|
References
1. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources 2013, 231, 153-162. 2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367. 3. Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie International Edition 2013, 52, 13186-13200. 4. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114, 11751-11787. 5. Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research 2013, 46, 1125-1134. 6. Zhang, S. S.; Read, J. A. A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources 2012, 200, 77-82. 7. Waluś, S.; Barchasz, C.; Colin, J.-F.; Martin, J.-F.; Elkaïm, E.; Leprêtre, J.-C.; Alloin, F. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chemical Communications 2013, 49, 7899-7901. 8. Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4, 3227-3232. 9. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications 2013, 4, 1481. 10. Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta 2012, 70, 344-348. 11. Ryu, H.-S.; Ahn, H.-J.; Kim, K.-W.; Ahn, J.-H.; Cho, K.-K.; Nam, T.-H.; Kim, J.-U.; Cho, G.-B. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. Journal of Power Sources 2006, 163, 201-206. 12. Yuan, L. X.; Feng, J. K.; Ai, X. P.; Cao, Y. L.; Chen, S. L.; Yang, H. X. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochemistry Communications 2006, 8, 610-614. 13. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials 2009, 8, 500. 14. Chen, S.-R.; Zhai, Y.-P.; Xu, G.-L.; Jiang, Y.-X.; Zhao, D.-Y.; Li, J.-T.; Huang, L.; Sun, S.-G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta 2011, 56, 9549-9555. 15. Zhang, C.; Wu, H. B.; Yuan, C.; Guo, Z.; Lou, X. W. Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2012, 51, 9592-9595. 16. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2011, 50, 5904-5908. 17. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries. Advanced Materials 2011, 23, 5641-5644. 18. Hart, C. J.; Cuisinier, M.; Liang, X.; Kundu, D.; Garsuch, A.; Nazar, L. F. Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications 2015, 51, 2308-2311. 19. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered Mesoporous Carbons. Advanced Materials 2001, 13, 677-681. 20. Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103, 7743-7746. 21. Xia, K.; Gao, Q.; Wu, C.; Song, S.; Ruan, M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 2007, 45, 1989-1996. 22. Zhang, Y.; Wang, A.; Zhang, T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chemical Communications 2010, 46, 862-864. 23. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials 2003, 15, 2107-2111. 24. Xia, K.; Gao, Q.; Jiang, J.; Hu, J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 2008, 46, 1718-1726. 25. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009, 8, 500-506. 26. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J. Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society 2012, 134, 18510-18513. 27. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters 2011, 11, 2644-2647. 28. Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.-M.; Li, F.; Ren, W. 3D Graphene-Foam–Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li–S Batteries. Advanced Materials 2016, 28, 1603-1609. 29. Wu, F.; Wu, S. X.; Chen, R. J.; Chen, S.; Wang, G. Q. Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries. Chinese Chemical Letters 2009, 20, 1255-1258. 30. Sun, M.; Zhang, S.; Jiang, T.; Zhang, L.; Yu, J. Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications 2008, 10, 1819-1822. 31. Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials 2003, 13, 487-492. 32. Wang, J.; Yang, J.; Xie, J.; Xu, N. A Novel Conductive Polymer–Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials 2002, 14, 963-965. 33. Yu, X.; Xie, J.; Li, Y.; Huang, H.; Lai, C.; Wang, K. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. Journal of Power Sources 2005, 146, 335-339. 34. Wei Seh, Z.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P.-C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications 2013, 4, 1331. 35. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2015, 54, 3907-3911. 36. Su, Y.-S.; Manthiram, A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications 2012, 3, 1166. 37. Huang, J.-Q.; Zhuang, T.-Z.; Zhang, Q.; Peng, H.-J.; Chen, C.-M.; Wei, F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano 2015, 9, 3002-3011. 38. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science 2014, 343, 752. 39. Raidongia, K.; Huang, J. Nanofluidic Ion Transport through Reconstructed Layered Materials. Journal of the American Chemical Society 2012, 134, 16528-16531. 40. Lerf, A.; Buchsteiner, A.; Pieper, J.; Schöttl, S.; Dekany, I.; Szabo, T.; Boehm, H. P. Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids 2006, 67, 1106-1110. 41. Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S. D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C.; Karim, A.; Thevuthasan, S. Molecular structure and stability of dissolved lithium polysulfide species. Physical Chemistry Chemical Physics 2014, 16, 10923-10932. 42. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy & Environmental Science 2014, 7, 3381-3390. 43. Peng, H.-J.; Wang, D.-W.; Huang, J.-Q.; Cheng, X.-B.; Yuan, Z.; Wei, F.; Zhang, Q. Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science 2016, 3, 1500268. 44. Lee, J.-H.; Lee, H.-Y.; Oh, S.-M.; Lee, S.-J.; Lee, K.-Y.; Lee, S.-M. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries. Journal of Power Sources 2007, 166, 250-254. 45. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9, 1955-1988. 46. Yuan, H.; Huang, J.-Q.; Peng, H.-J.; Titirici, M.-M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials 2018, 8, 1802107. 47. Wang, W.; Wang, Y.; Huang, Y.; Huang, C.; Yu, Z.; Zhang, H.; Wang, A.; Yuan, K. The electrochemical performance of lithium–sulfur batteries with LiClO4 DOL/DME electrolyte. Journal of Applied Electrochemistry 2010, 40, 321-325. 48. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society 2009, 156, A694-A702. 49. Woo, J.-J.; Zhang, Z.; Amine, K. Separator/Electrode Assembly Based on Thermally Stable Polymer for Safe Lithium-Ion Batteries. Advanced Energy Materials 2014, 4, 1301208. 50. Yan, L.; Li, Y. S.; Xiang, C. B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701-7706. 51. Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. Electrostatic shield effect: an effective way to suppress dissolution of polysulfide anions in lithium–sulfur battery. Journal of Materials Chemistry A 2014, 2, 15938-15944. 52. Chen, H.; Dong, W.; Ge, J.; Wang, C.; Wu, X.; Lu, W.; Chen, L. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Scientific Reports 2013, 3, 1910. 53. Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters 2013, 13, 5534-5540. 54. Chen, S.; Sun, B.; Xie, X.; Mondal, A. K.; Huang, X.; Wang, G. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280. 55. Kim, J.-M.; Park, H.-S.; Park, J.-H.; Kim, T.-H.; Song, H.-K.; Lee, S.-Y. Conducting Polymer-Skinned Electroactive Materials of Lithium-Ion Batteries: Ready for Monocomponent Electrodes without Additional Binders and Conductive Agents. ACS Applied Materials & Interfaces 2014, 6, 12789-12797. 56. Yang, Y.; Yu, G.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5, 9187-9193. 57. Li, H.; Sun, M.; Zhang, T.; Fang, Y.; Wang, G. Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium–sulfur batteries. Journal of Materials Chemistry A 2014, 2, 18345-18352. 58. Jing, H.-K.; Kong, L.-L.; Liu, S.; Li, G.-R.; Gao, X.-P. Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. Journal of Materials Chemistry A 2015, 3, 12213-12219. 59. Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Jin, J.; Wu, X. Enhanced cycle performance of a Li–S battery based on a protected lithium anode. Journal of Materials Chemistry A 2014, 2, 19355-19359. 60. Gu, X.; Lai, C.; Liu, F.; Yang, W.; Hou, Y.; Zhang, S. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. Journal of Materials Chemistry A 2015, 3, 9502-9509. 61. Zhou, G.; Pei, S.; Li, L.; Wang, D.-W.; Wang, S.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M. A Graphene–Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium–Sulfur Batteries. Advanced Materials 2014, 26, 625-631. 62. Ryou, M.-H.; Lee, Y. M.; Park, J.-K.; Choi, J. W. Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries. Advanced Materials 2011, 23, 3066-3070. 63. Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel Inspired Modification of Polypropylene Separators by Catechol/Polyamine for Li-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6, 5602-5608. 64. Bauer, I.; Thieme, S.; Brückner, J.; Althues, H.; Kaskel, S. Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. Journal of Power Sources 2014, 251, 417-422. 65. Yang, Z.; Guo, J.; Das, S. K.; Yu, Y.; Zhou, Z.; Abruña, H. D.; Archer, L. A. In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A 2013, 1, 1433-1440. 66. Rauh, R. D.; Shuker, F. S.; Marston, J. M.; Brummer, S. B. Formation of lithium polysulfides in aprotic media. Journal of Inorganic and Nuclear Chemistry 1977, 39, 1761-1766. 67. Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification. Analytical Chemistry 2012, 84, 3973-3980. 68. Chung, S.-H.; Manthiram, A. Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries. Advanced Functional Materials 2014, 24, 5299-5306. 69. Chung, S.-H.; Manthiram, A. A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials 2014, 26, 7352-7357. 70. Chung, S.-H.; Manthiram, A. High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. The Journal of Physical Chemistry Letters 2014, 5, 1978-1983. 71. Wei, H.; Ma, J.; Li, B.; Zuo, Y.; Xia, D. Enhanced Cycle Performance of Lithium–Sulfur Batteries Using a Separator Modified with a PVDF-C Layer. ACS Applied Materials & Interfaces 2014, 6, 20276-20281. 72. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy & Environmental Science 2014, 7, 3381-3390. 73. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium–Sulfur Batteries. Advanced Functional Materials 2015, 25, 5285-5291. 74. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151, A1969-A1976. 75. Agostini, M.; Xiong, S.; Matic, A.; Hassoun, J. Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery. Chemistry of Materials 2015, 27, 4604-4611. 76. Wang, J.; Yao, Z.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl-β-Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Advanced Functional Materials 2013, 23, 1194-1201. 77. Park, J.-W.; Yamauchi, K.; Takashima, E.; Tachikawa, N.; Ueno, K.; Dokko, K.; Watanabe, M. Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2013, 117, 4431-4440. 78. Kim, J.; Lee, D.-J.; Jung, H.-G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. An Advanced Lithium-Sulfur Battery. Advanced Functional Materials 2013, 23, 1076-1080. 79. Hoffmann, C.; Thieme, S.; Brückner, J.; Oschatz, M.; Biemelt, T.; Mondin, G.; Althues, H.; Kaskel, S. Nanocasting Hierarchical Carbide-Derived Carbons in Nanostructured Opal Assemblies for High-Performance Cathodes in Lithium–Sulfur Batteries. ACS Nano 2014, 8, 12130-12140. 80. Li, Z.; Jiang, Y.; Yuan, L.; Yi, Z.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell Structured Cathode for Li–S Batteries. ACS Nano 2014, 8, 9295-9303. 81. Guo, J.; Xu, Y.; Wang, C. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Letters 2011, 11, 4288-4294. 82. Zhou, G.; Wang, D.-W.; Li, F.; Hou, P.-X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H.-M. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy & Environmental Science 2012, 5, 8901-8906. 83. Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society 2011, 133, 18522-18525. 84. Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. Sulfur-Infiltrated Graphene-Based Layered Porous Carbon Cathodes for High-Performance Lithium–Sulfur Batteries. ACS Nano 2014, 8, 5208-5215. 85. Kumar, P.; Wu, F.-Y.; Hu, L.-H.; Ali Abbas, S.; Ming, J.; Lin, C.-N.; Fang, J.; Chu, C.-W.; Li, L.-J. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method. Nanoscale 2015, 7, 8093-8100. 86. Kaiser, M. R.; Ma, Z.; Wang, X.; Han, F.; Gao, T.; Fan, X.; Wang, J.-Z.; Liu, H. K.; Dou, S.; Wang, C. Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano 2017, 11, 9048-9056. 87. Hua, W.; Yang, Z.; Nie, H.; Li, Z.; Yang, J.; Guo, Z.; Ruan, C.; Chen, X. a.; Huang, S. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium–Sulfur Batteries. ACS Nano 2017, 11, 2209-2218. 88. Fang, R.; Zhao, S.; Pei, S.; Qian, X.; Hou, P.-X.; Cheng, H.-M.; Liu, C.; Li, F. Toward More Reliable Lithium–Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano 2016, 10, 8676-8682. 89. Zhou, W.; Yu, Y.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. Journal of the American Chemical Society 2013, 135, 16736-16743. 90. Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Liu, X.-Y.; Qian, W.-Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy & Environmental Science 2014, 7, 347-353. 91. Abbas, S. A.; Ibrahem, M. A.; Hu, L.-H.; Lin, C.-N.; Fang, J.; Boopathi, K. M.; Wang, P.-C.; Li, L.-J.; Chu, C.-W. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A 2016, 4, 9661-9669. 92. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. Journal of Power Sources 2016, 303, 317-324. 93. Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta 2013, 105, 378-383. 94. Chen, Y.; Liu, N.; Shao, H.; Wang, W.; Gao, M.; Li, C.; Zhang, H.; Wang, A.; Huang, Y. Chitosan as a functional additive for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A 2015, 3, 15235-15240. 95. Abbas, S. A.; Ibrahem, M. A.; Hu, L.-H.; Lin, C.-N.; Fang, J.; Boopathi, K. M.; Wang, P.-C.; Li, L.-J.; Chu, C.-W. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries. Journal of Materials Chemistry A 2016, 4, 9661-9669. 96. Barzegar, F.; Bello, A.; Momodu, D.; Madito, M. J.; Dangbegnon, J.; Manyala, N. Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. Journal of Power Sources 2016, 309, 245-253. 97. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2015, 119, 4580-4587. 98. Chung, S.-H.; Han, P.; Manthiram, A. A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development. ACS Applied Materials & Interfaces 2016, 8, 4709-4717. 99. Ma, Y.; Zhang, H.; Wu, B.; Wang, M.; Li, X.; Zhang, H. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode. Scientific Reports 2015, 5, 14949. 100. Chung, S.-H.; Singhal, R.; Kalra, V.; Manthiram, A. Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. The Journal of Physical Chemistry Letters 2015, 6, 2163-2169. 101. Fan, Y.; Yang, Z.; Hua, W.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W.; Huang, S.; Chen, Y. Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium–Sulfur Batteries. Advanced Energy Materials 2017, 7, 1602380. 102. Ponraj, R.; Kannan, A. G.; Ahn, J. H.; Kim, D.-W. Improvement of Cycling Performance of Lithium–Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS Applied Materials & Interfaces 2016, 8, 4000-4006. 103. Yang, X.; Yan, N.; Zhou, W.; Zhang, H.; Li, X.; Zhang, H. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. Journal of Materials Chemistry A 2015, 3, 15314-15323. 104. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Communications 2015, 6, 5682. 105. Yan, J.; Liu, X.; Qi, H.; Li, W.; Zhou, Y.; Yao, M.; Li, B. High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading. Chemistry of Materials 2015, 27, 6394-6401. 106. Lang, J.; Qi, L.; Luo, Y.; Wu, H. High performance lithium metal anode: Progress and prospects. Energy Storage Materials 2017, 7, 115-129. 107. Luo, J.; Lee, R.-C.; Jin, J.-T.; Weng, Y.-T.; Fang, C.-C.; Wu, N.-L. A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li–S batteries. Chemical Communications 2017, 53, 963-966. 108. Whittingham, M. S. Lithium Batteries and Cathode Materials. Chemical Reviews 2004, 104, 4271-4302. 109. Akridge, J. R.; Mikhaylik, Y. V.; White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 2004, 175, 243-245. 110. Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science 2016, 9, 3221-3229. 111. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources 1999, 81-82, 925-929. 112. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chemical Society Reviews 2013, 42, 9011-9034. 113. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources 2014, 254, 168-182. 114. Abbas, S. A.; Ding, J.; Wu, S. H.; Fang, J.; Boopathi, K. M.; Mohapatra, A.; Lee, L. W.; Wang, P.-C.; Chang, C.-C.; Chu, C. W. Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li–S Batteries. ACS Nano 2017, 11, 12436-12445. 115. Ota, H.; Shima, K.; Ue, M.; Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta 2004, 49, 565-572. 116. Jeong, J.; Lee, J.-N.; Park, J.-K.; Ryou, M.-H.; Lee, Y. M. Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries. Electrochimica Acta 2015, 170, 353-359. 117. Grande, L.; von Zamory, J.; Koch, S. L.; Kalhoff, J.; Paillard, E.; Passerini, S. Homogeneous Lithium Electrodeposition with Pyrrolidinium-Based Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces 2015, 7, 5950-5958. 118. Choi, S. M.; Kang, I. S.; Sun, Y.-K.; Song, J.-H.; Chung, S.-M.; Kim, D.-W. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. Journal of Power Sources 2013, 244, 363-368. 119. Kang, I. S.; Lee, Y.-S.; Kim, D.-W. Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries. Journal of The Electrochemical Society 2014, 161, A53-A57. 120. Lee, H.; Lee, D. J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources 2015, 284, 103-108. 121. Park, K.; Cho, J. H.; Shanmuganathan, K.; Song, J.; Peng, J.; Gobet, M.; Greenbaum, S.; Ellison, C. J.; Goodenough, J. B. New battery strategies with a polymer/Al2O3 separator. Journal of Power Sources 2014, 263, 52-58. 122. Tu, Z.; Kambe, Y.; Lu, Y.; Archer, L. A. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries. Advanced Energy Materials 2014, 4, 1300654. 123. Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Applied Materials & Interfaces 2015, 7, 3314-3322. 124. Shin, W.-K.; Kannan, A. G.; Kim, D.-W. Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. ACS Applied Materials & Interfaces 2015, 7, 23700-23707. 125. Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy & Environmental Science 2015, 8, 3477-3494. 126. Hunt, I. A.; Patel, Y.; Szczygielski, M.; Kabacik, L.; Offer, G. J. Lithium sulfur battery nail penetration test under load. Journal of Energy Storage 2015, 2, 25-29. 127. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5, 7854-7863. 128. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials 2015, 5, 1401986. 129. Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chemical Communications 2013, 49, 10545-10562. 130. Liu, N.; Li, W.; Pasta, M.; Cui, Y. Nanomaterials for electrochemical energy storage. Frontiers of Physics 2014, 9, 323-350. 131. Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chemical Society Reviews 2016, 45, 5605-5634. 132. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy 2016, 1, 16132. 133. Dysart, A. D.; Burgos, J. C.; Mistry, A.; Chen, C.-F.; Liu, Z.; Hong, C. N.; Balbuena, P. B.; Mukherjee, P. P.; Pol, V. G. Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis. Journal of The Electrochemical Society 2016, 163, A730-A741. 134. Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Wu, D.; Li, L.; Hassan, B. S.; Cheng, B. A review on separators for lithiumsulfur battery: Progress and prospects. Journal of Power Sources 2016, 331, 132-155. 135. Xu, W.-T.; Peng, H.-J.; Huang, J.-Q.; Zhao, C.-Z.; Cheng, X.-B.; Zhang, Q. Towards Stable Lithium–Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem 2015, 8, 2892-2901. 136. Hassoun, J.; Scrosati, B. Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications. Advanced Materials 2010, 22, 5198-5201. 137. Barghamadi, M.; Best, A. S.; Bhatt, A. I.; Hollenkamp, A. F.; Musameh, M.; Rees, R. J.; Rüther, T. Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy & Environmental Science 2014, 7, 3902-3920. 138. Marinescu, M.; Zhang, T.; Offer, G. J. A zero dimensional model of lithium–sulfur batteries during charge and discharge. Physical Chemistry Chemical Physics 2016, 18, 584-593. 139. Zhang, T.; Marinescu, M.; Walus, S.; Kovacik, P.; Offer, G. J. What Limits the Rate Capability of Li-S Batteries during Discharge: Charge Transfer or Mass Transfer? Journal of The Electrochemical Society 2018, 165, A6001-A6004. 140. Brückner, J.; Thieme, S.; Grossmann, H. T.; Dörfler, S.; Althues, H.; Kaskel, S. Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. Journal of Power Sources 2014, 268, 82-87. 141. Liang, J.; Li, F.; Cheng, H.-M. From laboratory to factory: Are the new electrode materials ready? Energy Storage Materials 2017, 6, A1-A3. 142. Liang, J.; Li, F.; Cheng, H.-M. Batteries with a sulfur cathode: A leap forward in energy density. Energy Storage Materials 2017, 8, A1-A3. 143. Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources 2014, 259, 289-299. 144. Diao, Y.; Xie, K.; Xiong, S.; Hong, X. Shuttle phenomenon – The irreversible oxidation mechanism of sulfur active material in Li–S battery. Journal of Power Sources 2013, 235, 181-186. 145. Poux, T.; Novák, P.; Trabesinger, S. Pitfalls in Li–S Rate-Capability Evaluation. Journal of The Electrochemical Society 2016, 163, A1139-A1145. 146. Qu, C.; Chen, Y.; Yang, X.; Zhang, H.; Li, X.; Zhang, H. LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 2017, 39, 262-272. 147. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O. A Highly Reversible Lithium Metal Anode. Scientific Reports 2014, 4, 3815. 148. Parmentier, M.; Gabriel, C. M.; Guo, P.; Isley, N. A.; Zhou, J.; Gallou, F. Switching from organic solvents to water at an industrial scale. Current Opinion in Green and Sustainable Chemistry 2017, 7, 13-17.
|