帳號:guest(18.216.82.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):艾莉
作者(外文):Abbas, Syed Ali
論文名稱(中文):應用於可商品化鋰硫電池之陰極與隔離膜修飾設計
論文名稱(外文):Designing Modified Cathode and Separator for Commercially Viable Lithium Sulfur Batteries
指導教授(中文):朱治偉
王本誠
指導教授(外文):Chu, Chih-Wei
Wang, Pen-Cheng
口試委員(中文):江明錫
包淳偉
韓謝忱
口試委員(外文):Chiang, Ming-Hsi
Pao, Chun-Wei
Han, Hsieh-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011459
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:97
中文關鍵詞:鋰硫電池
外文關鍵詞:Lithium Sulfur Battery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:288
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
因鋰離子電池具高能量密度、穩定與長壽之特性,其目前主導如筆記型電腦或手機等可攜式裝置之儲能媒介。然高成本、安全性與毒性問題阻礙早期鋰離子電池之泛用性。近期,較廉價且低毒性之陰極材料,如LiFePO4、LiMn2O4及其衍生物已被成功開發與商品化。如LiCoPO4可提供4.8 V之高對鋰電位差之陰極材料亦引起關注且被研究。但這些材料之理論電容量皆低於170mAh g-1,無法完全滿足如電動交通工具之高能耗設備,因此需便宜且能量密度高之陰極材料以使鋰離子電池更具實用性與經濟效益。元素硫具有1672 mAh g-1之理論電容量,其較所有目前已知之陰極材料高。硫之地殼豐度高(可由煉油副產品取得)且成本低,因此為具前景之新一代鋰離子電池陰極材料。雖具前述優點,將硫用於鋰離子電池仍存在數項挑戰:(一)硫之導電性低,導致陰極硫利用率低與循環壽命差;(二)硫經由多步電化學步驟還原,中途生成可溶性多硫化物,其溶於電解質中將產生穿梭效應,使硫活性材料隨充放電損失;(三)充放電中之體積變化使陰極顆粒碎裂,導致電化學性能快速衰退。
文中,第一實施例以PEDOT: PSS噴塗於隔離膜製成雙功能隔離膜製作長壽鋰硫電池。PSS中帶負電之SO3-可形成靜電屏障,與多硫化物離子產生庫侖斥力,而PEDOT提供Li2S與Li2S2化學交互作用。雙重屏蔽效應將多硫化物保留於陰極側,有效防止穿梭效應。再者,PEDOT: PSS塗層將隔離膜由疏水性變為親水性,進而提升電化學效能。於0.25 C充放電速率循環1000圈,電池平均每一圈僅衰退0.0364 %之電容量,表現較原生隔離膜之樣品佳。雙功能隔離膜亦組裝為可撓式電池以測試其於受壓下之電化學表現。其顯示完美無暇之效能。因此,本具經濟效益且簡單之實施例為理想之商業鋰硫電池部件。
第二實施例將經活性膨脹石墨/甲殼素修飾之隔離膜用於鋰硫電池。多硫化物造成之穿梭效應由兩種作用力減緩:活性膨脹石墨層狀片與多硫化物之物理交互作用與甲殼素(用以黏結活性膨脹石墨)由大量胺基與羥基形成之化學交互作用。再者,活性膨脹石墨層狀片促進氧化還原反應中之離子與電子轉移。臨場H型電池之放電試驗顯示經修飾之隔離膜有效阻絕多硫化物穿梭,再者,充放電後隔離膜之X光光電子能譜証實多硫化鋰存在於活性膨脹石墨/甲殼素基質中。使用此雙功能修飾法,鋰硫電池之壽命於1C充放電速率(1C = 1670 mA g-1)下延長至3000圈,平均衰退率為0.021%/每圈,其為當今最佳效能鋰硫電池之一。以此隔離膜組裝之可撓式電池具高穩定性,且可點量數顆發光二極體。此具高機械強度、導電性與可抑制鋰硫電池自放電之隔離膜可應用於下一代可量產之高能量電池系統。
Lithium-ion batteries are leading the path for the power sources for various portable applications, such as laptops and cellular phones, which is due to their relatively high energy density, stable and long cycle life. However, the cost, safety and toxicity issues are restricting the wider application of early generations of lithium-ion batteries. Recently, cheaper and less toxic cathode materials, such as LiFePO4 and a wide range of derivatives of LiMn2O4, have been successfully developed and commercialized. Furthermore, cathode material candidates, such as LiCoPO4, which present a high redox potential at approximately 4.8 V versus Li+/Li, have received attention and are being investigated. However, the theoretical capacity of all of these materials is below 170 mAh g-1, which cannot fully satisfy the requirements of large scale applications, such as hybrid electric vehicles and electric vehicles. Therefore, alternative high energy density and inexpensive cathode materials are needed to make lithium batteries more practical and economically feasible. Elemental sulfur has a theoretical specific capacity of 1672 mAh g-1, which is higher than that of any other known cathode materials for lithium batteries. Sulfur is of abundance in nature (e.g., sulfur is produced as a by-product of oil extraction, and hundreds of millions of tons have been accumulated at the oil extraction sites) and low cost, and this makes it very promising for the next generation of cathode materials for rechargeable batteries. Despite the mentioned advantages, there are several challenges to make the sulfur cathode suitable for battery use, and the following are the main: (i) sulfur has low conductivity, which leads to low sulfur utilization and poor rate capability in the cathode; (ii) multistep electrochemical reduction processes generate various forms of soluble intermediate lithium polysulfides, which dissolve in the electrolyte, induce the so-called shuttle effect, and cause irreversible loss of sulfur active material over repeat cycles; (iii) volume change of sulfur upon cycling leads to its mechanical rupture and, consequently, rapid degradation of the electrochemical performance.
Herein, in our first proposed strategy we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on a pristine separator—to obtain long-cycle LSBs. The negatively charged SO3- groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.
In our second strategy we describe a modified (AEG/CH) coated separator for Li−S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1Crate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.
TABLE OF CONTENTS
摘要-----------------------------------------------------------------------------------------------iii
Abstract-------------------------------------------------------------------------------------------v
Acknowledgement----------------------------------------------------------------------------viii
1 Introduction-----------------------------------------------------------------------------------1
1.1 Introduction to LSB---------------------------------------------------------------------1
1.1.1 Introduction and advantages of LSB ------------------------------------------------ 1
1.1.2 Mechanism of sulfur cathode in lithium-sulfur batter---------------------------- --3
1.2 The challenges associated with lithium-sulfur batteries-------------------------------5
1.2.1 Demerits of sulfur------------------------------------------------------------------------5
1.2.2 Demerits of the intermediate lithium polysulfide------------------------------------5
1.2.3 Shuttle effects-----------------------------------------------------------------------------6
1.2.4 Electrolyte for lithium-sulfur batteries------------------------------------------------7
1.3 Cathode design for lithium-sulfur batteries----------------------------------------------8
1.3.1 Porous carbon as sulfur host------------------------------------------------------------9
1.3.2 Carbon nanotube (CNTs) as sulfur host---------------------------------------------11
1.3.3 Graphene as sulfur host----------------------------------------------------------------12
1.3.4 Polymer coating as sulfur host--------------------------------------------------------14
1.3.5 Oxide materials as addictive----------------------------------------------------------15
1.4 Functional separator for lithium-sulfur batteries--------------------------------------17
1.4.1 Porous carbon paper as separator-----------------------------------------------------17
1.4.2 Graphene oxide paper as separator---------------------------------------------------17
1.4.3 Conductive carbon coating on the Celgard separator------------------------------19
1.4.4 Coating graphene on polypropylene-supported separator-------------------------20
1.5 Motivation leading to research of lithium-sulfur batteries---------------------------21

2 The Preparation of S/G Composite Cathode and Bifunctional Separator for LSB-----------------------------------------------------------------------------------------------22
2.1 Introduction--------------------------------------------------------------------------------22
2.2 Experimental-------------------------------------------------------------------------------33
2.3 Result and discussion---------------------------------------------------------------------24
2.4 Summary------------------------------------------------------------------------------------39

3 Modified Separator Performing Dual Physical/ Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li−S Batteries--------------------------40
3.1 Introduction--------------------------------------------------------------------------------40
3.2 Experimental-------------------------------------------------------------------------------42
3.3 Result and discussion---------------------------------------------------------------------44
3.4 Summary------------------------------------------------------------------------------------57

4 Ultrathin-Graphite-Coated Separator Simultaneously Mitigates the Issues of Metal Dendrites and Lithium Polysulfides to Provide Stable Li–S Batteries-----58
4.1 Introduction--------------------------------------------------------------------------------58
4.2 Experimental-------------------------------------------------------------------------------60
4.3 Result and discussion---------------------------------------------------------------------62
4.4 Summary------------------------------------------------------------------------------------72

5 LSB Commercial Prospects, Future Direction and Polyoxometalates as High Capacity Anode Materials-------------------------------------------------------------------74
5.1 Introduction--------------------------------------------------------------------------------74
5.2 Current Status------------------------------------------------------------------------------74
5.3 Cell Operation-----------------------------------------------------------------------------76
5.4 Anode---------------------------------------------------------------------------------------77
5.5 Electrolyte----------------------------------------------------------------------------------78
5.6 Production----------------------------------------------------------------------------------78
5.7 Development Path-------------------------------------------------------------------------79
5.8 Target Applications------------------------------------------------------------------------79
5.9 Conclusion for LSB-----------------------------------------------------------------------80
5.10 Introduction to Polyoxometalates and its Application in Li-ion Batteries-------81
References--------------------------------------------------------------------------------------83
Appendix---------------------------------------------------------------------------------------97
References

1. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources 2013, 231, 153-162.
2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
3. Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie International Edition 2013, 52, 13186-13200.
4. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114, 11751-11787.
5. Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research 2013, 46, 1125-1134.
6. Zhang, S. S.; Read, J. A. A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources 2012, 200, 77-82.
7. Waluś, S.; Barchasz, C.; Colin, J.-F.; Martin, J.-F.; Elkaïm, E.; Leprêtre, J.-C.; Alloin, F. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chemical Communications 2013, 49, 7899-7901.
8. Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4, 3227-3232.
9. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications 2013, 4, 1481.
10. Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta 2012, 70, 344-348.
11. Ryu, H.-S.; Ahn, H.-J.; Kim, K.-W.; Ahn, J.-H.; Cho, K.-K.; Nam, T.-H.; Kim, J.-U.; Cho, G.-B. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. Journal of Power Sources 2006, 163, 201-206.
12. Yuan, L. X.; Feng, J. K.; Ai, X. P.; Cao, Y. L.; Chen, S. L.; Yang, H. X. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochemistry Communications 2006, 8, 610-614.
13. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials 2009, 8, 500.
14. Chen, S.-R.; Zhai, Y.-P.; Xu, G.-L.; Jiang, Y.-X.; Zhao, D.-Y.; Li, J.-T.; Huang, L.; Sun, S.-G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta 2011, 56, 9549-9555.
15. Zhang, C.; Wu, H. B.; Yuan, C.; Guo, Z.; Lou, X. W. Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2012, 51, 9592-9595.
16. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2011, 50, 5904-5908.
17. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries. Advanced Materials 2011, 23, 5641-5644.
18. Hart, C. J.; Cuisinier, M.; Liang, X.; Kundu, D.; Garsuch, A.; Nazar, L. F. Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications 2015, 51, 2308-2311.
19. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered Mesoporous Carbons. Advanced Materials 2001, 13, 677-681.
20. Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103, 7743-7746.
21. Xia, K.; Gao, Q.; Wu, C.; Song, S.; Ruan, M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 2007, 45, 1989-1996.
22. Zhang, Y.; Wang, A.; Zhang, T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chemical Communications 2010, 46, 862-864.
23. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials 2003, 15, 2107-2111.
24. Xia, K.; Gao, Q.; Jiang, J.; Hu, J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 2008, 46, 1718-1726.
25. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009, 8, 500-506.
26. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J. Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society 2012, 134, 18510-18513.
27. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters 2011, 11, 2644-2647.
28. Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.-M.; Li, F.; Ren, W. 3D Graphene-Foam–Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li–S Batteries. Advanced Materials 2016, 28, 1603-1609.
29. Wu, F.; Wu, S. X.; Chen, R. J.; Chen, S.; Wang, G. Q. Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries. Chinese Chemical Letters 2009, 20, 1255-1258.
30. Sun, M.; Zhang, S.; Jiang, T.; Zhang, L.; Yu, J. Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochemistry Communications 2008, 10, 1819-1822.
31. Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials 2003, 13, 487-492.
32. Wang, J.; Yang, J.; Xie, J.; Xu, N. A Novel Conductive Polymer–Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials 2002, 14, 963-965.
33. Yu, X.; Xie, J.; Li, Y.; Huang, H.; Lai, C.; Wang, K. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. Journal of Power Sources 2005, 146, 335-339.
34. Wei Seh, Z.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P.-C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications 2013, 4, 1331.
35. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2015, 54, 3907-3911.
36. Su, Y.-S.; Manthiram, A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications 2012, 3, 1166.
37. Huang, J.-Q.; Zhuang, T.-Z.; Zhang, Q.; Peng, H.-J.; Chen, C.-M.; Wei, F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano 2015, 9, 3002-3011.
38. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes. Science 2014, 343, 752.
39. Raidongia, K.; Huang, J. Nanofluidic Ion Transport through Reconstructed Layered Materials. Journal of the American Chemical Society 2012, 134, 16528-16531.
40. Lerf, A.; Buchsteiner, A.; Pieper, J.; Schöttl, S.; Dekany, I.; Szabo, T.; Boehm, H. P. Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids 2006, 67, 1106-1110.
41. Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S. D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C.; Karim, A.; Thevuthasan, S. Molecular structure and stability of dissolved lithium polysulfide species. Physical Chemistry Chemical Physics 2014, 16, 10923-10932.
42. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy & Environmental Science 2014, 7, 3381-3390.
43. Peng, H.-J.; Wang, D.-W.; Huang, J.-Q.; Cheng, X.-B.; Yuan, Z.; Wei, F.; Zhang, Q. Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science 2016, 3, 1500268.
44. Lee, J.-H.; Lee, H.-Y.; Oh, S.-M.; Lee, S.-J.; Lee, K.-Y.; Lee, S.-M. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries. Journal of Power Sources 2007, 166, 250-254.
45. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9, 1955-1988.
46. Yuan, H.; Huang, J.-Q.; Peng, H.-J.; Titirici, M.-M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials 2018, 8, 1802107.
47. Wang, W.; Wang, Y.; Huang, Y.; Huang, C.; Yu, Z.; Zhang, H.; Wang, A.; Yuan, K. The electrochemical performance of lithium–sulfur batteries with LiClO4 DOL/DME electrolyte. Journal of Applied Electrochemistry 2010, 40, 321-325.
48. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society 2009, 156, A694-A702.
49. Woo, J.-J.; Zhang, Z.; Amine, K. Separator/Electrode Assembly Based on Thermally Stable Polymer for Safe Lithium-Ion Batteries. Advanced Energy Materials 2014, 4, 1301208.
50. Yan, L.; Li, Y. S.; Xiang, C. B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701-7706.
51. Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. Electrostatic shield effect: an effective way to suppress dissolution of polysulfide anions in lithium–sulfur battery. Journal of Materials Chemistry A 2014, 2, 15938-15944.
52. Chen, H.; Dong, W.; Ge, J.; Wang, C.; Wu, X.; Lu, W.; Chen, L. Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Scientific Reports 2013, 3, 1910.
53. Li, W.; Zhang, Q.; Zheng, G.; Seh, Z. W.; Yao, H.; Cui, Y. Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters 2013, 13, 5534-5540.
54. Chen, S.; Sun, B.; Xie, X.; Mondal, A. K.; Huang, X.; Wang, G. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280.
55. Kim, J.-M.; Park, H.-S.; Park, J.-H.; Kim, T.-H.; Song, H.-K.; Lee, S.-Y. Conducting Polymer-Skinned Electroactive Materials of Lithium-Ion Batteries: Ready for Monocomponent Electrodes without Additional Binders and Conductive Agents. ACS Applied Materials & Interfaces 2014, 6, 12789-12797.
56. Yang, Y.; Yu, G.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5, 9187-9193.
57. Li, H.; Sun, M.; Zhang, T.; Fang, Y.; Wang, G. Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium–sulfur batteries. Journal of Materials Chemistry A 2014, 2, 18345-18352.
58. Jing, H.-K.; Kong, L.-L.; Liu, S.; Li, G.-R.; Gao, X.-P. Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. Journal of Materials Chemistry A 2015, 3, 12213-12219.
59. Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Jin, J.; Wu, X. Enhanced cycle performance of a Li–S battery based on a protected lithium anode. Journal of Materials Chemistry A 2014, 2, 19355-19359.
60. Gu, X.; Lai, C.; Liu, F.; Yang, W.; Hou, Y.; Zhang, S. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. Journal of Materials Chemistry A 2015, 3, 9502-9509.
61. Zhou, G.; Pei, S.; Li, L.; Wang, D.-W.; Wang, S.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M. A Graphene–Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium–Sulfur Batteries. Advanced Materials 2014, 26, 625-631.
62. Ryou, M.-H.; Lee, Y. M.; Park, J.-K.; Choi, J. W. Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries. Advanced Materials 2011, 23, 3066-3070.
63. Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel Inspired Modification of Polypropylene Separators by Catechol/Polyamine for Li-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6, 5602-5608.
64. Bauer, I.; Thieme, S.; Brückner, J.; Althues, H.; Kaskel, S. Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. Journal of Power Sources 2014, 251, 417-422.
65. Yang, Z.; Guo, J.; Das, S. K.; Yu, Y.; Zhou, Z.; Abruña, H. D.; Archer, L. A. In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A 2013, 1, 1433-1440.
66. Rauh, R. D.; Shuker, F. S.; Marston, J. M.; Brummer, S. B. Formation of lithium polysulfides in aprotic media. Journal of Inorganic and Nuclear Chemistry 1977, 39, 1761-1766.
67. Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification. Analytical Chemistry 2012, 84, 3973-3980.
68. Chung, S.-H.; Manthiram, A. Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries. Advanced Functional Materials 2014, 24, 5299-5306.
69. Chung, S.-H.; Manthiram, A. A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials 2014, 26, 7352-7357.
70. Chung, S.-H.; Manthiram, A. High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. The Journal of Physical Chemistry Letters 2014, 5, 1978-1983.
71. Wei, H.; Ma, J.; Li, B.; Zuo, Y.; Xia, D. Enhanced Cycle Performance of Lithium–Sulfur Batteries Using a Separator Modified with a PVDF-C Layer. ACS Applied Materials & Interfaces 2014, 6, 20276-20281.
72. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy & Environmental Science 2014, 7, 3381-3390.
73. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium–Sulfur Batteries. Advanced Functional Materials 2015, 25, 5285-5291.
74. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151, A1969-A1976.
75. Agostini, M.; Xiong, S.; Matic, A.; Hassoun, J. Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery. Chemistry of Materials 2015, 27, 4604-4611.
76. Wang, J.; Yao, Z.; Monroe, C. W.; Yang, J.; Nuli, Y. Carbonyl-β-Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Advanced Functional Materials 2013, 23, 1194-1201.
77. Park, J.-W.; Yamauchi, K.; Takashima, E.; Tachikawa, N.; Ueno, K.; Dokko, K.; Watanabe, M. Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2013, 117, 4431-4440.
78. Kim, J.; Lee, D.-J.; Jung, H.-G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. An Advanced Lithium-Sulfur Battery. Advanced Functional Materials 2013, 23, 1076-1080.
79. Hoffmann, C.; Thieme, S.; Brückner, J.; Oschatz, M.; Biemelt, T.; Mondin, G.; Althues, H.; Kaskel, S. Nanocasting Hierarchical Carbide-Derived Carbons in Nanostructured Opal Assemblies for High-Performance Cathodes in Lithium–Sulfur Batteries. ACS Nano 2014, 8, 12130-12140.
80. Li, Z.; Jiang, Y.; Yuan, L.; Yi, Z.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell Structured Cathode for Li–S Batteries. ACS Nano 2014, 8, 9295-9303.
81. Guo, J.; Xu, Y.; Wang, C. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Letters 2011, 11, 4288-4294.
82. Zhou, G.; Wang, D.-W.; Li, F.; Hou, P.-X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H.-M. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy & Environmental Science 2012, 5, 8901-8906.
83. Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society 2011, 133, 18522-18525.
84. Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. Sulfur-Infiltrated Graphene-Based Layered Porous Carbon Cathodes for High-Performance Lithium–Sulfur Batteries. ACS Nano 2014, 8, 5208-5215.
85. Kumar, P.; Wu, F.-Y.; Hu, L.-H.; Ali Abbas, S.; Ming, J.; Lin, C.-N.; Fang, J.; Chu, C.-W.; Li, L.-J. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method. Nanoscale 2015, 7, 8093-8100.
86. Kaiser, M. R.; Ma, Z.; Wang, X.; Han, F.; Gao, T.; Fan, X.; Wang, J.-Z.; Liu, H. K.; Dou, S.; Wang, C. Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano 2017, 11, 9048-9056.
87. Hua, W.; Yang, Z.; Nie, H.; Li, Z.; Yang, J.; Guo, Z.; Ruan, C.; Chen, X. a.; Huang, S. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium–Sulfur Batteries. ACS Nano 2017, 11, 2209-2218.
88. Fang, R.; Zhao, S.; Pei, S.; Qian, X.; Hou, P.-X.; Cheng, H.-M.; Liu, C.; Li, F. Toward More Reliable Lithium–Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano 2016, 10, 8676-8682.
89. Zhou, W.; Yu, Y.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. Journal of the American Chemical Society 2013, 135, 16736-16743.
90. Huang, J.-Q.; Zhang, Q.; Peng, H.-J.; Liu, X.-Y.; Qian, W.-Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy & Environmental Science 2014, 7, 347-353.
91. Abbas, S. A.; Ibrahem, M. A.; Hu, L.-H.; Lin, C.-N.; Fang, J.; Boopathi, K. M.; Wang, P.-C.; Li, L.-J.; Chu, C.-W. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A 2016, 4, 9661-9669.
92. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent. Journal of Power Sources 2016, 303, 317-324.
93. Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochimica Acta 2013, 105, 378-383.
94. Chen, Y.; Liu, N.; Shao, H.; Wang, W.; Gao, M.; Li, C.; Zhang, H.; Wang, A.; Huang, Y. Chitosan as a functional additive for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A 2015, 3, 15235-15240.
95. Abbas, S. A.; Ibrahem, M. A.; Hu, L.-H.; Lin, C.-N.; Fang, J.; Boopathi, K. M.; Wang, P.-C.; Li, L.-J.; Chu, C.-W. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries. Journal of Materials Chemistry A 2016, 4, 9661-9669.
96. Barzegar, F.; Bello, A.; Momodu, D.; Madito, M. J.; Dangbegnon, J.; Manyala, N. Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. Journal of Power Sources 2016, 309, 245-253.
97. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2015, 119, 4580-4587.
98. Chung, S.-H.; Han, P.; Manthiram, A. A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development. ACS Applied Materials & Interfaces 2016, 8, 4709-4717.
99. Ma, Y.; Zhang, H.; Wu, B.; Wang, M.; Li, X.; Zhang, H. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode. Scientific Reports 2015, 5, 14949.
100. Chung, S.-H.; Singhal, R.; Kalra, V.; Manthiram, A. Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. The Journal of Physical Chemistry Letters 2015, 6, 2163-2169.
101. Fan, Y.; Yang, Z.; Hua, W.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W.; Huang, S.; Chen, Y. Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium–Sulfur Batteries. Advanced Energy Materials 2017, 7, 1602380.
102. Ponraj, R.; Kannan, A. G.; Ahn, J. H.; Kim, D.-W. Improvement of Cycling Performance of Lithium–Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS Applied Materials & Interfaces 2016, 8, 4000-4006.
103. Yang, X.; Yan, N.; Zhou, W.; Zhang, H.; Li, X.; Zhang, H. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium–sulfur batteries. Journal of Materials Chemistry A 2015, 3, 15314-15323.
104. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Communications 2015, 6, 5682.
105. Yan, J.; Liu, X.; Qi, H.; Li, W.; Zhou, Y.; Yao, M.; Li, B. High-Performance Lithium–Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading. Chemistry of Materials 2015, 27, 6394-6401.
106. Lang, J.; Qi, L.; Luo, Y.; Wu, H. High performance lithium metal anode: Progress and prospects. Energy Storage Materials 2017, 7, 115-129.
107. Luo, J.; Lee, R.-C.; Jin, J.-T.; Weng, Y.-T.; Fang, C.-C.; Wu, N.-L. A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li–S batteries. Chemical Communications 2017, 53, 963-966.
108. Whittingham, M. S. Lithium Batteries and Cathode Materials. Chemical Reviews 2004, 104, 4271-4302.
109. Akridge, J. R.; Mikhaylik, Y. V.; White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 2004, 175, 243-245.
110. Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science 2016, 9, 3221-3229.
111. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources 1999, 81-82, 925-929.
112. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chemical Society Reviews 2013, 42, 9011-9034.
113. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources 2014, 254, 168-182.
114. Abbas, S. A.; Ding, J.; Wu, S. H.; Fang, J.; Boopathi, K. M.; Mohapatra, A.; Lee, L. W.; Wang, P.-C.; Chang, C.-C.; Chu, C. W. Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li–S Batteries. ACS Nano 2017, 11, 12436-12445.
115. Ota, H.; Shima, K.; Ue, M.; Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta 2004, 49, 565-572.
116. Jeong, J.; Lee, J.-N.; Park, J.-K.; Ryou, M.-H.; Lee, Y. M. Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries. Electrochimica Acta 2015, 170, 353-359.
117. Grande, L.; von Zamory, J.; Koch, S. L.; Kalhoff, J.; Paillard, E.; Passerini, S. Homogeneous Lithium Electrodeposition with Pyrrolidinium-Based Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces 2015, 7, 5950-5958.
118. Choi, S. M.; Kang, I. S.; Sun, Y.-K.; Song, J.-H.; Chung, S.-M.; Kim, D.-W. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. Journal of Power Sources 2013, 244, 363-368.
119. Kang, I. S.; Lee, Y.-S.; Kim, D.-W. Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries. Journal of The Electrochemical Society 2014, 161, A53-A57.
120. Lee, H.; Lee, D. J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources 2015, 284, 103-108.
121. Park, K.; Cho, J. H.; Shanmuganathan, K.; Song, J.; Peng, J.; Gobet, M.; Greenbaum, S.; Ellison, C. J.; Goodenough, J. B. New battery strategies with a polymer/Al2O3 separator. Journal of Power Sources 2014, 263, 52-58.
122. Tu, Z.; Kambe, Y.; Lu, Y.; Archer, L. A. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries. Advanced Energy Materials 2014, 4, 1300654.
123. Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Applied Materials & Interfaces 2015, 7, 3314-3322.
124. Shin, W.-K.; Kannan, A. G.; Kim, D.-W. Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. ACS Applied Materials & Interfaces 2015, 7, 23700-23707.
125. Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy & Environmental Science 2015, 8, 3477-3494.
126. Hunt, I. A.; Patel, Y.; Szczygielski, M.; Kabacik, L.; Offer, G. J. Lithium sulfur battery nail penetration test under load. Journal of Energy Storage 2015, 2, 25-29.
127. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5, 7854-7863.
128. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials 2015, 5, 1401986.
129. Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chemical Communications 2013, 49, 10545-10562.
130. Liu, N.; Li, W.; Pasta, M.; Cui, Y. Nanomaterials for electrochemical energy storage. Frontiers of Physics 2014, 9, 323-350.
131. Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chemical Society Reviews 2016, 45, 5605-5634.
132. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy 2016, 1, 16132.
133. Dysart, A. D.; Burgos, J. C.; Mistry, A.; Chen, C.-F.; Liu, Z.; Hong, C. N.; Balbuena, P. B.; Mukherjee, P. P.; Pol, V. G. Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis. Journal of The Electrochemical Society 2016, 163, A730-A741.
134. Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Wu, D.; Li, L.; Hassan, B. S.; Cheng, B. A review on separators for lithiumsulfur battery: Progress and prospects. Journal of Power Sources 2016, 331, 132-155.
135. Xu, W.-T.; Peng, H.-J.; Huang, J.-Q.; Zhao, C.-Z.; Cheng, X.-B.; Zhang, Q. Towards Stable Lithium–Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. ChemSusChem 2015, 8, 2892-2901.
136. Hassoun, J.; Scrosati, B. Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications. Advanced Materials 2010, 22, 5198-5201.
137. Barghamadi, M.; Best, A. S.; Bhatt, A. I.; Hollenkamp, A. F.; Musameh, M.; Rees, R. J.; Rüther, T. Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy & Environmental Science 2014, 7, 3902-3920.
138. Marinescu, M.; Zhang, T.; Offer, G. J. A zero dimensional model of lithium–sulfur batteries during charge and discharge. Physical Chemistry Chemical Physics 2016, 18, 584-593.
139. Zhang, T.; Marinescu, M.; Walus, S.; Kovacik, P.; Offer, G. J. What Limits the Rate Capability of Li-S Batteries during Discharge: Charge Transfer or Mass Transfer? Journal of The Electrochemical Society 2018, 165, A6001-A6004.
140. Brückner, J.; Thieme, S.; Grossmann, H. T.; Dörfler, S.; Althues, H.; Kaskel, S. Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. Journal of Power Sources 2014, 268, 82-87.
141. Liang, J.; Li, F.; Cheng, H.-M. From laboratory to factory: Are the new electrode materials ready? Energy Storage Materials 2017, 6, A1-A3.
142. Liang, J.; Li, F.; Cheng, H.-M. Batteries with a sulfur cathode: A leap forward in energy density. Energy Storage Materials 2017, 8, A1-A3.
143. Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources 2014, 259, 289-299.
144. Diao, Y.; Xie, K.; Xiong, S.; Hong, X. Shuttle phenomenon – The irreversible oxidation mechanism of sulfur active material in Li–S battery. Journal of Power Sources 2013, 235, 181-186.
145. Poux, T.; Novák, P.; Trabesinger, S. Pitfalls in Li–S Rate-Capability Evaluation. Journal of The Electrochemical Society 2016, 163, A1139-A1145.
146. Qu, C.; Chen, Y.; Yang, X.; Zhang, H.; Li, X.; Zhang, H. LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 2017, 39, 262-272.
147. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O. A Highly Reversible Lithium Metal Anode. Scientific Reports 2014, 4, 3815.
148. Parmentier, M.; Gabriel, C. M.; Guo, P.; Isley, N. A.; Zhou, J.; Gallou, F. Switching from organic solvents to water at an industrial scale. Current Opinion in Green and Sustainable Chemistry 2017, 7, 13-17.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *