|
1. S. Kou, Y. Le, Grain-structure and solidification cracking in oscillated arc welds of 5052 aluminum-alloy. Metallurgical Transactions A, 1985. 16(7): p. 1345-1352. 2. S. Kou, Y. Le, Nucleation mechanisms and grain refining of weld metal. Welding Journal, 1986. 65(12): p. 305-313. 3. G. D. J. Ram, R. Murugesan, S. Sundaresan, Fusion zone grain refinement in aluminum alloy welds through magnetic arc oscillation and its effect on tensile behavior. Journal of Materials Engineering and Performance, 1999. 8(5): p. 513-520. 4. F. Matsuda, K. Nakata, N. Sano, Effect of electromagnetic stirring on weld solidification structure of austenitic stainless steels(materials, metallurgy & weldability). Transactions of JWRI, 1986. 15(2): p. 327-338. 5. M. Malinowskibrodnicka, G. Denouden, W. J. P. Vink, Effect of electromagnetic stirring on GTA welds in austenitic stainless-steel. Welding Journal, 1990. 69(2): p. S52-S59. 6. T. Watanabe, H. Nakamura, K. Ei, Solidification control of austenitic stainless steel weld metal by electromagnetic stirring. Transactions of the Japan Welding Society, 1990. 21(2): p. 109-115. 7. J. C. Lippold, D. Kotecki, Welding metallurgy and weldability of stainless steel. Vol. 1. 2005. 8. B. P. Pearce, H. W. Kerr, Grain refinement in magnetically stirred GTA welds of aluminum alloys. Metallurgical Transactions B, 1981. 12(3): p. 479-486. 9. M. G. Mousavi, M. J. M. Hermans, I. M. Richardson, G. d. Ouden, Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds. Science and Technology of Welding and Joining, 2003. 8(4): p. 309-312. 10. F. Vollertsen, C. Thomy, Magnetic stirring during laser welding of aluminum. Journal of Laser Applications, 2006. 18(1): p. 28-34. 11. K. Sivaprasad, S. G. S. Raman, Influence of magnetic arc oscillation and current pulsing on fatigue behavior of alloy 718 TIG weldments. 2007. 448: p. 120-127. 12. Y. C. Lim, X. Yu, J. H. Cho, J. Sosa, D. F. Farson, S. S. Babu, S. McCracken, B. Flesner, Effect of magnetic stirring on grain structure refinement: Part 1 – Autogenous nickel alloy welds. Science and Technology of Welding and Joining, 2010. 15(7): p. 583-589. 13. Y. C. Lim, X. Yu, J. H. Cho, J. Sosa, D. F. Farson, S. S. Babu, S. McCracken, B. Flesner, Effect of magnetic stirring on grain structure refinement Part 2 – Nickel alloy weld overlays. Science and Technology of Welding and Joining, 2010. 15(5): p. 400-406. 14. X. Yu, R. Smith, Y. C. Lim, D. Farson, S. Babu, J. C. Lippold, M. McCracken, Effect of magnetic stirring on nickel alloy weld microstructure and micro-fissure response. 2012. 15. X. Yu, Y. C. Lim, R. Smith, S. Babu, D. Farson, J. C. Lippold, M. McCracken, Reducing hot cracking tendency of dissimilar weld overlay by magnetic arc oscillation. 2014. 30: p. 930-937. 16. S. Kou, Welding metallurgy. 1987: Wiley-Interscience. 17. J. R. Davis, ASM handbook volume 1: properties and selection: irons, steels, and high-performance alloys. 1990: ASM International. 18. N. Suutala, T. Takalo, T. Moisio, The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metallurgical Transactions A, 1979. 10(4): p. 512-514. 19. J. Lippold, W. Savage, Solidification of austenitic stainless steel weldments: Part 2—The effect of alloy composition on ferrite morphology. Welding Journal, 1980: p. 48-58. 20. G. L. Leone, H. W. Kerr, The ferrite to austenite transformation in stainless-steels. Welding Journal, 1982. 61(1): p. S13-S21. 21. J. A. Brooks, A. W. Thompson, Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. International Materials Reviews, 1991. 36(1): p. 16-44. 22. H. Inoue, T. Koseki, Clarification of solidification behaviors in austenitic stainless steels based on welding process. Nippon Steel Technical Report, 2007. 95: p. 62-70. 23. A. I. H. Committee, D. L. Olson, ASM handbook: welding, brazing, and soldering. 1993: ASM International. 24. V. Shankar, T. P. S. Gill, S. L. Mannan, S. Sundaresan, Solidification cracking in austenitic stainless steel welds. Sadhana, 2003. 28(3): p. 359-382. 25. N. Suutala, T. Takalo, T. Moisio, Single-phase ferritic solidification mode in austenitic-ferritic stainless steel welds. Metallurgical Transactions A, 1979. 10(8): p. 1183-1190. 26. T. Takalo, N. Suutala, T. Moisio, Austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 1979. 10(8): p. 1173-1181. 27. N. Suutala, T. Takalo, T. Moisio, Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 1980. 11(5): p. 717-725. 28. D. J. Lee, J. C. Byun, J. H. Sung, H. W. Lee, The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals. Materials Science and Engineering: A, 2009. 513-514: p. 154-159. 29. D. Y. Lin, C. C. Hsieh, Precipitation examination of δ, σ, and γ phases using modified Cr/Ni equivalent ratios during the multipass welding of stainless steels. Metals and Materials International, 2009. 15(3): p. 507. 30. C. C. Hsieh, X. Guo, C. M. Chang, W. Wu, Dendrite evolution of delta (δ) ferrite and precipitation behavior of sigma (σ) phase during multipass dissimilar stainless steels welding. Metals and Materials International, 2010. 16(3): p. 349-356. 31. ASM handbook volume 13A: corrosion: fundamentals, testing, and protection, ed. S. D. Cramer, J. Bernard S. Covino. 2003: ASM International. 32. T. Takalo, N. Suutala, T. Moisio, Influence of ferrite content on its morphology in some austenitic weld metals. Metallurgical Transactions A, 1976. 7(10): p. 1591-1592. 33. Y. Kang, W. M. Mao, Y. J. Chen, J. Jing, M. Cheng, Influence of Nb content on grain size and mechanical properties of 18wt% Cr ferritic stainless steel. Materials Science and Engineering: A, 2016. 677: p. 453-464. 34. R. W. Hertzberg, Deformation and fracture mechanics of engineering materials. 1996: J. Wiley & Sons. 35. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee, K. S. Lee, Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels. Materials Science and Engineering: A, 2005. 396(1): p. 159-165. 36. A. D. Schino, J. M. Kenny, Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. Journal of Materials Science Letters, 2002. 21(20): p. 1631-1634. 37. K. D. Ralston, N. Birbilis, C. H. J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Materialia, 2010. 63(12): p. 1201-1204. 38. 俞树荣, 何燕妮, 李淑欣, 王璐, 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响. 中国腐蚀与防护学报, 2013. 33(1): p. 70-74. 39. A. Abbasi Aghuy, M. Zakeri, M. H. Moayed, M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corrosion Science, 2015. 94: p. 368-376.
|