|
[1] J. C. Esmenda, Modal Analysis of Electrically Driven Nanomechanical Resonators. PhD Thesis, National Tsing Hua University, 2022. Accessed at https://hdl.handle.net/11296/9u96xg. [2] K. Persson, “Materials Data on C (SG:194) by Materials Project,” 7 2014. Accessed at https: //materialsproject.org/materials/mp-48. [3] K. Persson, “Materials Data on NbSe2 (sg:194) by Materials Project,” 2 2016. Accessed at https: //materialsproject.org/materials/mp-2207. [4] P. Weber, Graphene Mechanical Resonators Coupled to Superconducting Microwave Cavities. PhD Thesis, Universitat Politecnica de Catalunya, 2016. Accessed at http://hdl.handle.net/10803 /404668. [5] K. C. Schwab, “January 10, 2015 Lecture II Keith Schwab, Caltech,” January 2015. Accessed at https://youtu.be/P3jTJy4bIEs. [6] E. Gil-Santos, D. Ramos, V. Pini, J. Llorens, M. Fern´andez-Reg´ulez, M. Calleja, J. Tamayo, and A. San Paulo, “Optical Back-Action in Silicon Nanowire Resonators: Bolometric versus Radiation Pressure Effects,” New J. Phys., vol. 15, no. 3, p. 035001, 2013. [7] H. G. Craighead, “Nanoelectromechanical Systems,” Science, vol. 290, pp. 1532–1535, 2000. [8] M. Dadafshar, “Acceloremeters and Gyroscope Sensors: Operation, Sensing, and Applications,” report, Analog Devices - Maxim Integrated Products, 2014. Accessed at https://www.analog.c om/media/en/technical-documentation/tech-articles/accelerometer-and-gyroscopes-s ensors-operation-sensing-and-applications.pdf. [9] S. P. Beeby, G. Ensel, and M. Kraft, MEMS Mechanical Sensors. Micromechanical System, Norwood, Massachussetts: Artech House, Inc., 2004. [10] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016. [11] D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of Optical Interferometric Displacement Detection in Nanoelectromechanical Systems,” J. Appl. Phys., vol. 98, no. 12, 2005. [12] D. Davidovikj, F. Alijani, S. J. Cartamil-Bueno, H. S. J. van der Zant, M. Amabili, and P. G. Steeneken, “Nonlinear Dynamic Characterization of Two-Dimensional Materials,” Nat. Commun., vol. 8, no. 1, p. 1253, 2017. [13] M. Barmatz, L. R. Testardi, and F. J. Di Salvo, “Elasticity Measurements in the Layered Dichalcogenides TaSe2 and NbSe2,” Phys. Rev. B, vol. 12, pp. 4367–4376, Nov 1975. [14] S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. Deshmukh, “Electromechanical Resonators as Probes of the Charge Density Wave Transition at the Nanoscale in NbSe2,” Phys. Rev. B., vol. 82, no. 15, p. 155432, 2010. [15] H. Sun, P. Agrawal, and C. V. Singh, “A First-Principles Study of the Relationship Between Modulus and Ideal Strength of Single-Layer, Transition Metal Dichalcogenides,” Mater. Adv., vol. 2, no. 20, pp. 6631–6640, 2021. [16] M. Shur, Physics of Semiconductor Devices. Prentice Hall Series in Solid State Electronics, New Jersey, USA: Prentice Hall, 1st ed., 1990. [17] M. Imboden and P. Mohanty, “Dissipation in Nanoelectromechanical Systems,” Phys. Rep., vol. 534, no. 3, pp. 89 – 146, 2014. [18] R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems,” Nano Lett., vol. 12, no. 9, pp. 4681–4686, 2012. [19] J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High Frequency MoS2 Nanomechanical Resonators,” ACS Nano, vol. 7, no. 7, pp. 6086–6091, 2013. [20] A. Meerschaut and C. Deudon, “Crystal Structure Studies of the 3R − NbSe1.09S2 and the 2H − NbSe2 Compounds: Correlation between Nonstoichiometry and Stacking Type (= Polytypism),” Mater. Res. Bull., vol. 36, pp. 1721–1727, 2001. [21] H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C.-S. Lee, K.-N. Tu, J. Li, and Y. Lu, “Approaching the Ideal Elastic Strain limit in Silicon Nanowires,” Sci. Adv., vol. 2, no. e1501382, pp. 1–8, 2016. [22] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling of Micromechanical Motion to the Quantum Ground State,” Nature, vol. 475, no. 7356, pp. 359–63, 2011. [23] M. Piller, P. Sadeghi, R. G. West, N. Luhmann, P. Martini, O. Hansen, and S. Schmid, “Thermal Radiation Dominated Heat Transfer in Nanomechanical Silicon Nitride Drum Resonators,” Appl. Phys. Lett., vol. 117, no. 3, p. 034101, 2020. [24] Z. Wang and P. X. Feng, “Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways,” Sci. Rep., vol. 6, p. 28923, 2016. [25] A. Castellanos-Gomez, N. Agra¨ıt, and G. Rubio-Bollinger, “Optical Identification of Atomically Thin Dichalcogenide Crystals,” Appl. Phys. Lett., vol. 96, no. 21, p. 213116, 2010. [26] L. Midolo, A. Schliesser, and A. Fiore, “Nano-Opto-Electro-Mechanical Systems,” Nat. Nanotechnol., vol. 13, no. 1, pp. 11–18, 2018. [27] K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, and R. W. Simmonds, “Low-Loss Superconducting Resonant Circuits using Vacuum-Gap-Based Microwave Components,” Appl. Phys. Lett., vol. 96, no. 9, p. 093502, 2010. [28] M. Schmidt, M. C. Lemme, H. D. B. Gottlob, F. Driussi, L. Selmi, and H. Kurz, “Mobility Extraction in SOI MOSFETs with Sub 1 nm Body Thickness,” Solid-State Electronics, vol. 53, no. 12, pp. 1246–1251, 2009. [29] J. D. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. Harris, “Strong Dispersive Coupling of a High-Finesse Cavity to a Micromechanical Membrane,” Nature, vol. 452, no. 7183, pp. 72–75, 2008. [30] M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, “Large Cooperativity and Microkelvin Cooling with a Three-Dimensional Optomechanical Cavity,” Nat. Commun., vol. 6, p. 8491, 2015. [31] M. Poot and H. S. J. van der Zant, “Mechanical Systems in the Quantum Regime,” Phys. Rep., vol. 511, no. 5, pp. 273–335, 2012. [32] G. A. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Y. Jin, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Ultrastrong Parametric Coupling Between a Superconducting Cavity and a Mechanical Resonator,” Phys. Rev. Lett., vol. 123, no. 24, p. 247701, 2019. [33] J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X.-L. Feng, “Electrically Tunable Single-and Few-Layer MoS2 Nanoelectromechanical Systems with Broad Dynamic Range,” Sci. Adv., vol. 4, no. 3, p. eaao6653, 2018. [34] M. Will, M. Hamer, M. Muller, A. Noury, P. Weber, A. Bachtold, R. V. Gorbachev, C. Stampfer, and J. Guttinger, “High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator,” Nano Lett., vol. 17, no. 10, pp. 5950–5955, 2017. [35] J. M. Ferreiro, Experimental and Simulation Study of Electron and Phonon Properties in Crystalline Materials. PhD Thesis, University of Notre Dame, 2019. Accessed at https://curate.nd.edu/ show/vq27zk55530. [36] J. S. Bunch, Mechanical and Electrical Properties of Graphene Sheets. PhD Thesis, Cornell University, 2008. [37] P. Weber, J. Guttinger, I. Tsioutsios, D. E. Chang, and A. Bachtold, “Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities,” Nano Lett., vol. 14, no. 5, pp. 2854–60, 2014. [38] D. Davidovikj, J. J. Slim, S. J. Cartamil-Bueno, H. S. van der Zant, P. G. Steeneken, and W. J. Venstra, “Visualizing the Motion of Graphene Nanodrums,” Nano Lett., vol. 16, no. 4, pp. 2768– 2773, 2016. [39] R. De Alba, C. B.Wallin, G. Holland, S. Krylov, and B. R. Ilic, “Absolute Deflection Measurements in a Micro- and Nano-Electromechanical Fabry-Perot Interferometry System,” J. Appl. Phys., vol. 126, no. 1, p. 014502, 2019. [40] R. J. Dolleman, D. Davidovikj, H. S. J. van der Zant, and P. G. Steeneken, “Amplitude Calibration of 2D Mechanical Resonators by Nonlinear Optical Transduction,” Appl. Phys. Lett., vol. 111, no. 25, p. 253104, 2017. [41] A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfaff, M. Reagor, L. Sletten, X. Ma, R. J. Schoelkopf, E. Knill, and K. W. Lehnert, “Faithful Conversion of Propagating Quantum Information to Mechanical Motion,” Nature Physics, vol. 13, no. 12, pp. 1163–1167, 2017. [42] J. J. Viennot, X. Ma, and K. W. Lehnert, “Phonon-Number-Sensitive Electromechanics,” Phys. Rev. Lett., vol. 121, no. 18, p. 183601, 2018. [43] B. Hauer, C. Doolin, K. Beach, and J. Davis, “A General Procedure for Thermomechanical Calibration of Nano/Micro-Mechanical Resonators,” Ann. Phys., vol. 339, pp. 181–207, 2013. [44] S. Schmid, L. G. Villanueva, and M. L. Roukes, Fundamentals of Nanomechanical Resonators. Switzerland: Springer Nature, 2016. [45] P. Weber, J. Guttinger, A. Noury, J. Vergara-Cruz, and A. Bachtold, “Force Sensitivity of Multilayer Graphene Optomechanical Devices,” Nat. Commun., vol. 7, p. 12496, 2016. [46] T. Mei, J. Lee, Y. Xu, and P. X. Feng, “Frequency Tuning of Graphene Nanoelectromechanical Resonators via Electrostatic Gating,” Micromachines, vol. 9, no. 6, 2018. [47] S. Timoshenko, Vibration Problems in Engineering. New York: D. Van Nostrand Company, Inc., 2nd ed., 1937. [48] H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and Experimental Studies on the Resonance Frequencies of a Stretched Circular Plate: Application to Japanese Drum Diaphragms,” Acoust. Sci. Technol., vol. 30, no. 5, pp. 348–354, 2009. [49] A. W. Leissa, Vibration of Plates, vol. 160. Scientific and Technical Information Division, National Aeronautics and Space Administration, 1969. [50] D. Ramos, O. Malvar, Z. J. Davis, J. Tamayo, and M. Calleja, “Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles,” Nano Lett., vol. 18, no. 11, pp. 7165–7170, 2018. [51] B. Sajadi, F. Alijani, D. Davidovikj, J. Goosen, P. G. Steeneken, and F. van Keulen, “Experimental Characterization of Graphene by Electrostatic Resonance Frequency Tuning,” J. Appl. Phys., vol. 122, no. 23, p. 234302, 2017. [52] J. Zhou, N. Moldovan, L. Stan, H. Cai, D. A. Czaplewski, and D. Lopez, “Approaching the Strain- Free Limit in Ultrathin Nanomechanical Resonators,” Nano Lett., vol. 20, no. 8, pp. 5693–5698, 2020. [53] P. W. Baumeister, Optical Coating Technology, vol. PM137. Bellingham, Washington USA: SPIE - The International Society for Optical Engineering, 2004. [54] S. Orfanidis, Electromagnetic Waves and Antennas. Rutgers University, 2016. Accessed at http: //eceweb1.rutgers.edu/~orfanidi/ewa/. [55] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett., vol. 7, no. 9, pp. 2711–2717, 2007. [56] S. J. Byrnes, “Multilayer Optical Calculations,” arXiv:1603.02720v5, 2016. [57] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the Optical Conductivity of Graphene,” Phys. Rev. Lett., vol. 101, no. 19, p. 196405, 2008. [58] C. Rembe and A. Dr¨abenstedt, “Laser-Scanning Confocal Vibrometer Microscope: Theory and Experiments,” Rev. Sci. Instrum., vol. 77, no. 8, p. 083702, 2006. [59] J. Teufel, “John Teufel, NIST Boulder, January 7, 2013 Part I,” January 2015. Accessed at https://youtu.be/eUjMtPrdKng. [60] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [61] K. R. Brown, J. Britton, R. J. Epstein, J. Chiaverini, D. Leibfried, and D. J. Wineland, “Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit,” Phys Rev. Lett., vol. 99, no. 13, p. 137205, 2007. [62] C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring Nanomechanical Motion with a Microwave Cavity Interferometer,” Nat. Phys., vol. 4, no. 7, pp. 555–560, 2008. [63] P. A. Truitt, J. B. Hertzberg, C. C. Huang, K. L. Ekinci, and K. C. Schwab, “Efficient and Sensitive Capacitive Readout of Nanomechanical Resonator Arrays,” Nano Lett., vol. 7, no. 1, pp. 120–126, 2007. [64] M. A. Sillanpää, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, “Accessing Nanomechanical Resonators via a Fast Microwave Circuit,” Appl. Phys. Lett., vol. 95, no. 1, p. 011909, 2009. [65] A. N. Pearson, K. E. Khosla, M. Mergenthaler, G. A. D. Briggs, E. A. Laird, and N. Ares, “Radiofrequency Optomechanical Characterization of a Silicon Nitride Drum,” Sci. Rep., vol. 10, no. 1, p. 1654, 2020. [66] J. B. Hertzberg, Back-Action Evading Measurements of Nanomechanical Motion Approaching Quantum Limits. PhD Thesis, University of Maryland, 2009. Accessed at http://hdl.hand le.net/1903/9830. [67] H. M. Hill, A. F. Rigosi, S. Krylyuk, J. Tian, N. V. Nguyen, A. V. Davydov, D. B. Newell, and A. R. H. Walker, “Comprehensive Optical Characterization of Atomically Thin NbSe2,” Phys. Rev. B., vol. 98, no. 16, p. 165109, 2018. [68] E. D. Palik and E. J. Prucha, Handbook of Optical Constants of Solids. Burlington: Academic Press, 1997. [69] A. GMBH, “E-BEAM RESISTS,” tech. rep., Allresist GMBH, 2016. Accessed at https://www. allresist.com/wp-content/uploads/sites/2/2016/12/homepage_allresist_produktinfos _e-beam_englisch.pdf. [70] S. J. Fishlock, S. J. O’Shea, J. W. McBride, H. M. H. Chong, and S. H. Pu, “Fabrication and Characterisation of Nanocrystalline Graphite MEMS Resonators using a Geometric Design to Control Buckling,” J. Micromech. Microeng., vol. 27, no. 9, 2017. [71] D. Davidovikj, Two-dimensional Membranes in Motion. PhD Thesis, Delft University of Technology, 2017. Accessed at https://doi.org/10.4233/uuid:4a4d296b-4db4-47ef-835e-b6d445b65 4d4. [72] J. W.Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical Constants of Graphene Measured by Spectroscopic Ellipsometry,” Appl. Phys. Lett., vol. 97, no. 091904, pp. 1–3, 2010. [73] H.-H. Lien, Thermal Conductivity of Thin-Film Niobium Diselenide From Temperature Dependent Raman. MS Thesis, Cornell University, 2017. Accessed at https://doi.org/10.7298/X4RR1WD6. [74] C. Hsu, R. Frisenda, R. Schmidt, A. Arora, S. M. Vasconcellos, R. Bratschitsch, H. S. J. Zant, and A. Castellanos-Gomez, “Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2,” Adv. Opt. Mater., vol. 7, no. 13, p. 1900239, 2019. [75] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, pp. 666–669, 2004. [76] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. [77] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, “Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping,” 2D Mater., vol. 1, no. 1, p. 011002, 2014. [78] G. Pande, J.-Y. Siao, W.-L. Chen, C.-J. Lee, R. Sankar, Y.-M. Chang, C.-D. Chen, W.-H. Chang, F.-C. Chou, and M.-T. Lin, “Ultralow Schottky Barriers in H-BN Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 12, no. 16, pp. 18667–18673, 2020. [79] J. C. Esmenda, M. A. C. Aguila, J. Wang, T. Lee, C. Yang, K. Lin, K. Chang-Liao, N. Katz, S. Kafanov, Y. A. Pashkin, and C. Chen, “Imaging Off-Resonance Nanomechanical Motion as Modal Superposition,” Adv. Sci., vol. 8, no. 13, p. 2005041, 2021. [80] M. A. C. Aguila, J. C. Esmenda, J.-Y. Wang, T.-H. Lee, C.-Y. Yang, K.-H. Lin, K.-S. Chang-Liao, S. Kafanov, Y. A. Pashkin, and C.-D. Chen, “Fabry–Perot Interferometric Calibration of Van der Waals Material-Based Nanomechanical Resonators,” Nanoscale Adv., vol. 4, pp. 502–509, 2022. [81] E. R. Beringer, R. H. Dicke, N. Marcuvitz, C. G. Montgomery, and E. M. Purcell, Principles of Microwave Circuits. New Haven, Conneticut, USA: McGraw-Hill Book Company, Inc., 1st ed., 1948. [82] D. M. Pozar, Microwave Engineering. Hoboken, New Jersey: John Wiley and Sons, 4th ed., 2012. [83] D. I. Schuster, Circuit Quantum Electrodynamics. PhD Thesis, Yale University, 2007. Accessed at https://rsl.yale.edu/sites/default/files/files/RSL_Theses/SchusterThesis.pdf. [84] Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X. Xie, D. Chen, and G. Shen, “High-Detectivity InAs Nanowire Photodetectors with Spectral Response from Ultraviolet to Near-Infrared,” Nano Res., vol. 6, no. 11, pp. 775–783, 2013. [85] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High Quality Factor Resonance at Room Temperature with Nanostrings under High Tensile Stress,” J. Appl. Phys., vol. 99, no. 12, p. 124304, 2006. [86] R. A. Barton, B. Ilic, A. M. van der Zande, W. S. Whitney, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators,” Nano Lett., vol. 11, no. 3, pp. 1232–1236, 2011. [87] K. Babaei Gavan, E. W. J. M. van der Drift, W. J. Venstra, M. R. Zuiddam, and H. S. J. van der Zant, “Effect of Undercut on the Resonant Behaviour of Silicon Nitride Cantilevers,” J. Micromech. Microeng., vol. 19, no. 3, p. 035003, 2009. [88] V. A. Sazonova, A Tunable Carbon Nanotube Resonator. PhD Thesis, Cornell University, 2006. Accessed at https://hdl.handle.net/1813/3205. [89] Y. Shibaoka, “On the Transverse Vibration of an Elliptic Plate with Clamped Edges,” J. Phys. Soc. Japan, vol. 11, no. 7, pp. 797 – 803, 1956. [90] V. Panchal, Y. Yang, G. Cheng, J. Hu, M. Kruskopf, C.-I. Liu, A. F. Rigosi, C. Melios, A. R. H. Walker, D. B. Newell, et al., “Confocal Laser Scanning Microscopy: A Tool for Rapid Optical Characterization of 2D Materials,” Commun. Phys., vol. 1, p. 83, 2018. [91] D. J. Benford, “Transition Edge Sensor Bolometers for CMB Polarimetry,” 2008. [92] M. Kurek, M. Carnoy, P. E. Larsen, L. H. Nielsen, O. Hansen, T. Rades, S. Schmid, and A. Boisen, “Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis,” Angew. Chem., Int. Ed., vol. 56, no. 14, pp. 3901–3905, 2017. [93] R. Kokkoniemi, J. P. Girard, D. Hazra, A. Laitinen, J. Govenius, R. E. Lake, I. Sallinen, V. Vesterinen, M. Partanen, J. Y. Tan, K. W. Chan, K. Y. Tan, P. Hakonen, and M. Mottonen, “Bolometer operating at the threshold for circuit quantum electrodynamics,” Nature, vol. 586, no. 7827, pp. 47– 51, 2020. [94] S. P. Langley, “The Bolometer and Radiant Energy,” Proceedings of the American Academy of Arts and Sciences, vol. 16, pp. 342–358, 1881. [95] V. K. Khanna, Bolometers, Golay Cells and Pyroelectric Detectors, vol. 2, book section 1, p. 260. IOP Publishing, 2021. [96] Y. Zhang, Y. Watanabe, S. Hosono, N. Nagai, and K. Hirakawa, “Room Temperature, Very Sensitive Thermometer using a Doubly Clamped Microelectromechanical Beam Resonator for Bolometer Applications,” Appl. Phys. Lett., vol. 108, no. 16, 2016. [97] S. Y. Chiang, Y. Y. Li, T. L. Shen, M. Hofmann, and Y. F. Chen, “2D Material-Enabled Nanomechanical Bolometer,” Nano Lett., vol. 20, no. 4, pp. 2326–2331, 2020. [98] A. Blaikie, D. Miller, and B. J. Aleman, “A Fast and Sensitive Room-Temperature Graphene Nanomechanical Bolometer,” Nat. Commun., vol. 10, no. 1, p. 4726, 2019. [99] L. Vicarelli, A. Tredicucci, and A. Pitanti, “Micromechanical Bolometers for Subterahertz Detection at Room Temperature,” ACS Photonics, vol. 9, pp. 360–367, 2022. [100] J. C. Esmenda, M. A. C. Aguila, J.-Y. Wang, T.-H. Lee, Y.-C. Chen, C.-Y. Yang, K.-H. Lin, K.-S. Chang-Liao, S. Kafanov, Y. Pashkin, and C.-D. Chen, “Optoelectrical Nanomechanical Resonators Made from Multilayered Two-Dimensional Materials,” ACS Appl. Nano Mater., vol. 5, no. 7, pp. 8875–8882, 2022. [101] V. Pini, D. Ramos, C. M. Dominguez, J. J. Ruz, O. Malvar, P. M. Kosaka, Z. J. Davis, J. Tamayo, and M. Calleja, “Optimization of the Readout of Microdrum Optomechanical Resonators,” Microelectron. Eng., vol. 183-184, pp. 37–41, 2017. [102] K. Liu and J. Wu, “Mechanical Properties of Two-Dimensional Materials and Heterostructures,” J. Mater. Res., vol. 31, no. 07, pp. 832–844, 2015. [103] E. Hecht, Optics. Essex, England: Pearson Education Limited, 5th ed., 2017. [104] C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical Self Cooling of a Deformable Fabry-Perot Cavity in the Classical Limit,” Phys. Rev. B., vol. 78, no. 3, p. 035309, 2008. [105] M. Siskins, M. Lee, S. Manas-Valero, E. Coronado, Y. M. Blanter, H. S. J. van der Zant, and P. G. Steeneken, “Magnetic and Electronic Phase Transitions Probed by Nanomechanical Resonators,” Nat. Commun., vol. 11, no. 1, p. 2698, 2020. [106] F. Ye, J. Lee, and P. X. Feng, “Electrothermally Tunable Graphene Resonators Operating at Very High Temperature up to 1200 K,” Nano Lett., vol. 18, no. 3, pp. 1678–1685, 2018. [107] A. Islam, A. van den Akker, and P. X. Feng, “Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy,” Nano Lett., vol. 18, pp. 7683 – 7691, 2018. [108] T. Larsen, S. Schmid, L. Gr¨onberg, A. O. Niskanen, J. Hassel, S. Dohn, and A. Boisen, “Ultrasensitive String-Based Temperature Sensors,” Appl. Phys. Lett., vol. 98, no. 12, p. 121901, 2011. [109] R. De Alba, F. Massel, I. R. Storch, T. Abhilash, A. Hui, P. L. McEuen, H. G. Craighead, and J. M. Parpia, “Tunable Phonon-Cavity Coupling in Graphene Membranes,” Nat. Nanotechnol., vol. 11, no. 9, p. 741, 2016. [110] E. Ferreiro-Vila, J. Molina, L. M. Weituschat, E. Gil-Santos, P. A. Postigo, and D. Ramos, “Micro- Kelvin Resolution at Room Temperature using Nanomechanical Thermometry,” ACS Omega, vol. 6, no. 36, pp. 23052–23058, 2021. [111] E. Krauthammer, Theodor; Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications. Boca Raton, USA: CRC Press, 1st ed., 2001. [112] C. L. Wong, M. Annamalai, Z. Q. Wang, and M. Palaniapan, “Characterization of Nanomechanical Graphene Drum Structures,” J. Micromechan. Microeng., vol. 20, no. 11, p. 115029, 2010. [113] N. Morell, S. Tepsic, A. Reserbat-Plantey, A. Cepellotti, M. Manca, I. Epstein, A. Isacsson, X. Marie, F. Mauri, and A. Bachtold, “Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe2 Lattices,” Nano Lett., vol. 19, pp. 3143–3150, 2019. [114] C. C. Wu and Z. Zhong, “Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators,” Nano Lett., vol. 11, no. 4, pp. 1448–1451, 2011. [115] X. Wang and S. Lan, “Optical Properties of Black Phosphorus,” Adv. Opt. Photonics, vol. 8, no. 4, 2016. [116] W.-M. Zhang, H. Yan, Z.-K. Peng, and G. Meng, “Electrostatic Pull-in Instability in MEMS/NEMS: A Review,” Sens. Actuators A: Phys., vol. 214, pp. 187–218, 2014. [117] J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, “Chemical Vapor Deposition Growth of Monolayer MoSe2 Nanosheets,” Nano Res., vol. 7, no. 4, pp. 511–517, 2015. [118] F. Xia, H. Wang, and Y. Jia, “Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics,” Nat. Commun., vol. 5, p. 4458, 2014. [119] D. C, akır, F. M. Peeters, and C. Sevik, “Mechanical and Thermal Properties of h-MX2 (M=Cr, Mo, W; X=O, S, Se, Te) Monolayers: A Comparative Study,” Appl. Phys. Lett., vol. 104, no. 20, 2014. [120] P. Villars and K. Cenzual, “MoSe2 Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012” in Springer Materials.” Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan (https://materials.springer.com/isp/crystallographic/docs/sd_0454362). [121] H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting Black Phosphorus: Synthesis, Transport Properties and Electronic Applications,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2732–2743, 2015. [122] K. Persson, “Materials Data on MoSe2 (SG:194) by Materials Project,” 11 2014. Accessed at https://materialsproject.org/materials/mp-1634. [123] Q. Wei and X. Peng, “Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus,” Appl. Phys. Lett., vol. 104, no. 25, p. 251915, 2014. [124] F. L. Givens and G. E. Fredericks, “Thermal Expansion of Nbse2 and TaS2,” J. Phys. Chem. Solids, vol. 38, pp. 1363–1365, 1977. [125] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. N. Lau, “Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes,” Nat. Nanotechnol., vol. 4, no. 9, pp. 562–6, 2009. [126] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008. [127] A. Darvishzadeh, N. Alharbi, A. Mosavi, and N. E. Gorji, “Modeling the Strain Impact on Refractive Index and Optical Transmission Rate,” Physica B: Condens. Matter, vol. 543, pp. 14–17, 2018. [128] E. J. Boyd and D. Uttamchandani, “Measurement of the Anisotropy of Young’s Modulus in Single-Crystal Silicon,” J. Microelectromech. Syst., vol. 21, no. 1, pp. 243–249, 2012. [129] P. Furneaux, “Microwaves, Part 2: Using the Interferometer,” January 2017. Accessed at https: //youtu.be/P03lz9VM42U?list=PLm5Zzashz3KGK29HmOh62_Z259NpiGoy0. [130] N. Bernier, “Sonnet Simulation Tutorials: Superconducting Circuits,” November 2017. Accessed at https://youtu.be/k8cTeBOu1BY. [131] A. Noguchi, R. Yamazaki, M. Ataka, H. Fujita, Y. Tabuchi, T. Ishikawa, K. Usami, and Y. Nakamura, “Ground State Cooling of a Quantum Electromechanical System with a Silicon Nitride Membrane in a 3D Loop-Gap Cavity,” New J. Phys., vol. 18, no. 10, p. 103036, 2016. [132] V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical Coupling between a Multilayer Graphene Mechanical Resonator and a Superconducting Microwave Cavity,” Nat. Nanotechnol., vol. 9, no. 10, pp. 820–4, 2014. [133] X. Song, M. Oksanen, J. Li, P. J. Hakonen, and M. A. Sillanpää, “Graphene Optomechanics Realized at Microwave Frequencies,” Phys. Rev. Lett., vol. 113, no. 2, p. 027404, 2014. [134] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, “Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics,” J. Appl. Phys., vol. 104, no. 11, p. 113904, 2008. [135] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10 ms Single Photon Lifetimes for Superconducting Aluminum Cavities,” Appl. Phys. Lett., vol. 102, no. 19, p. 192604, 2013. [136] M. J. Reagor, Superconducting Cavities for Circuit Quantum Electrodynamics. PhD Thesis, Yale University, 2015. Accessed at https://rsl.yale.edu/sites/default/files/files/RSL_These s/reagor-thesis-20151202.pdf. [137] T. Brecht, M. Reagor, Y. Chu, W. Pfaff, C. Wang, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf, “Demonstration of Superconducting Micromachined Cavities,” Appl. Phys. Lett., vol. 107, no. 19, p. 192603, 2015. [138] T. Brecht, Micromachined Quantum Circuits. PhD Thesis, Yale University, 2017. Accessed at https://rsl.yale.edu/sites/default/files/files/RSL_Theses/reagor-thesis-20151202. pdf. [139] D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch, and J. G. Harris, “Multimode Optomechanical Dynamics in a Cavity with Avoided Crossings,” Nat. Commun., vol. 6, p. 6232, 2015. [140] N. R. Bernier, Multimode Microwave Circuit Optomechanics as a Platform to Study Coupled Quantum Harmonic Oscillators. PhD Thesis, Ecole Polytechnique Federale de Lausanne, 2019. Accessed at https://infoscience.epfl.ch/record/263668/files/EPFL_TH9217.pdf. [141] J. Guttinger, A. Noury, P. Weber, A. M. Eriksson, C. Lagoin, J. Moser, C. Eichler, A. Wallraff, A. Isacsson, and A. Bachtold, “Energy-Dependent Path of Dissipation in Nanomechanical Resonators,” Nat. Nanotechnol., vol. 12, no. 7, pp. 631–636, 2017. [142] D. Mann, “LNG Materials and Fluids,” tech. rep., National Bureau of Standards, 1977. Accessed at https://www.nist.gov/mml/acmd/aluminum-6061-t6-uns-aa96061. [143] G. A. Peterson, Parametric Coupling between Microwaves and Motions in Quantum Circuits. PhD Thesis, University of Colorado Boulder, 2020. Accessed at https://www.proquest.com/dissert ations-theses/parametric-coupling-between-microwaves-motion/docview/2408279842/s e-2. [144] S. Kim, J. Yu, and A. M. van der Zande, “Nano-Electromechanical Drumhead Resonators from Two-Dimensional Material Bimorphs,” Nano Lett., vol. 18, no. 11, pp. 6686–6695, 2018. [145] A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-Directional Conversion Between Microwave and Optical Frequencies in a Piezoelectric Optomechanical Device,” Appl. Phys. Lett., vol. 109, no. 3, 2016. [146] Y. Xu, W. Fu, C.-l. Zou, Z. Shen, and H. X. Tang, “High Quality Factor Surface Fabry-Perot Cavity of Acoustic Waves,” Appl. Phys. Lett., vol. 112, no. 7, 2018. [147] A. Rogalski and F. Sizov, “Terahertz Detectors and Focal Plane Arrays,” Opto-Electron. Rev., vol. 19, no. 3, pp. 346–404, 2011. [148] C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z. Z. Luo, H. Lee, B. Ge, Y. L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Miredin, H. Chang, J. Im, S. P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, and I. Chung, “Polycrystalline SnSe with a Thermoelectric Figure of Merit Greater than the Single Crystal,” Nat Mater, vol. 20, no. 10, pp. 1378–1384, 2021. [149] Y. Li, B. He, J. P. Heremans, and J.-C. Zhao, “High-Temperature Oxidation Behavior of Thermoelectric SnSe,” J. Alloys Comp., vol. 669, pp. 224–231, 2016. [150] F. Roeske, H. R. Shanks, and D. K. Finnemore, “Superconducting- and Normal-state Thermal Conductivity of NbSe2,” Phys. Rev. B, vol. 16, no. 9, pp. 3929–3935, 1977. [151] G. J. Orchin, D. De Fazio, A. Di Bernardo, M. Hamer, D. Yoon, A. R. Cadore, I. Goykhman, K. Watanabe, T. Taniguchi, J. W. A. Robinson, R. V. Gorbachev, A. C. Ferrari, and R. H. Hadfield, “Niobium Diselenide Superconducting Photodetectors,” Appl. Phys. Lett., vol. 114, no. 25, p. 251103, 2019. [152] Y. Jin, Z. Ji, F. Gu, B. Xie, R. Zhang, J. Wu, and X. Cai, “Multiple Mechanisms of the Low Temperature Photoresponse in Niobium Diselenide,” Appl. Phys. Lett., vol. 119, no. 22, p. 221104, 2021. [153] M. de Wit, G. Welker, K. Heeck, F. M. Buters, H. J. Eerkens, G. Koning, H. van der Meer, D. Bouwmeester, and T. H. Oosterkamp, “Vibration Isolation with High Thermal Conductance for a Cryogen-Free Dilution Refrigerator,” Rev. Sci. Instrum., vol. 90, no. 1, p. 015112, 2019. [154] Y. Seis, T. Capelle, E. Langman, S. Saarinen, E. Planz, and A. Schliesser, “Ground State Cooling of an Ultracoherent Electromechanical System,” Nat. Commun., vol. 13, no. 1, p. 1507, 2022. [155] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A. Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Direct Observation of Deterministic Macroscopic Entanglement,” Science, vol. 372, no. 6542, pp. 622–625, 2021. [156] L. M. de Lépinay, C. F. Ockeloen-Korppi, M. J. Woolley, and M. A. Sillanpää, “Quantum Mechanics-Free Subsystem with Mechanical Oscillators,” Science, vol. 372, no. 6542, pp. 625–629, 2021. [157] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and Efficient Conversion between Microwave and Optical Light,” Nat. Phys., vol. 10, no. 4, pp. 321–326, 2014. [158] A. P. Higginbotham, P. S. Burns, M. D. Urmey, R. W. Peterson, N. S. Kampel, B. M. Brubaker, G. Smith, K. W. Lehnert, and C. A. Regal, “Harnessing Electro-Optic Correlations in an Efficient Mechanical Converter,” Nat. Phys., vol. 14, no. 10, pp. 1038–1042, 2018. [159] Z. Ding, J. W. Jiang, Q. X. Pei, and Y. W. Zhang, “In-Plane and Cross-Plane Thermal Conductivities of Molybdenum Disulfide,” Nanotechnology, vol. 26, no. 6, p. 065703, 2015. [160] X. Gu, B. Li, and R. Yang, “Layer Thickness-Dependent Phonon Properties and Thermal Conductivity of MoS2,” J. Appl. Phys., vol. 119, no. 8, 2016. [161] S. Sandell, J. Maire, E. Chavez-Angel, C. M. S. Torres, H. Kristiansen, Z. Zhang, and J. He, “Enhancement of Thermal Boundary Conductance of Metal-Polymer System,” Nanomaterials, vol. 10, no. 4, p. 670, 2020. [162] M. Kurek, Photothermal IR Spectroscopy with Perforated Membrane Micromechanical Resonators. PhD Thesis, Technical University of Denmark, 2017. Accessed at https://orbit.dtu.dk/en/publications/photothermal-ir-spectroscopy-with-perforated-membrane-micromechan. [163] V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-field Electrical and Thermal Transport in Suspended Graphene,” Nano Lett., vol. 13, no. 10, pp. 4581–4586, 2013. [164] J. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K. Gimzewski, and C. Gerber, “A Femtojoule Calorimeter using Micromechanical Sensors,” Rev. Sci. Instrum., vol. 65, no. 5, pp. 3793–3798, 1994.
|