帳號:guest(3.22.61.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):龔昭元
作者(外文):Kung, Chao-Yuan
論文名稱(中文):電磁攪拌對氬銲309L/347不鏽鋼銲道微結構、機械性質與腐蝕性質之影響
論文名稱(外文):Influence of Electromagnetic Stirring on Structure, Me-chanical and Corrosion Properties of 309L/347 Stain-less Steel Weldments by Gas Tungsten Arc Welding
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):鄭勝隆
董曉明
口試委員(外文):Jeng, Sheng-Long
Dong, Xiao-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011522
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:60
中文關鍵詞:309L不鏽鋼347不鏽鋼氬銲電磁攪拌
外文關鍵詞:309L weldments347 weldmentsgas tungsten arc weldingelectromagnetic stirring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:596
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究在自動氬銲機台上附加電磁攪拌裝置,來探討在氬銲過程中施加電磁攪拌對於309L及347沃斯田不鏽鋼銲道微結構、機械性質及腐蝕性質的影響。結果顯示,在氬銲的銲接製程中施加電磁攪拌可以細化309L銲道的晶粒及枝晶組織,但對於347銲道的晶粒尺寸影響不大,其原因可能是因為347銲道有添加Nb。在銲接製程中施加電磁攪拌可能會使309L及347銲道的晶粒方向變得更隨機分布。309L及347銲道的硬度幾乎沒有受到電磁攪拌的影響;但從結果發現309L銲道的硬度從底部至上方有逐漸減小的趨勢。309L銲道的拉伸性質因施加電磁攪拌後的晶粒細化而有提升,然因FCC結構在Hall-Petch方程式中有較小的k值,而使309L銲道的強度提升的程度較小;而施加電磁攪拌對於347銲道的拉伸性質則有不好的影響。施加電磁攪拌使得309L及347不鏽鋼銲道的抗腐蝕性降低,推論是因為晶粒細化後,肥粒鐵與沃斯田鐵間的界面面積增加進而增強加凡尼腐蝕。
Mutipass weldments of 309L and 347 were produced by gas tungsten arc welding (GTAW) equipped with an electromagnetic stirring (EMS) apparatus and a wire feeder. The objective of this study was to investigate the effect of EMS on the microstructure, mechanical properties and corrosion properties of 309L and 347 welds. The results revealed that the den-drites and grain size of the 309L welds were refined when EMS was applied, while the effect of EMS on grain size of the 347 welds was less significant, which may be due to the addition of Nb. In addition, the grain orientation of 309 and 347 welds may change from some specific orientations to random orientation when EMS was applied. The hardness of 309L and 347 weldments did not substantially affect by EMS. However, the trend of hardness of 309L welds was found to decrease from bottom to top. EMS slightly increased the strength of 309L weldments by grain refining, which is possibly caused by the relatively small locking param-eter in the Hall-Petch equation for the FCC structure; in contrast, EMS showed an adverse effect on the mechanical properties of 347 weldments. EMS lowered the corrosion resistance of 309L and 347 welds, which may be derived from the increase of interfacial area between ferrite and austenite due to grain refinement by EMS, thus enhancing the galvanic corrosion.
摘要 ii
Abstract iii
Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Electromagnetic stirring (EMS) 3
2.2 Gas Tungsten Arc Welding (GTAW) 6
2.3 Austenitic stainless steels 8
2.3.1 Characteristics 8
2.3.2 Elemental compositions 8
2.3.3 Solidification mode 14
Chapter 3 Experimental Procedures 18
3.1 Materials 18
3.2 Specimen preparation 19
3.3 Metallography 22
3.4 Microhardness test 22
3.5 Tensile test 23
3.6 Potentiodynamic polarization scan 25
Chapter 4 Results 27
4.1 Evaluation of electromagnetic stirring frequency 27
4.1.1 High speed camera observation 27
4.1.2 Appearance of welds 29
4.1.3 Microstructure of welds 29
4.2 Metallography 32
4.2.1 Macrostructure of welds 32
4.2.2 Microstructure of welds 32
4.2.2 Electron backscatter diffraction (EBSD) 37
4.3 Microhardness 42
4.4 Tensile test 43
4.5 Tensile fracture surface morphology 45
4.6 Potentiodynamic polarization scan 48
Chapter 5 Discussion 50
5.1 Microstructure characterization 50
5.2 Effect of electromagnetic stirring on mechanical properties of weldments 53
5.3 Effect of electromagnetic stirring on corrosion properties of weldments 55
Chapter 6 Conclusions 56
References 57
1. S. Kou, Y. Le, Grain-structure and solidification cracking in oscillated arc welds of 5052 aluminum-alloy. Metallurgical Transactions A, 1985. 16(7): p. 1345-1352.
2. S. Kou, Y. Le, Nucleation mechanisms and grain refining of weld metal. Welding Journal, 1986. 65(12): p. 305-313.
3. G. D. J. Ram, R. Murugesan, S. Sundaresan, Fusion zone grain refinement in aluminum alloy welds through magnetic arc oscillation and its effect on tensile behavior. Journal of Materials Engineering and Performance, 1999. 8(5): p. 513-520.
4. F. Matsuda, K. Nakata, N. Sano, Effect of electromagnetic stirring on weld solidification structure of austenitic stainless steels(materials, metallurgy & weldability). Transactions of JWRI, 1986. 15(2): p. 327-338.
5. M. Malinowskibrodnicka, G. Denouden, W. J. P. Vink, Effect of electromagnetic stirring on GTA welds in austenitic stainless-steel. Welding Journal, 1990. 69(2): p. S52-S59.
6. T. Watanabe, H. Nakamura, K. Ei, Solidification control of austenitic stainless steel weld metal by electromagnetic stirring. Transactions of the Japan Welding Society, 1990. 21(2): p. 109-115.
7. J. C. Lippold, D. Kotecki, Welding metallurgy and weldability of stainless steel. Vol. 1. 2005.
8. B. P. Pearce, H. W. Kerr, Grain refinement in magnetically stirred GTA welds of aluminum alloys. Metallurgical Transactions B, 1981. 12(3): p. 479-486.
9. M. G. Mousavi, M. J. M. Hermans, I. M. Richardson, G. d. Ouden, Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds. Science and Technology of Welding and Joining, 2003. 8(4): p. 309-312.
10. F. Vollertsen, C. Thomy, Magnetic stirring during laser welding of aluminum. Journal of Laser Applications, 2006. 18(1): p. 28-34.
11. K. Sivaprasad, S. G. S. Raman, Influence of magnetic arc oscillation and current pulsing on fatigue behavior of alloy 718 TIG weldments. 2007. 448: p. 120-127.
12. Y. C. Lim, X. Yu, J. H. Cho, J. Sosa, D. F. Farson, S. S. Babu, S. McCracken, B. Flesner, Effect of magnetic stirring on grain structure refinement: Part 1 – Autogenous nickel alloy welds. Science and Technology of Welding and Joining, 2010. 15(7): p. 583-589.
13. Y. C. Lim, X. Yu, J. H. Cho, J. Sosa, D. F. Farson, S. S. Babu, S. McCracken, B. Flesner, Effect of magnetic stirring on grain structure refinement Part 2 – Nickel alloy weld overlays. Science and Technology of Welding and Joining, 2010. 15(5): p. 400-406.
14. X. Yu, R. Smith, Y. C. Lim, D. Farson, S. Babu, J. C. Lippold, M. McCracken, Effect of magnetic stirring on nickel alloy weld microstructure and micro-fissure response. 2012.
15. X. Yu, Y. C. Lim, R. Smith, S. Babu, D. Farson, J. C. Lippold, M. McCracken, Reducing hot cracking tendency of dissimilar weld overlay by magnetic arc oscillation. 2014. 30: p. 930-937.
16. S. Kou, Welding metallurgy. 1987: Wiley-Interscience.
17. J. R. Davis, ASM handbook volume 1: properties and selection: irons, steels, and high-performance alloys. 1990: ASM International.
18. N. Suutala, T. Takalo, T. Moisio, The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds. Metallurgical Transactions A, 1979. 10(4): p. 512-514.
19. J. Lippold, W. Savage, Solidification of austenitic stainless steel weldments: Part 2—The effect of alloy composition on ferrite morphology. Welding Journal, 1980: p. 48-58.
20. G. L. Leone, H. W. Kerr, The ferrite to austenite transformation in stainless-steels. Welding Journal, 1982. 61(1): p. S13-S21.
21. J. A. Brooks, A. W. Thompson, Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. International Materials Reviews, 1991. 36(1): p. 16-44.
22. H. Inoue, T. Koseki, Clarification of solidification behaviors in austenitic stainless steels based on welding process. Nippon Steel Technical Report, 2007. 95: p. 62-70.
23. A. I. H. Committee, D. L. Olson, ASM handbook: welding, brazing, and soldering. 1993: ASM International.
24. V. Shankar, T. P. S. Gill, S. L. Mannan, S. Sundaresan, Solidification cracking in austenitic stainless steel welds. Sadhana, 2003. 28(3): p. 359-382.
25. N. Suutala, T. Takalo, T. Moisio, Single-phase ferritic solidification mode in austenitic-ferritic stainless steel welds. Metallurgical Transactions A, 1979. 10(8): p. 1183-1190.
26. T. Takalo, N. Suutala, T. Moisio, Austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 1979. 10(8): p. 1173-1181.
27. N. Suutala, T. Takalo, T. Moisio, Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 1980. 11(5): p. 717-725.
28. D. J. Lee, J. C. Byun, J. H. Sung, H. W. Lee, The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals. Materials Science and Engineering: A, 2009. 513-514: p. 154-159.
29. D. Y. Lin, C. C. Hsieh, Precipitation examination of δ, σ, and γ phases using modified Cr/Ni equivalent ratios during the multipass welding of stainless steels. Metals and Materials International, 2009. 15(3): p. 507.
30. C. C. Hsieh, X. Guo, C. M. Chang, W. Wu, Dendrite evolution of delta (δ) ferrite and precipitation behavior of sigma (σ) phase during multipass dissimilar stainless steels welding. Metals and Materials International, 2010. 16(3): p. 349-356.
31. ASM handbook volume 13A: corrosion: fundamentals, testing, and protection, ed. S. D. Cramer, J. Bernard S. Covino. 2003: ASM International.
32. T. Takalo, N. Suutala, T. Moisio, Influence of ferrite content on its morphology in some austenitic weld metals. Metallurgical Transactions A, 1976. 7(10): p. 1591-1592.
33. Y. Kang, W. M. Mao, Y. J. Chen, J. Jing, M. Cheng, Influence of Nb content on grain size and mechanical properties of 18wt% Cr ferritic stainless steel. Materials Science and Engineering: A, 2016. 677: p. 453-464.
34. R. W. Hertzberg, Deformation and fracture mechanics of engineering materials. 1996: J. Wiley & Sons.
35. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee, K. S. Lee, Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels. Materials Science and Engineering: A, 2005. 396(1): p. 159-165.
36. A. D. Schino, J. M. Kenny, Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. Journal of Materials Science Letters, 2002. 21(20): p. 1631-1634.
37. K. D. Ralston, N. Birbilis, C. H. J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Materialia, 2010. 63(12): p. 1201-1204.
38. 俞树荣, 何燕妮, 李淑欣, 王璐, 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响. 中国腐蚀与防护学报, 2013. 33(1): p. 70-74.
39. A. Abbasi Aghuy, M. Zakeri, M. H. Moayed, M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corrosion Science, 2015. 94: p. 368-376.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *