yaghi, O. M., Porous, Conductive Metal-Triazolates and Their Structural Elucidation by the Charge-Flipping Method. Chem. Eur. J. 2012, 18, 10595–10601.
34. Tiana, D.; Hendon, C. H.; Walsh, A.; Vaid, T. P., Computational screening of structural and compositional factors for electrically conductive coordination polymers. Phys. Chem. Chem. Phys. 2014, 16, 14463–14472.
35. Zhou, X. H.; Peng, Y.-H.; Du, X.-D.; Zuo, J.-L.; You, X.-Z., Hydrothermal syntheses and structures of three novel coordination polymers assembled from 1,2,3-triazolate ligands. CrystEngComm 2009, 11, 1964–1970.
36. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.,Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66– 69.
37. Allendorf, M. D.; Foster, M. E.; Léonard, F.; Stavila, V.; Feng, P. L.; Doty, F. P.; Leong, K.; Ma, E. Y.; Johnston, S. R.; Talin, A. A., Guest-Induced Emergent Properties in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195.
38. Erickson, K. J.; Léonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.; Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A., Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Adv. Mater. 2015, 27, 3453–3459.
39. Hendon, C. H.; Walsh, A., Chemical principles underpinning the performance of the metal–organic framework HKUST-1 Chem. Sci. 2015, 6, 3674–3683.
40. Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H., Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949.
41. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49, 1210–1212.
42. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.
43. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors. Adv. Mater. 2013, 25, 6158–6183.
44. Saito, G.; Yoshida, Y., Topics in Current Chemistry, Springer, Berlin, Heidelberg, 2011, 67 –126.
45. Goetz, K. P.; Vermeulen, D.; Payne, M. E.; Kloc, C.; McNeil, L. E.; Jurchescu, O. D., Charge-transfer complexes: new perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076.
46. Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R., New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior. Inorg. Chem. 1999, 38, 144–156.
47. Avendano, C.; Zhang, Z.; Ota, A.; Zhao, H.; Dunbar, K. R.; Dramatically Different Conductivity Properties of Metal–Organic Frameworks Polymorfs of Tl(TCNQ): an Unexpected Room-Temperature Crystal-to- Crystal Phase Transition. Angew. Chem. Int. Ed. 2011, 50, 6543–6547.
48. Ballesteros-Rivas, M.; Ota, A.; Reinheimer, E.; Prosvirin, A.; Valdés-Martinez, J.; Dunbar, K. R., Highly Conducting Coordination Polymers Based on Infinite M(4,4′-bpy) Chains Flanked by Regular Stacks of Non-Integer TCNQ Radicals. Angew. Chem. Int. Ed. 2011, 50, 9703–9707.
49. Zhang, Z.; Zhao, H.; Kojima, H.; Mori, T.; Dunbar, K. R., Conducting Organic Frameworks Based on a Main-Group Metal and Organocyanide Radicals. Chem. Eur. J. 2013, 19, 3348–3357.
50. Gándara, F.; Snejko, N.; Andrés, A. d.; Fernandez, J. R.; Gómez-Sal, J. C.; Gutierrez-Puebla, E.; Monge, A., Stable organic radical stacked by in situ coordination to rare earth cations in MOF materials. RSC Adv. 2012, 2, 949–955.
51. Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M., High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal–Organic Framework. J. Am. Chem. Soc. 2012, 134, 12932–12935.
52. Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M., Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777.
53. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604–615.
54. Spitler, E. L.; Dichtel, W. R., Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672.
55. Dogru, M.; Sonnauer, A.; Gavryushin, A.; Knochel, P.; Bein, T., A Covalent Organic Framework with 4 nm open pores. Chem. Commun. 2011, 47, 1707–1709.
56. Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.; Gao, J.; Jiang, D., Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 2013, 4, 2736.
57. Colson, J. W.; Dichtel, W. R., Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453. 58. Gutzler, R.; Perepichka, D. F., π-Electron Conjugation in Two Dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594.
59. Chaudhuri, P.; Verani, C. N.; Bill, E.; Bothe, E.; Weyhermüller, T.; Wieghardt, K., Electronic Structure of Bis(o-iminobenzosemiquinonato) metal Complexes (Cu, Ni, Pd). The Art of Establishing Physical Oxidation States in Transition-Metal Complexes Containing Radical Ligands. J. Am. Chem. Soc. 2001, 123, 2213–2223.
60. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.; Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki, O.; Yaghi, O. M., New Porous Crystals of Extended Metal-Catecholates. Chem. Mater. 2012, 24, 3511–3513.
61. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H., π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.
62. Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H., Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator. J. Am. Chem. Soc. 2014, 136, 14357–14360.
63. Pal, T.; Kambe, T.; Kusamoto, T.; Foo, M. L.; Matsuoka, R.; Sakamoto, R.; Nishihara, H., Interfacial Synthesis of Electrically Conducting Palladium Bis(dithiolene) Complex Nanosheet. ChemPlusChem 2015, 80, 1255–1258.
64. Cui, J.; Xu, Z., An electroactive porous network from covalent metal–dithiolene links. Chem. Commun. 2014, 50, 3986–3988.
65. Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C., Two-Dimensional Metal–Organic Surfaces for Efficient Hydrogen Evolution from Water. J. Am. Chem. Soc. 2015, 137, 118–121.
66. Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X., Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 12058–12063.
67. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M., High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862.
68. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M., Cu3(hexaimino triphenylene)2: An Electrically Conductive 2D Metal–Organic Framework for Chemiresistive Sensing. Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
69. Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M., Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783.
70. Liu, J.; Sun, Q., Enhanced Ferromagnetism in a Mn3C12N12H12 Sheet. ChemPhysChem 2015, 16, 614–620.
71. Wang, Z. F.; Su, N.; Liu, F., Prediction of a Two-Dimensional Organic Topological Insulator. Nano Lett. 2013, 13, 2842–2845.
72. Zhao, B.; Zhang, J.; Feng, W.; Yao, Y.; Yang, Z., Quantum spin Hall and Z2 metallic states in an organic material. Phys. Rev. B 2014, 90, 201403.
73. Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Nat. Mater. 2008, 7, 105.
74. Tritt, T. M. Advances in Thermoelectric Materials: Pt. I (Semiconductors and Semimetals). (Academic Press Inc) 2000, 326.
75. Kanatzidis, M. G. Semiconductors and Semimetals (ed M. Tritt Terry) (Elsevier) 2001, 69, 51–100.
76. Tritt, T. M., Thermoelectric Phenomena, Materials, and Applications. Ann. Rev. Mater. Res. 2011, 41, 433–448.
77. Kidalov, S. V.; Shakhov, F. M., Thermal Conductivity of Diamond Composites. Materials 2009, 2, 2467–2495.
78. Bentien, A.; Christensen, M.; Bryan, J. D.; Sanchez, A.; Paschen, S.; Steglich, F.; Stucky, G. D.; Iversen, B. B., Thermal conductivity of thermoelectric clathrates. Phys. Rev. B 2004, 69, 045107.
79. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.
80. Min, G.; Rowe, D. M., Cooling performance of integrated thermoelectric microcooler. Solid State Electron. 1999, 43, 923–929.
81. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638.
82. Fleurial, J. P. Short Course of Thermoelectrics (ITS, Japan,) 1993.
83. Yim, W. M.; Rosi, F. D., Compound tellurides and their alloys for peltier cooling—A review. Solid State Electron. 1972, 15, 1121–1140.
84. Kuznetsov, V.; Kuznetsova, L. A.; Kaliazin, A. E.; M. Rowe, D., Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds. J. Appl. Phys. 2000, 87, 7871–7875.
85. Poon, G. J. Semiconductors and Semimetals (ed M. Tritt Terry) (Elsevier) 2001, 70, 37–75.
86. Fleurial, J. P. B. A.; Caillat, T.; Morelli, D.T.; Meisner, G. P., 15th International Conference on Thermoelectrics. 1996, 91–95.
87. Luo, W.; li, H.; Yonggao, Y.; Lin, Z.; Tang, X.; Zhang, Q.; Uher, C., Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. Intermetallics 2011, 19, 404–408.
88. Shikano, M.; Funahashi, R., Electrical and Thermal Properties of Single-Crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 Structure. Appl. Phys. Lett. 2003, 82, 1851–1853.
89. Culebras, M.; Gómez, C. M.; Cantarero, A., Review on Polymers for Thermoelectric Applications. Materials 2014, 7, 6701–6732.
90. Lowhorn, N.; Wong-Ng ,W.; Lu, Z. Q.; Thomas, E. ; Otani, M.; Green, M.; Dilley, N. ; Sharp, J.; Tran, T. N., Development of a seebeck coefficient standard reference material. Appl. Phys. A 2009 , 96, 511.
91. Sun, L.; Campbell, M. G.; Dincă, M., Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579.
92. Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stach, E. A.; Zakharov, D.; Stavila, V.; Talin, A. A.; Ge, Y.; Allendorf, M. D.; Chen, G.; Léonard, F.; Dincă, M., A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule 2017, 1, 168–177.
93. Walton, R. I., "Subcritical Solvothermal Synthesis of Condensed Inorganic Materials." Chem. Soc. Rev. 2002, 31, 230–238.
94. Wilson, A. J. C.; Prince, E., Editors. International Tables for Crystallography, Vol. C, 2nd ed. 1999.
95. Muller, P., Crystal Structure Refinement: A Crystallographer’s Guide to SHELXT, Oxford University Press, 2006.
96. Sheldrick, G. M., "A short history of SHELX." Acta Cryst. Sec. A: Foundations of Crystallography 2008, 64, 112–122.
97. Brandenburg, H. P. K., DIAMOND, Impact C. Crystal Impact, Kreuzherrenstr. 102, 53227 Bonn, Germany, 2006.
98. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J., "Mercury: visualization and analysis of crystal structures." J. Appl. Crystallogr. 2006, 39, 453–457.
99. McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louër, D.; Scardi., P., "Rietveld refinement guidelines." J. Appl. Crystallogr. 1999, 32, 36–50.
100. Fleming, I.; Williams, D. H., Spectroscopic methods in organic chemistry, 1966.
101. Graham, D. J., Standard operating procedures for cyclic voltammetry, 2018.
102. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A practical beginner’s guide to cyclic voltammetry. Journal of chemical education, 2017, 95, 197–206.
103. Skoog, D. A.; West, D.M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, Thomson Brook/Cole, 2004.
104. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.
105. https://andyjconnelly.wordpress.com/2017/03/13/bet-surface-area/
106. https://advance-riko.com/en/products/zem-3/
107. https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/
108. Jaeger, R. C. Introduction to Microelectronic Fabrication; Prentice Hall: NJ, 2002; Vol. 5, Chapter 2.
109. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Kavalieros, J.; Metz, M. High-k/Metal–Gate St ack and its MOSFET Characteristics IEEE Electron Device Lett. 2004, 25, 408–410.
110. Ha, Y. G.; Everaerts, K.; Hersam, M. C.; Marks, T. J. Hybrid Gate Dielectric Materials for Unconventional Electronic Circuitry Acc. Chem. Res. 2014, 47, 1019–1028.
111. Moore, G. E. Progress in Digital Integrated Electronics IEEE Int. Electron Devices Meet., Technol. Dig.1975, 21, 11–13.
112. Singh, R.; Ulrich, R. K. High and Low Dielectric Constant Materials Electrochem. Soc. Interface. 1999, 8, 26–30.
113. Baldwin, A. F.; Ma, R.; Mannodi-Kanakkithodi, A.; Huan, T. D.; Wang, C.; Tefferi, M.; Marszalek, J. E.; Cakmak, M.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Poly(Dimethyltin Glutarate) as a Prospective Material for High Dielectric Applications Adv. Mater. 2015, 27, 346–351.
114. Facchetti, A.; Yoon, M. H.; Marks, T. J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics Adv. Mater. 2005, 17, 1705–1725.
115. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Low-Voltage Organic Transistors on Plastic Comprising High–Dielectric Constant Gate Insulators Science 1999, 283, 822–824.
116. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional Porous Coordination Polymers Angew. Chem., Int. Ed. 2004, 43, 2334– 2375.
117. Féreya, G. Hybrid Porous Solids: Past, Present, Future Chem. Soc. Rev. 2008, 37, 191–214.
118. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal–Organic Frameworks Chem. Soc. Rev. 2009, 38, 1477–1504.
119. Murray, L. J.; Dinca, M.; Long, J. R. Hydrogen Storage in Metal–Organic Frameworks Chem. Soc. Rev. 2009, 38, 1294–1314.
120. Allendorf, M. D.; Schwartzberg, A.; Stavila, V.; Talin, A. A. A Roadmap to Implementing Metal–Organic Frameworks in Electronic Devices: Challenges and Critical Directions Chem. - Eur. J. 2011, 17, 11372–11388.
121. Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-Based Electronic and Optoelectronic Devices Chem. Soc. Rev. 2014, 43, 5994–6010.
122. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal–Org anic Frameworks Prospective Industrial Applications J. Mater. Chem. 2006, 16, 626–636.
123. Usman, M.; Lee, C. H.; Hung, D. S.; Lee, S. F.; Wang, C. C.; Luo, T. T.; Zhao, L.; Wu, M. K.; Lu, K. L. Intrinsic Low Dielectric Behaviour of a Highly Thermally Stable Sr-Based Metal–Organic Framework for Interlayer Dielectric Materials J. Mater. Chem. C 2014, 2, 3762–3768. 124. Usman, M.; Mendiratta, S.; Lu, K. L. Metal–Organic Frameworks: New Interlayer Diele ctric Materials Chem Electro Chem 2015, 2, 786–788.
125. Mendiratta, S.; Usman, M.; Luo, T. T.; Chang, B. C.; Lee, S. F.; Lin, Y. C.; Lu, K. L. An ion-Controlled Dielectric Behavior of Homochiral Tryptophan-Based Metal–Organic Frameworks Cryst. Growth Des. 2014,14, 1572–1579.
126. Hendon, C. H.; Walsh, A.; Dinca, M. Frontier Orbital Engineering of Metal–Organic Framework with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides Inorg. Chem. 2016, 55, 7265–7269.
127. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E. Metal–Organic Framework ZIF-8 Films as Low-κ Dielectrics in Microelectronics Chem. Mater. 2013, 25, 27–33.
128. Zhou, B.; Kobayashi, A.; Wang, Z. M.; Long, L. S.; Kobayashi, H. Anomalous Dielectric Behaviour and Thermal Motion of Water Molecules Incorporated in Porous Crystals Phys. Status Solidi C 2012, 9, 1216–1218.
129. Ye, Q.; Song, Y. M.; Wang, G. X.; Chen, K.; Fu, D. W.; Hong Chan, P. W.; Zhu, J. S.; Huang, S. D.; Xiong, R. G. Ferroelectric Metal–Organic Framework with a High Dielectric Constant J. Am. Chem. Soc. 2006, 128, 6554–6555.
130. Fu, D. W.; Dai, J.; Ge, J. Z.; Ye, H. Y.; Qu, Z. R. Synthesis, Structure and Dielectric Properties of the First 1D Ba-Tetrazole Complex [Ba(4-TPA)2(H2O)4·3.5(H2O)]n Inorg. Chem. Commun. 2010, 13, 282–285.
131. Plummer, J. D.; Griffin, P. B. Material and Process Limits in Silicon VLSI Technology Proc. IEEE 2001, 89, 240–258.
132. Houssa, M.; Pantisano, L.; Ragnarsson, L. Å.; Degraeve, R.; Schram, T.; Pourtois, G.; De Gendt, S.; Groeseneken, G.; Heyns, M. M. Electrical Properties of High-κ Gate Dielectrics: Challenges, Current Issues, and Possible Solutions Mater. Sci. Eng., R 2006, 51, 37–85.
133. Li, W. J.; Liu, J.; Sun, Z. H.; Liu, T. F.; Lü, J.; Gao, S. Y.; He, C.; Cao, R.; Luo, J. H. Integration of Metal–Organic Frameworks into an Electrochemical Dielectric Thin Film for Electronic Applications Nat. Commun. 2016, 7, 11830–11838.
134. Sheldrick, G. M. SHELXL-97, Program for Structure Refinement; University of Göttingen: Germany, 1997.
135. Wu, L. P.; Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y. Synthesis, Crystal Structures and Magnetic Behavior of Polymeric Lanthanide Complexes with Benzenehexacarboxylic Acid (Mellitic Acid) Inorg. Chim. Acta 1996, 249, 183–189.
136. Rodrigues, M. O.; Paz, F. A. A.; Freire, R. O.; de Sá, G. F.; Galembeck, A.; Montenegro, M. C.; Araújo, A. N.; Alves, S., Jr Modeling, Structural, and Spectroscopic Studies of Lanthanide–Organic Frameworks J. Phys. Chem. B 2009, 113, 12181–12188.
137. Spek, A. L. Single-Crystal Structure Validation with the Program PLATON J. Appl. Crystallogr. 2003, 36, 7–13.
138. Cui, H. B.; Takahashi, K.; Okano, Y.; Kobayashi, H.; Wang, Z.; Kobayashi, A. Dielectric Properties of Porous Molecular Crystals that Contain Polar Molecules Angew. Chem., Int. Ed. 2005, 44, 6508–6512.
139. Zhou, B.; Kobayashi, A.; Cui, H.B.; Long, L.S.; Fujimori, H.; Kobayashi, H. Anomalous Dielectric Behavior and Thermal Motion of Water Molecules Confined in Channels of Porous Coordination Polymer Crystals J. Am. Chem. Soc. 2011, 133, 5736–5739.
140. Cardarelli, F. Materials Handbook: A Concise Desktop Reference; Springer: London. 2008.
141. Patil, D. R.; Lokare, S. A.; Devan, R. S.; Chougule, S. S.; Kanamadi, C. M.; Kolekar, Y. D.; Chougule, B. K. Studies on Electrical and Dielectric Properties of Ba1–xSrxTiO3 Mater. Chem. Phys. 2007, 104, 254–257.
142. Qu, B. T.; Lai, J. C.; Liu, S.; Liu, F.; Gao, Y. D.; You, X. Z. Cu-and Ag-Based Metal–Organic Frameworks with 4-Pyranone-2,6-Dicarboxylic Acid: Syntheses, Crystal Structures, and Dielectric Properties Cryst. Growth Des. 2015, 15, 1707–1713.
143. Ghosh, A. Frequency-Dependent Conductivity in Bismuth-Vanadate Glassy Semi -conductors Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41, 1479–1488.
144. Sánchez-Andújar, M.; Yáñez-Vilar, S.; Pato-Doldán, B.; Gómez-Aguirre, C.; Castro-Garc ía, S.; Señarís-Rodríguez, M. A. Apparent Colossal Dielectric Constants in Nanoporous Metal–Organic Frameworks J. Phys. Chem. C 2012, 116, 13026–13032.
145. Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R. CaCu3Ti4O12: One-Step Intern al Barrier Layer Capacitor Appl. Phys. Lett. 2002, 80, 2153–2155.
146. Pato-Doldán, B.; Sánchez-Andújar, M.; Gómez-Aguirre, L. C.; Yáñez-Vilar, S.; Lopez-B ec eiro, J.; Gracia-Fernández, C.; Señarís-Rodríguez, M. A. Near Room Temperature Dielectric Transition in the Perovskite Formate Framework [(CH3)2NH2][Mg(HCOO)3] Phys. Chem. Chem. Phys. 2012, 14, 8498–8501.
147. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
148. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.
149. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2016, 16, 220.
150. Castaldelli, E.; Imalka Jayawardena, K. D. G.; Cox, D. C.; Clarkson, G. J.; Walton, R. I.; Le-Quang, L.; Chauvin, J.; Silva, S. R. P.; Demets, G. J.-F., Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nat. Commun. 2017, 8, 2139.
151. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal –organic framework materials as chemical sensors. Chem. Rev. 2011, 112, 1105–1125.
152. Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y., Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141–144.
153. Le Ouay, B.; Boudot, M.; Kitao, T.; Yanagida, T.; Kitagawa, S.; Uemura, T., Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 2016, 138, 10088–10091.
154. Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F., Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115–147.
155. Usman, M.; Mendiratta, S.; Lu, K. L., Semiconductor Metal–Organic Frameworks: Future Low‐Bandgap Materials. Adv. Mater. 2017, 29, 1605071.
156. Shimizu, G. K.; Taylor, J. M.; Kim, S., Proton conduction with metal-organic frameworks. Science 2013, 341, 354–355.
157. Chen, D.; Xing, H.; Su, Z.; Wang, C., Electrical conductivity and electroluminescence of a new anthracene-based metal–organic framework with π-conjugated zigzag chains. Chem. Commun. 2016, 52, 2019–2022. 158. Dou, J.-H.; Sun, L.; Ge, Y.; Li, W.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dincă, M., Signature of metallic behavior in the metal–organic frameworks M3 (hexaiminobenzene) 2 (M= Ni, Cu). J. Am. Chem. Soc. 2017, 139, 13608–13611.
159. Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R., Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703–15711.
160. D'Alessandro, D., Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chem. Commun. 2016, 52, 8957–8971.
161. Xie, L. S.; Sun, L.; Wan, R.; Park, S. S.; DeGayner, J. A.; Hendon, C. H.; Dincă, M., Tunable Mixed-Valence Doping towards Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework. J. Am. Chem. Soc. 2018, 140, 7411–7414.
162. Liu, J.-J.; Guan, Y.-F.; Li, L.; Chen, Y.; Dai, W.-X.; Huang, C.-C.; Lin, M.-J., Constructio n of a bicontinuous donor–acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs. Chem. Commun. 2017, 53, 4481–4484.
163. Dong, R.; Zhang, Z.; Tranca, D. C.; Zhou, S.; Wang, M.; Adler, P.; Liao, Z.; Liu, F.; Sun, Y.; Shi, W., A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, 2637.
164. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M., π-Conjugated nickel bis (dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462–2465.
165. Clough, A. J.; Skelton, J. M.; Downes, C. A.; De La Rosa, A. A.; Yoo, J. W.; Walsh, A.; Melot, B. C.; Marinescu, S. C., Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 2017, 139, 10863–10867.
166. Huang, J.; He, Y.; Yao, M.-S.; He, J.; Xu, G.; Zeller, M.; Xu, Z., A semiconducting gyro idal metal-sulfur framework for chemiresistive sensing. J. Mater. Chem. A 2017, 5, 16139–16143.
167. Fanning, J. C.; Brooks, B. C.; Hoeglund, A. B.; Pelletier, D. A.; Wadford, J. A., The reduction of nitrate and nitrite ions in basic solution with sodium borohydride in the presence of copper (II) ions. Inorg. Chim. Acta 2000, 310, 115–119.
168. Fanning, J. C., The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 2000, 199, 159–179. 169. Nefedov, V.; Salyn, Y. V.; Shtemenko, A.; Kotelnikova, A., X-ray photoelectron study of trans-influence of the ReRe multiple bond. Inorg. Chim. Acta 1980, 45, 49–50.
170. Sholl, D. S.; Lively, R. P., Defects in metal–organic frameworks: challenge or opportunity ? J. Phys. Chem. Lett. 2015, 6, 3437–3444.
171. Huang, Y.; Chen, R.; Zhang, J.; Huang, Y., Electronic transport in NbSe 2 two-dimensional nanostructures: semiconducting characteristics and photoconductivity. Nanoscale 2015, 7, 18964–18970.
172. Zhang, Q.; Zhang, C.; Cao, L.; Wang, Z.; An, B.; Lin, Z.; Huang, R.; Zhang, Z.; Wang, C.; Lin, W., Förster Energy Transport in Metal–Organic Frameworks Is Beyond Step-by-Step Hopping. J. Am. Chem. Soc. 2016, 138, 5308–5315.
173. Morales-García, A.; Soares, A. L.; Dos Santos, E. C.; de Abreu, H. A.; Duarte, H. A., Firs t-Principles Calculations and Electron Density Topological Analysis of Covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.
174. Usman, M.; Mendiratta, S.; Batjargal, S.; Haider, G.; Hayashi, M.; Rao Gade, N.; Chen, J.-W.; Chen, Y.-F.; Lu, K.-L., Semiconductor behavior of a three-dimensional strontium-based metal–organic framework. ACS Appl. Mater. Interfaces 2015, 7, 22767–22774.
175. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculatio ns using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
176. Dolgopolova, E. A.; Brandt, A. J.; Ejegbavwo, O. A.; Duke, A. S.; Maddumapatabandi, T. D.; Galhenage, R. P.; Larson, B. W.; Reid, O. G.; Ammal, S. C.; Heyden, A., Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201–5209.
177. Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C.-J.; Darago, L. E.; Mason, J. A.; Baeg, J.-O., Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 2018, 17, 625.
178. Hendon, C. H.; Rieth, A. J.; Korzyński, M. D.; Dincă, M., Grand challenges and future opportunities for metal–organic frameworks. ACS Cent. Sci. 2017, 3, 554–563.
179. Butler, K. T.; Hendon, C. H.; Walsh, A., Electronic structure modulation of metal–organic frameworks for hybrid devices. ACS Appl. Mater. Interfaces 2014, 6, 22044–22050. 180. Goldsmid, H.J., (Ed.), Introduction to Thermoelectricity, Springer, Heidelberg, Germany 2016, 9–24.
181. Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G., Bulk nanostructured thermoeletric materials: current research and future prospects Energy Environ. Sci. 2009, 2, 466–479.
182. Liu, W.; Yan, X.; Chen, G.; Ren, Z., Recent advances in thermoelectric nanocomposites Nano Energy 2012, 1, 42–56.
183. Liao, B.; Chen, G.; Nanocomposites for thermoelectrics and thermal engineering MRS Bull. 2015, 40, 746–752.
184. Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D., Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently Adv. Mater. 2014, 26, 6829–6851.
185. Huang, B. L.; Ni, Z.; Millward, A.; McGaughey, A. J. H.; Uher, C.; Kaviany, M.; Yaghi, O. M., Thermal conductivity of a metal-organic framework (MOF-5): part II. Measurement Int. J. Heat Mass. Transf. 2007, 50, 405–411.
186. D. Liu, J. J. Purewal, J. Yang, A. Sudik, S. Maurer, U. Mueller, J. Ni, D. J. Siegel MOF-5 composites exhibiting improved thermal conductivity Int. J. Hydrogen Energy 2012, 37, 6109–6117.
187. Purewal, J. J.; Liu, D.; Yang, J.; Sudik, A.; Siegel, D. J.; Maurer, S.; Müller, U., Increased volumetric hydrogen uptake of MOF-5 by powder densification Int. J. Hydrogen Energy 2012, 37, 2723–2727.
188. Jeremias F.; Fröhlich, D.; Janiak, C.; Henninger, S. K., Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF RSC Adv. 2014, 4, 24073–24082.
189. Schlemminger, C.; Næss, E.; Bünger, U., Adsorption hydrogen storage at cryogenic temperature—material properties and hydrogen ortho-para conversion matters Int. J. Hydrogen Energy, 2015, 40, 6606–6625.
190. Nandasiri, M. I.; Liu, J.; McGrail, B. P.; Jenks, J.; Schaef, H. T.; Shutthanandan, V.; Nie, Z.; Martin, P. F.; Nune, S. K., Increased thermal conductivity in metal-organic heat carrier nanofluids Sci. Rep. 2016, 6, 27805.
191. Erickson, K. J.; Léonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.; Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A., Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity Adv. Mater. 2015, 27, 3453–3459. 192. Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R., An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors Chem. Soc. Rev. 2017, 46, 3185–3241.
193. Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R.; Wang, F.; Walsh, A.; Dincă, M., Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 2017, 8, 4450–4457.
194. Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y.; Sun, Y.; A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior Nat. Commun. 2015, 6, 7408.
|