帳號:guest(3.139.236.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):麥 倫
作者(外文):Myrron Albert Callera Aguila
論文名稱(中文):以法布里-珀羅共振腔表徵光機械諧振器
論文名稱(外文):Fabry-Pérot Cavity Assisted Characterization of Opto-Nanomechanical Resonators
指導教授(中文):陳啟東
張廖貴術
指導教授(外文):Chen, Chii-Dong
Chang-Liao, Kuei-Shu
口試委員(中文):張嘉升
林宮玄
謝雅萍
謝馬利歐
口試委員(外文):Chang, Chia-Seng
Lin, Kung-Hsuan
Hsieh, Ya-Ping
Hofmann, Mario
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:101011457
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:77
中文關鍵詞:納米機械諧振器凡德瓦材料法布里-伯羅腔所光熱響應布朗運動
外文關鍵詞:Nanomechanical Resonatorsvan der Waals MaterialsFabry-Pérot CavityPhotothermal ResponseBrownian Motion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
測量電磁場引起的現象一直是一個熱門的研究主題,這樣的研究提高了對於奈米尺度元件中微弱作用力的分辨率。這些研究中通常需要具有奈米級橫截面的機械諧振器做為光機換能器,以提高對於機械振盪行為的分辨率和靈敏度。這些奈米機械諧振器 (Nanomechanical Resonators, NMR)的靈敏度超過了電子同類設備。

本論文研究了施加在奈米機械諧振器上的電動、光熱、和布朗效應。電動效應源於對 NMR 中的電容施加 AC 和 DC 電壓,導致電容的受迫振盪。光熱效應源於NMR對於入射電磁波的吸收,導致NMR因受限熱膨脹而發生頻率偏移。NMR振動行為因熱激發產生的起伏則與布朗效應有關。

上述效應的研究由於不易觀察,具有極高挑戰性。此乃因為NMR鼓面振動之位移會隨著鼓面縮小而下降,導致讀取電路之訊雜比劣化。為了解決此問題,我們採用次微米級厚度的凡德瓦(van der Waals)材料,如二硒化鈮(NbSe2$) )和石墨(graphite),並將其製備成懸浮的圓形鼓面。這樣的微機械鼓面連同基板形成法布里-伯羅干涉儀結構,其干涉效果提供了NMR振盪行為在光學或微波頻段的檢測機制。

NMR的振幅經過校準可用於測量其電力驅動效應。 根據多層干涉法 (MIA),光波在多層結構中的干涉可用於確定NMR與任意基板間的空氣間隙與NMR鼓面厚度。利用這些參數,量測信號將被轉換 成NMR振盪行為之資訊,包括數百皮米的振幅和鼓面上數百皮牛頓的力。

NMR鼓面共振頻率對探測光入射功率的靈敏依賴可用來量化NMR因光吸收引起的光熱效應。所測得的靈敏度變化與理論模型吻合良好,該模型考慮了對於法布里-伯羅腔所誘導的吸收與靜態位移的調變。此外,經由上述機制所測得的NbSe2$多層材料之熱導率為14.5 W m$^{−1}$ K$^{−1}$,與文獻結果非常吻合。根據模型所預測的光熱響應對NMR厚度和材料的相依性,採用低張力、低熱導率的薄鼓面將可實現可調靈敏度的輻射熱計。

最後,超導“法布里-伯羅”微波共振腔可用於解析懸浮石墨諧振器因布朗運動引發的振盪模式。所測得的各模式之頻率間隔顯示,懸浮石墨諧振器振盪在mK溫度下表現得像固定邊界平板。此外,諧振器基模的邊帶功率隨微波探測訊號功率呈線性增加。此線性度有助於確定單光子極限下 約110 mHz 的光機械耦合強度。

對於量測學、輻射熱測量、及量子計算相關應用,本論文研究成果及發現將有助於優化可調性奈米諧振器的開發。


Measuring electromagnetic field-induced phenomena has been a subject of ongoing research that led to improved resolution of weak forces, which is associated with nanoscale phenomena. These endeavors require a vibrating transducer whose resolution and sensitivity improve by reducing one of its cross-section dimensions to nanoscale dimensions. Named nanomechanical resonators (NMRs), these nanoscale devices make force meters with sensitivities surpassing their electronic counterparts.

This dissertation investigates electromotive, photothermal, and Brownian effects exerted on the nanomechanical resonator. The electromotive effect originates from the application of AC and DC
voltages to the NMR, setting the vibrating capacitor to oscillatory motion. The photothermal effect in NMRs emerges from the incident absorption of an electromagnetic wave on the NMR surface, causing the NMR frequency to shift due to constrained thermal expansion. Brownian effect pertains to collective vibrational fluctuations of the NMR originating from thermal excitations.

These phenomena are challenging to resolve as the NMR displacement scales with shrinking lateral dimensions, reducing the signal-to-noise ratio measured by the readout circuitry. Circumventing this issue requires circular drumheads made from freestanding layered van der Waals materials such as NbSe$_{2}$ and graphite with submicron thicknesses. Furthermore, Fabry-Pérot interferometric readouts and microwave cavities are used to detect the vibrational displacement of NMRs.

The calibrated vibrational amplitudes of the NMR quantify the electromotive actuation effects. Wave interferences of light from multiple layers at optical wavelengths, termed the ”Multilayer Interference Approach (MIA),” are exploited to determine spacer gap heights and resonator thicknesses on arbitrary substrates. These parameters converted the resolved signals to hundreds of picometers in vibrational amplitude and hundreds of piconewtons of forces for our drumhead NMRs.

The photothermal effect of the NMR due to optical absorption is then quantified using the sensitivity of the resonant frequency shift of electromotive-driven drumheads with the incident power of the probe laser beam. The measured sensitivity variations of the NMR drumheads agree well with a proposed model that considers modulation of Fabry-Pérot cavity-induced absorption with static displacement. Furthermore, a thermal conductivity of multilayered NbSe$_{2}$ is determined to be 14.5 W m$^{−1}$ K$^{−1}$, which is in good agreement with literature results. The model predicts the thickness, and material dependencies of the photothermal responsivity. Thinner drumheads with low tension and small thermal conductivity values enable bolometers with displacement-tunable sensitivity.

Finally, the modes of a suspended graphite resonator enabled by Brownian motion are resolved using a superconducting microwave cavity, a microwave analog of Fabry-Pérot cavities. The measured resonant frequency spacings between the resolved modes suggest the device behaves like a clamped plate at millikelvin temperatures. Furthermore, the mechanical sideband power of the fundamental mode increases linearly with the incident microwave probe power. The linearity helped determine an optomechanical coupling strength of 110 mHz in the single-photon limit.

The findings regarding the investigated effects would hopefully translate to an optimized design for tunable NMR-based optoelectromechanical systems for metrology, bolometric, and possible quantum computer applications.
Abstract ZH i
Abstract EN ii
Preface iii
Acknowledgement iv
1 Introduction 1
1.1 Micro-and Nano-electromechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation with van der Waals Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Content of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Nanomechanics, Electromechanics, and Optomechanics 5
2.1 Nanomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Equation of Motion of a Driven Damped Mechanical Oscillator . . . . . . . . . . . 5
2.1.2 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electromechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Electromotive Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Static Displacements of Tensioned Plates due to Electrostatic Force . . . . . . . . 9
2.2.3 Vibrational Amplitude due to Electromotive Force . . . . . . . . . . . . . . . . . . 11
2.3 Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Reflectance from Fabry-P´erot Cavities derived from Multilayer Interference Approach 14
2.3.2 Amplitude-Modulated Sideband Voltages from Microwave Cavities . . . . . . . . . 17
3 Device Fabrication and Measurement 21
3.1 vdW Nanomechanical Resonator Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Selection of vdW Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Micromechanical Exfoliation with Polydimethylsiloxane Disks . . . . . . . . . . . . 23
3.1.3 Photolithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Procedure for Stamp Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Optical Interferometry Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Microwave Interferometry Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Vibrational Amplitude Calibration of Nanomechanical Resonators Based on van der
Waals Materials by Fabry-P´erot Interferometry 30
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Setbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Measurement and Characterization Technique . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Determining NMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Key Merits of MIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Photothermal Responsivity of Nanomechanical Resonators Based on van der Waals
Materials 40
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Design and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Brief Description Regarding the Device Structure, Actuation, and Detection of
Niobium Diselenide NMRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Understanding Photothermal Responsivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Effect of Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Description of the Photothermal Effect . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.3 Using the Multilayer Interference Approach to Calculate the Fabry-P´erot Absorbance 44
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.1 Measured Driven Mechanical Responses . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.2 Modelling of the Photothermal Effect on Tensioned Drum Plates . . . . . . . . . . 45
5.4.3 Variations of f0 on the Laser Spot Position . . . . . . . . . . . . . . . . . . . . . . 48
5.4.4 Influence of Increasing Static Displacement on the Photothermal Responsivities of
NbSe2 Drumheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.5 Influence of Drum Thickness on the Profile representing the Photothermal Responsivities
of NbSe2 Drumheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.6 Benchmarking Simulated Results with those of NMR Designs Communicated Elsewhere
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6 Microwave Interferometry of Graphite Mechanical Resonators 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Device and Cavity Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Power Spectral Density of Nanomechanical Modes . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Extracting Single-Photon Optomechanical Coupling Strength . . . . . . . . . . . . . . . . 58
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7 Conclusion, and Outlook 61
[1] J. C. Esmenda, Modal Analysis of Electrically Driven Nanomechanical Resonators. PhD Thesis,
National Tsing Hua University, 2022. Accessed at https://hdl.handle.net/11296/9u96xg.
[2] K. Persson, “Materials Data on C (SG:194) by Materials Project,” 7 2014. Accessed at https:
//materialsproject.org/materials/mp-48.
[3] K. Persson, “Materials Data on NbSe2 (sg:194) by Materials Project,” 2 2016. Accessed at https:
//materialsproject.org/materials/mp-2207.
[4] P. Weber, Graphene Mechanical Resonators Coupled to Superconducting Microwave Cavities. PhD
Thesis, Universitat Politecnica de Catalunya, 2016. Accessed at http://hdl.handle.net/10803
/404668.
[5] K. C. Schwab, “January 10, 2015 Lecture II Keith Schwab, Caltech,” January 2015. Accessed at
https://youtu.be/P3jTJy4bIEs.
[6] E. Gil-Santos, D. Ramos, V. Pini, J. Llorens, M. Fern´andez-Reg´ulez, M. Calleja, J. Tamayo, and
A. San Paulo, “Optical Back-Action in Silicon Nanowire Resonators: Bolometric versus Radiation
Pressure Effects,” New J. Phys., vol. 15, no. 3, p. 035001, 2013.
[7] H. G. Craighead, “Nanoelectromechanical Systems,” Science, vol. 290, pp. 1532–1535, 2000.
[8] M. Dadafshar, “Acceloremeters and Gyroscope Sensors: Operation, Sensing, and Applications,”
report, Analog Devices - Maxim Integrated Products, 2014. Accessed at https://www.analog.c
om/media/en/technical-documentation/tech-articles/accelerometer-and-gyroscopes-s
ensors-operation-sensing-and-applications.pdf.
[9] S. P. Beeby, G. Ensel, and M. Kraft, MEMS Mechanical Sensors. Micromechanical System, Norwood, Massachussetts: Artech House, Inc., 2004.
[10] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., “Observation of Gravitational Waves
from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.
[11] D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of Optical Interferometric Displacement
Detection in Nanoelectromechanical Systems,” J. Appl. Phys., vol. 98, no. 12, 2005.
[12] D. Davidovikj, F. Alijani, S. J. Cartamil-Bueno, H. S. J. van der Zant, M. Amabili, and P. G.
Steeneken, “Nonlinear Dynamic Characterization of Two-Dimensional Materials,” Nat. Commun.,
vol. 8, no. 1, p. 1253, 2017.
[13] M. Barmatz, L. R. Testardi, and F. J. Di Salvo, “Elasticity Measurements in the Layered Dichalcogenides TaSe2 and NbSe2,” Phys. Rev. B, vol. 12, pp. 4367–4376, Nov 1975.
[14] S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. Deshmukh, “Electromechanical Resonators as Probes of the Charge Density Wave Transition at the Nanoscale in NbSe2,” Phys. Rev. B., vol. 82, no. 15, p. 155432, 2010.
[15] H. Sun, P. Agrawal, and C. V. Singh, “A First-Principles Study of the Relationship Between
Modulus and Ideal Strength of Single-Layer, Transition Metal Dichalcogenides,” Mater. Adv.,
vol. 2, no. 20, pp. 6631–6640, 2021.
[16] M. Shur, Physics of Semiconductor Devices. Prentice Hall Series in Solid State Electronics, New
Jersey, USA: Prentice Hall, 1st ed., 1990.
[17] M. Imboden and P. Mohanty, “Dissipation in Nanoelectromechanical Systems,” Phys. Rep.,
vol. 534, no. 3, pp. 89 – 146, 2014.
[18] R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang,
P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal Self-Oscillation and
Laser Cooling of Graphene Optomechanical Systems,” Nano Lett., vol. 12, no. 9, pp. 4681–4686,
2012.
[19] J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High Frequency MoS2 Nanomechanical
Resonators,” ACS Nano, vol. 7, no. 7, pp. 6086–6091, 2013.
[20] A. Meerschaut and C. Deudon, “Crystal Structure Studies of the 3R − NbSe1.09S2 and
the 2H − NbSe2 Compounds: Correlation between Nonstoichiometry and Stacking Type
(= Polytypism),” Mater. Res. Bull., vol. 36, pp. 1721–1727, 2001.
[21] H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C.-S. Lee, K.-N. Tu, J. Li,
and Y. Lu, “Approaching the Ideal Elastic Strain limit in Silicon Nanowires,” Sci. Adv., vol. 2,
no. e1501382, pp. 1–8, 2016.
[22] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker,
K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling of Micromechanical Motion to the
Quantum Ground State,” Nature, vol. 475, no. 7356, pp. 359–63, 2011.
[23] M. Piller, P. Sadeghi, R. G. West, N. Luhmann, P. Martini, O. Hansen, and S. Schmid, “Thermal
Radiation Dominated Heat Transfer in Nanomechanical Silicon Nitride Drum Resonators,” Appl.
Phys. Lett., vol. 117, no. 3, p. 034101, 2020.
[24] Z. Wang and P. X. Feng, “Interferometric Motion Detection in Atomic Layer 2D Nanostructures:
Visualizing Signal Transduction Efficiency and Optimization Pathways,” Sci. Rep., vol. 6, p. 28923,
2016.
[25] A. Castellanos-Gomez, N. Agra¨ıt, and G. Rubio-Bollinger, “Optical Identification of Atomically
Thin Dichalcogenide Crystals,” Appl. Phys. Lett., vol. 96, no. 21, p. 213116, 2010.
[26] L. Midolo, A. Schliesser, and A. Fiore, “Nano-Opto-Electro-Mechanical Systems,” Nat. Nanotechnol., vol. 13, no. 1, pp. 11–18, 2018.
[27] K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel,
and R. W. Simmonds, “Low-Loss Superconducting Resonant Circuits using Vacuum-Gap-Based
Microwave Components,” Appl. Phys. Lett., vol. 96, no. 9, p. 093502, 2010.
[28] M. Schmidt, M. C. Lemme, H. D. B. Gottlob, F. Driussi, L. Selmi, and H. Kurz, “Mobility
Extraction in SOI MOSFETs with Sub 1 nm Body Thickness,” Solid-State Electronics, vol. 53,
no. 12, pp. 1246–1251, 2009.
[29] J. D. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. Harris, “Strong Dispersive
Coupling of a High-Finesse Cavity to a Micromechanical Membrane,” Nature, vol. 452, no. 7183,
pp. 72–75, 2008.
[30] M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, “Large Cooperativity and Microkelvin Cooling
with a Three-Dimensional Optomechanical Cavity,” Nat. Commun., vol. 6, p. 8491, 2015.
[31] M. Poot and H. S. J. van der Zant, “Mechanical Systems in the Quantum Regime,” Phys. Rep.,
vol. 511, no. 5, pp. 273–335, 2012.
[32] G. A. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Y. Jin, R. W. Simmonds, J. Aumentado,
and J. D. Teufel, “Ultrastrong Parametric Coupling Between a Superconducting Cavity and a
Mechanical Resonator,” Phys. Rev. Lett., vol. 123, no. 24, p. 247701, 2019.
[33] J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X.-L. Feng, “Electrically Tunable Single-and
Few-Layer MoS2 Nanoelectromechanical Systems with Broad Dynamic Range,” Sci. Adv., vol. 4,
no. 3, p. eaao6653, 2018.
[34] M. Will, M. Hamer, M. Muller, A. Noury, P. Weber, A. Bachtold, R. V. Gorbachev, C. Stampfer,
and J. Guttinger, “High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator,” Nano Lett., vol. 17, no. 10, pp. 5950–5955, 2017.
[35] J. M. Ferreiro, Experimental and Simulation Study of Electron and Phonon Properties in Crystalline Materials. PhD Thesis, University of Notre Dame, 2019. Accessed at https://curate.nd.edu/
show/vq27zk55530.
[36] J. S. Bunch, Mechanical and Electrical Properties of Graphene Sheets. PhD Thesis, Cornell University, 2008.
[37] P. Weber, J. Guttinger, I. Tsioutsios, D. E. Chang, and A. Bachtold, “Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities,” Nano Lett., vol. 14, no. 5, pp. 2854–60, 2014.
[38] D. Davidovikj, J. J. Slim, S. J. Cartamil-Bueno, H. S. van der Zant, P. G. Steeneken, and W. J.
Venstra, “Visualizing the Motion of Graphene Nanodrums,” Nano Lett., vol. 16, no. 4, pp. 2768–
2773, 2016.
[39] R. De Alba, C. B.Wallin, G. Holland, S. Krylov, and B. R. Ilic, “Absolute Deflection Measurements
in a Micro- and Nano-Electromechanical Fabry-Perot Interferometry System,” J. Appl. Phys.,
vol. 126, no. 1, p. 014502, 2019.
[40] R. J. Dolleman, D. Davidovikj, H. S. J. van der Zant, and P. G. Steeneken, “Amplitude Calibration
of 2D Mechanical Resonators by Nonlinear Optical Transduction,” Appl. Phys. Lett., vol. 111,
no. 25, p. 253104, 2017.
[41] A. P. Reed, K. H. Mayer, J. D. Teufel, L. D. Burkhart, W. Pfaff, M. Reagor, L. Sletten, X. Ma,
R. J. Schoelkopf, E. Knill, and K. W. Lehnert, “Faithful Conversion of Propagating Quantum
Information to Mechanical Motion,” Nature Physics, vol. 13, no. 12, pp. 1163–1167, 2017.
[42] J. J. Viennot, X. Ma, and K. W. Lehnert, “Phonon-Number-Sensitive Electromechanics,” Phys.
Rev. Lett., vol. 121, no. 18, p. 183601, 2018.
[43] B. Hauer, C. Doolin, K. Beach, and J. Davis, “A General Procedure for Thermomechanical Calibration
of Nano/Micro-Mechanical Resonators,” Ann. Phys., vol. 339, pp. 181–207, 2013.
[44] S. Schmid, L. G. Villanueva, and M. L. Roukes, Fundamentals of Nanomechanical Resonators.
Switzerland: Springer Nature, 2016.
[45] P. Weber, J. Guttinger, A. Noury, J. Vergara-Cruz, and A. Bachtold, “Force Sensitivity of Multilayer
Graphene Optomechanical Devices,” Nat. Commun., vol. 7, p. 12496, 2016.
[46] T. Mei, J. Lee, Y. Xu, and P. X. Feng, “Frequency Tuning of Graphene Nanoelectromechanical
Resonators via Electrostatic Gating,” Micromachines, vol. 9, no. 6, 2018.
[47] S. Timoshenko, Vibration Problems in Engineering. New York: D. Van Nostrand Company, Inc.,
2nd ed., 1937.
[48] H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and Experimental Studies on the Resonance
Frequencies of a Stretched Circular Plate: Application to Japanese Drum Diaphragms,” Acoust.
Sci. Technol., vol. 30, no. 5, pp. 348–354, 2009.
[49] A. W. Leissa, Vibration of Plates, vol. 160. Scientific and Technical Information Division, National
Aeronautics and Space Administration, 1969.
[50] D. Ramos, O. Malvar, Z. J. Davis, J. Tamayo, and M. Calleja, “Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles,” Nano Lett., vol. 18, no. 11, pp. 7165–7170, 2018.
[51] B. Sajadi, F. Alijani, D. Davidovikj, J. Goosen, P. G. Steeneken, and F. van Keulen, “Experimental
Characterization of Graphene by Electrostatic Resonance Frequency Tuning,” J. Appl. Phys., vol. 122, no. 23, p. 234302, 2017.
[52] J. Zhou, N. Moldovan, L. Stan, H. Cai, D. A. Czaplewski, and D. Lopez, “Approaching the Strain-
Free Limit in Ultrathin Nanomechanical Resonators,” Nano Lett., vol. 20, no. 8, pp. 5693–5698,
2020.
[53] P. W. Baumeister, Optical Coating Technology, vol. PM137. Bellingham, Washington USA: SPIE
- The International Society for Optical Engineering, 2004.
[54] S. Orfanidis, Electromagnetic Waves and Antennas. Rutgers University, 2016. Accessed at http:
//eceweb1.rutgers.edu/~orfanidi/ewa/.
[55] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov,
and A. Ferrari, “Rayleigh Imaging of Graphene and Graphene Layers,” Nano Lett., vol. 7, no. 9,
pp. 2711–2717, 2007.
[56] S. J. Byrnes, “Multilayer Optical Calculations,” arXiv:1603.02720v5, 2016.
[57] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the
Optical Conductivity of Graphene,” Phys. Rev. Lett., vol. 101, no. 19, p. 196405, 2008.
[58] C. Rembe and A. Dr¨abenstedt, “Laser-Scanning Confocal Vibrometer Microscope: Theory and
Experiments,” Rev. Sci. Instrum., vol. 77, no. 8, p. 083702, 2006.
[59] J. Teufel, “John Teufel, NIST Boulder, January 7, 2013 Part I,” January 2015. Accessed at
https://youtu.be/eUjMtPrdKng.
[60] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys.,
vol. 86, no. 4, pp. 1391–1452, 2014.
[61] K. R. Brown, J. Britton, R. J. Epstein, J. Chiaverini, D. Leibfried, and D. J. Wineland, “Passive
Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit,” Phys Rev. Lett., vol. 99,
no. 13, p. 137205, 2007.
[62] C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring Nanomechanical Motion with a Microwave Cavity Interferometer,” Nat. Phys., vol. 4, no. 7, pp. 555–560, 2008.
[63] P. A. Truitt, J. B. Hertzberg, C. C. Huang, K. L. Ekinci, and K. C. Schwab, “Efficient and Sensitive
Capacitive Readout of Nanomechanical Resonator Arrays,” Nano Lett., vol. 7, no. 1, pp. 120–126,
2007.
[64] M. A. Sillanpää, J. Sarkar, J. Sulkko, J. Muhonen, and P. J. Hakonen, “Accessing Nanomechanical
Resonators via a Fast Microwave Circuit,” Appl. Phys. Lett., vol. 95, no. 1, p. 011909, 2009.
[65] A. N. Pearson, K. E. Khosla, M. Mergenthaler, G. A. D. Briggs, E. A. Laird, and N. Ares, “Radiofrequency Optomechanical Characterization of a Silicon Nitride Drum,” Sci. Rep., vol. 10, no. 1,
p. 1654, 2020.
[66] J. B. Hertzberg, Back-Action Evading Measurements of Nanomechanical Motion Approaching
Quantum Limits. PhD Thesis, University of Maryland, 2009. Accessed at http://hdl.hand
le.net/1903/9830.
[67] H. M. Hill, A. F. Rigosi, S. Krylyuk, J. Tian, N. V. Nguyen, A. V. Davydov, D. B. Newell, and
A. R. H. Walker, “Comprehensive Optical Characterization of Atomically Thin NbSe2,” Phys. Rev.
B., vol. 98, no. 16, p. 165109, 2018.
[68] E. D. Palik and E. J. Prucha, Handbook of Optical Constants of Solids. Burlington: Academic
Press, 1997.
[69] A. GMBH, “E-BEAM RESISTS,” tech. rep., Allresist GMBH, 2016. Accessed at https://www.
allresist.com/wp-content/uploads/sites/2/2016/12/homepage_allresist_produktinfos
_e-beam_englisch.pdf.
[70] S. J. Fishlock, S. J. O’Shea, J. W. McBride, H. M. H. Chong, and S. H. Pu, “Fabrication and
Characterisation of Nanocrystalline Graphite MEMS Resonators using a Geometric Design to
Control Buckling,” J. Micromech. Microeng., vol. 27, no. 9, 2017.
[71] D. Davidovikj, Two-dimensional Membranes in Motion. PhD Thesis, Delft University of Technology, 2017. Accessed at https://doi.org/10.4233/uuid:4a4d296b-4db4-47ef-835e-b6d445b65
4d4.
[72] J. W.Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical Constants of Graphene Measured
by Spectroscopic Ellipsometry,” Appl. Phys. Lett., vol. 97, no. 091904, pp. 1–3, 2010.
[73] H.-H. Lien, Thermal Conductivity of Thin-Film Niobium Diselenide From Temperature Dependent
Raman. MS Thesis, Cornell University, 2017. Accessed at https://doi.org/10.7298/X4RR1WD6.
[74] C. Hsu, R. Frisenda, R. Schmidt, A. Arora, S. M. Vasconcellos, R. Bratschitsch, H. S. J. Zant, and
A. Castellanos-Gomez, “Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2,
WS2, and WSe2,” Adv. Opt. Mater., vol. 7, no. 13, p. 1900239, 2019.
[75] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,
and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, pp. 666–669, 2004.
[76] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V.
Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,”
Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[77] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant,
and G. A. Steele, “Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic
Stamping,” 2D Mater., vol. 1, no. 1, p. 011002, 2014.
[78] G. Pande, J.-Y. Siao, W.-L. Chen, C.-J. Lee, R. Sankar, Y.-M. Chang, C.-D. Chen, W.-H. Chang,
F.-C. Chou, and M.-T. Lin, “Ultralow Schottky Barriers in H-BN Encapsulated Monolayer WSe2
Tunnel Field-Effect Transistors,” ACS Appl. Mater. Interfaces, vol. 12, no. 16, pp. 18667–18673,
2020.
[79] J. C. Esmenda, M. A. C. Aguila, J. Wang, T. Lee, C. Yang, K. Lin, K. Chang-Liao, N. Katz,
S. Kafanov, Y. A. Pashkin, and C. Chen, “Imaging Off-Resonance Nanomechanical Motion as
Modal Superposition,” Adv. Sci., vol. 8, no. 13, p. 2005041, 2021.
[80] M. A. C. Aguila, J. C. Esmenda, J.-Y. Wang, T.-H. Lee, C.-Y. Yang, K.-H. Lin, K.-S. Chang-Liao,
S. Kafanov, Y. A. Pashkin, and C.-D. Chen, “Fabry–Perot Interferometric Calibration of Van der
Waals Material-Based Nanomechanical Resonators,” Nanoscale Adv., vol. 4, pp. 502–509, 2022.
[81] E. R. Beringer, R. H. Dicke, N. Marcuvitz, C. G. Montgomery, and E. M. Purcell, Principles of
Microwave Circuits. New Haven, Conneticut, USA: McGraw-Hill Book Company, Inc., 1st ed., 1948.
[82] D. M. Pozar, Microwave Engineering. Hoboken, New Jersey: John Wiley and Sons, 4th ed., 2012.
[83] D. I. Schuster, Circuit Quantum Electrodynamics. PhD Thesis, Yale University, 2007. Accessed at
https://rsl.yale.edu/sites/default/files/files/RSL_Theses/SchusterThesis.pdf.
[84] Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X. Xie, D. Chen, and G. Shen, “High-Detectivity InAs
Nanowire Photodetectors with Spectral Response from Ultraviolet to Near-Infrared,” Nano Res.,
vol. 6, no. 11, pp. 775–783, 2013.
[85] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High Quality
Factor Resonance at Room Temperature with Nanostrings under High Tensile Stress,” J. Appl. Phys., vol. 99, no. 12, p. 124304, 2006.
[86] R. A. Barton, B. Ilic, A. M. van der Zande, W. S. Whitney, P. L. McEuen, J. M. Parpia, and
H. G. Craighead, “High, Size-Dependent Quality Factor in an Array of Graphene Mechanical
Resonators,” Nano Lett., vol. 11, no. 3, pp. 1232–1236, 2011.
[87] K. Babaei Gavan, E. W. J. M. van der Drift, W. J. Venstra, M. R. Zuiddam, and H. S. J. van der
Zant, “Effect of Undercut on the Resonant Behaviour of Silicon Nitride Cantilevers,” J. Micromech.
Microeng., vol. 19, no. 3, p. 035003, 2009.
[88] V. A. Sazonova, A Tunable Carbon Nanotube Resonator. PhD Thesis, Cornell University, 2006.
Accessed at https://hdl.handle.net/1813/3205.
[89] Y. Shibaoka, “On the Transverse Vibration of an Elliptic Plate with Clamped Edges,” J. Phys.
Soc. Japan, vol. 11, no. 7, pp. 797 – 803, 1956.
[90] V. Panchal, Y. Yang, G. Cheng, J. Hu, M. Kruskopf, C.-I. Liu, A. F. Rigosi, C. Melios, A. R. H.
Walker, D. B. Newell, et al., “Confocal Laser Scanning Microscopy: A Tool for Rapid Optical Characterization of 2D Materials,” Commun. Phys., vol. 1, p. 83, 2018.
[91] D. J. Benford, “Transition Edge Sensor Bolometers for CMB Polarimetry,” 2008.
[92] M. Kurek, M. Carnoy, P. E. Larsen, L. H. Nielsen, O. Hansen, T. Rades, S. Schmid, and A. Boisen,
“Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis,”
Angew. Chem., Int. Ed., vol. 56, no. 14, pp. 3901–3905, 2017.
[93] R. Kokkoniemi, J. P. Girard, D. Hazra, A. Laitinen, J. Govenius, R. E. Lake, I. Sallinen, V. Vesterinen, M. Partanen, J. Y. Tan, K. W. Chan, K. Y. Tan, P. Hakonen, and M. Mottonen, “Bolometer
operating at the threshold for circuit quantum electrodynamics,” Nature, vol. 586, no. 7827, pp. 47–
51, 2020.
[94] S. P. Langley, “The Bolometer and Radiant Energy,” Proceedings of the American Academy of Arts and Sciences, vol. 16, pp. 342–358, 1881.
[95] V. K. Khanna, Bolometers, Golay Cells and Pyroelectric Detectors, vol. 2, book section 1, p. 260.
IOP Publishing, 2021.
[96] Y. Zhang, Y. Watanabe, S. Hosono, N. Nagai, and K. Hirakawa, “Room Temperature, Very Sensitive Thermometer using a Doubly Clamped Microelectromechanical Beam Resonator for Bolometer Applications,” Appl. Phys. Lett., vol. 108, no. 16, 2016.
[97] S. Y. Chiang, Y. Y. Li, T. L. Shen, M. Hofmann, and Y. F. Chen, “2D Material-Enabled Nanomechanical Bolometer,” Nano Lett., vol. 20, no. 4, pp. 2326–2331, 2020.
[98] A. Blaikie, D. Miller, and B. J. Aleman, “A Fast and Sensitive Room-Temperature Graphene
Nanomechanical Bolometer,” Nat. Commun., vol. 10, no. 1, p. 4726, 2019.
[99] L. Vicarelli, A. Tredicucci, and A. Pitanti, “Micromechanical Bolometers for Subterahertz Detection at Room Temperature,” ACS Photonics, vol. 9, pp. 360–367, 2022.
[100] J. C. Esmenda, M. A. C. Aguila, J.-Y. Wang, T.-H. Lee, Y.-C. Chen, C.-Y. Yang, K.-H. Lin, K.-S.
Chang-Liao, S. Kafanov, Y. Pashkin, and C.-D. Chen, “Optoelectrical Nanomechanical Resonators
Made from Multilayered Two-Dimensional Materials,” ACS Appl. Nano Mater., vol. 5, no. 7, pp. 8875–8882, 2022.
[101] V. Pini, D. Ramos, C. M. Dominguez, J. J. Ruz, O. Malvar, P. M. Kosaka, Z. J. Davis, J. Tamayo,
and M. Calleja, “Optimization of the Readout of Microdrum Optomechanical Resonators,” Microelectron. Eng., vol. 183-184, pp. 37–41, 2017.
[102] K. Liu and J. Wu, “Mechanical Properties of Two-Dimensional Materials and Heterostructures,”
J. Mater. Res., vol. 31, no. 07, pp. 832–844, 2015.
[103] E. Hecht, Optics. Essex, England: Pearson Education Limited, 5th ed., 2017.
[104] C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical Self Cooling of a Deformable Fabry-Perot Cavity in the Classical Limit,” Phys. Rev. B., vol. 78, no. 3, p. 035309, 2008.
[105] M. Siskins, M. Lee, S. Manas-Valero, E. Coronado, Y. M. Blanter, H. S. J. van der Zant, and P. G.
Steeneken, “Magnetic and Electronic Phase Transitions Probed by Nanomechanical Resonators,”
Nat. Commun., vol. 11, no. 1, p. 2698, 2020.
[106] F. Ye, J. Lee, and P. X. Feng, “Electrothermally Tunable Graphene Resonators Operating at Very
High Temperature up to 1200 K,” Nano Lett., vol. 18, no. 3, pp. 1678–1685, 2018.
[107] A. Islam, A. van den Akker, and P. X. Feng, “Anisotropic Thermal Conductivity of Suspended
Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy,” Nano Lett.,
vol. 18, pp. 7683 – 7691, 2018.
[108] T. Larsen, S. Schmid, L. Gr¨onberg, A. O. Niskanen, J. Hassel, S. Dohn, and A. Boisen, “Ultrasensitive String-Based Temperature Sensors,” Appl. Phys. Lett., vol. 98, no. 12, p. 121901, 2011.
[109] R. De Alba, F. Massel, I. R. Storch, T. Abhilash, A. Hui, P. L. McEuen, H. G. Craighead, and
J. M. Parpia, “Tunable Phonon-Cavity Coupling in Graphene Membranes,” Nat. Nanotechnol.,
vol. 11, no. 9, p. 741, 2016.
[110] E. Ferreiro-Vila, J. Molina, L. M. Weituschat, E. Gil-Santos, P. A. Postigo, and D. Ramos, “Micro-
Kelvin Resolution at Room Temperature using Nanomechanical Thermometry,” ACS Omega, vol. 6, no. 36, pp. 23052–23058, 2021.
[111] E. Krauthammer, Theodor; Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications.
Boca Raton, USA: CRC Press, 1st ed., 2001.
[112] C. L. Wong, M. Annamalai, Z. Q. Wang, and M. Palaniapan, “Characterization of Nanomechanical Graphene Drum Structures,” J. Micromechan. Microeng., vol. 20, no. 11, p. 115029, 2010.
[113] N. Morell, S. Tepsic, A. Reserbat-Plantey, A. Cepellotti, M. Manca, I. Epstein, A. Isacsson,
X. Marie, F. Mauri, and A. Bachtold, “Optomechanical Measurement of Thermal Transport in
Two-Dimensional MoSe2 Lattices,” Nano Lett., vol. 19, pp. 3143–3150, 2019.
[114] C. C. Wu and Z. Zhong, “Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators,” Nano Lett., vol. 11, no. 4, pp. 1448–1451, 2011.
[115] X. Wang and S. Lan, “Optical Properties of Black Phosphorus,” Adv. Opt. Photonics, vol. 8, no. 4, 2016.
[116] W.-M. Zhang, H. Yan, Z.-K. Peng, and G. Meng, “Electrostatic Pull-in Instability in
MEMS/NEMS: A Review,” Sens. Actuators A: Phys., vol. 214, pp. 187–218, 2014.
[117] J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, “Chemical Vapor
Deposition Growth of Monolayer MoSe2 Nanosheets,” Nano Res., vol. 7, no. 4, pp. 511–517, 2015.
[118] F. Xia, H. Wang, and Y. Jia, “Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics,” Nat. Commun., vol. 5, p. 4458, 2014.
[119] D. C, akır, F. M. Peeters, and C. Sevik, “Mechanical and Thermal Properties of h-MX2 (M=Cr,
Mo, W; X=O, S, Se, Te) Monolayers: A Comparative Study,” Appl. Phys. Lett., vol. 104, no. 20, 2014.
[120] P. Villars and K. Cenzual, “MoSe2 Crystal Structure: Datasheet from “PAULING FILE Multinaries
Edition – 2012” in Springer Materials.” Copyright 2016 Springer-Verlag Berlin Heidelberg & Material
Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS),
Japan (https://materials.springer.com/isp/crystallographic/docs/sd_0454362).
[121] H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting Black Phosphorus: Synthesis, Transport
Properties and Electronic Applications,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2732–2743, 2015.
[122] K. Persson, “Materials Data on MoSe2 (SG:194) by Materials Project,” 11 2014. Accessed at
https://materialsproject.org/materials/mp-1634.
[123] Q. Wei and X. Peng, “Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus,”
Appl. Phys. Lett., vol. 104, no. 25, p. 251915, 2014.
[124] F. L. Givens and G. E. Fredericks, “Thermal Expansion of Nbse2 and TaS2,” J. Phys. Chem.
Solids, vol. 38, pp. 1363–1365, 1977.
[125] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. N. Lau, “Controlled Ripple
Texturing of Suspended Graphene and Ultrathin Graphite Membranes,” Nat. Nanotechnol., vol. 4,
no. 9, pp. 562–6, 2009.
[126] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior
Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008.
[127] A. Darvishzadeh, N. Alharbi, A. Mosavi, and N. E. Gorji, “Modeling the Strain Impact on Refractive Index and Optical Transmission Rate,” Physica B: Condens. Matter, vol. 543, pp. 14–17,
2018.
[128] E. J. Boyd and D. Uttamchandani, “Measurement of the Anisotropy of Young’s Modulus in Single-Crystal Silicon,” J. Microelectromech. Syst., vol. 21, no. 1, pp. 243–249, 2012.
[129] P. Furneaux, “Microwaves, Part 2: Using the Interferometer,” January 2017. Accessed at https:
//youtu.be/P03lz9VM42U?list=PLm5Zzashz3KGK29HmOh62_Z259NpiGoy0.
[130] N. Bernier, “Sonnet Simulation Tutorials: Superconducting Circuits,” November 2017. Accessed
at https://youtu.be/k8cTeBOu1BY.
[131] A. Noguchi, R. Yamazaki, M. Ataka, H. Fujita, Y. Tabuchi, T. Ishikawa, K. Usami, and Y. Nakamura, “Ground State Cooling of a Quantum Electromechanical System with a Silicon Nitride
Membrane in a 3D Loop-Gap Cavity,” New J. Phys., vol. 18, no. 10, p. 103036, 2016.
[132] V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele,
“Optomechanical Coupling between a Multilayer Graphene Mechanical Resonator and a Superconducting Microwave Cavity,” Nat. Nanotechnol., vol. 9, no. 10, pp. 820–4, 2014.
[133] X. Song, M. Oksanen, J. Li, P. J. Hakonen, and M. A. Sillanpää, “Graphene Optomechanics
Realized at Microwave Frequencies,” Phys. Rev. Lett., vol. 113, no. 2, p. 027404, 2014.
[134] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, “Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics,” J.
Appl. Phys., vol. 104, no. 11, p. 113904, 2008.
[135] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht,
L. Frunzio, M. H. Devoret, L. Glazman, and R. J. Schoelkopf, “Reaching 10 ms Single Photon Lifetimes for Superconducting Aluminum Cavities,” Appl. Phys. Lett., vol. 102, no. 19, p. 192604,
2013.
[136] M. J. Reagor, Superconducting Cavities for Circuit Quantum Electrodynamics. PhD Thesis, Yale
University, 2015. Accessed at https://rsl.yale.edu/sites/default/files/files/RSL_These
s/reagor-thesis-20151202.pdf.
[137] T. Brecht, M. Reagor, Y. Chu, W. Pfaff, C. Wang, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf,
“Demonstration of Superconducting Micromachined Cavities,” Appl. Phys. Lett., vol. 107, no. 19,
p. 192603, 2015.
[138] T. Brecht, Micromachined Quantum Circuits. PhD Thesis, Yale University, 2017. Accessed at
https://rsl.yale.edu/sites/default/files/files/RSL_Theses/reagor-thesis-20151202.
pdf.
[139] D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch, and J. G. Harris, “Multimode
Optomechanical Dynamics in a Cavity with Avoided Crossings,” Nat. Commun., vol. 6, p. 6232,
2015.
[140] N. R. Bernier, Multimode Microwave Circuit Optomechanics as a Platform to Study Coupled Quantum Harmonic Oscillators. PhD Thesis, Ecole Polytechnique Federale de Lausanne, 2019. Accessed at https://infoscience.epfl.ch/record/263668/files/EPFL_TH9217.pdf.
[141] J. Guttinger, A. Noury, P. Weber, A. M. Eriksson, C. Lagoin, J. Moser, C. Eichler, A. Wallraff,
A. Isacsson, and A. Bachtold, “Energy-Dependent Path of Dissipation in Nanomechanical
Resonators,” Nat. Nanotechnol., vol. 12, no. 7, pp. 631–636, 2017.
[142] D. Mann, “LNG Materials and Fluids,” tech. rep., National Bureau of Standards, 1977. Accessed
at https://www.nist.gov/mml/acmd/aluminum-6061-t6-uns-aa96061.
[143] G. A. Peterson, Parametric Coupling between Microwaves and Motions in Quantum Circuits. PhD Thesis, University of Colorado Boulder, 2020. Accessed at https://www.proquest.com/dissert
ations-theses/parametric-coupling-between-microwaves-motion/docview/2408279842/s
e-2.
[144] S. Kim, J. Yu, and A. M. van der Zande, “Nano-Electromechanical Drumhead Resonators from
Two-Dimensional Material Bimorphs,” Nano Lett., vol. 18, no. 11, pp. 6686–6695, 2018.
[145] A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-Directional Conversion
Between Microwave and Optical Frequencies in a Piezoelectric Optomechanical Device,” Appl.
Phys. Lett., vol. 109, no. 3, 2016.
[146] Y. Xu, W. Fu, C.-l. Zou, Z. Shen, and H. X. Tang, “High Quality Factor Surface Fabry-Perot
Cavity of Acoustic Waves,” Appl. Phys. Lett., vol. 112, no. 7, 2018.
[147] A. Rogalski and F. Sizov, “Terahertz Detectors and Focal Plane Arrays,” Opto-Electron. Rev.,
vol. 19, no. 3, pp. 346–404, 2011.
[148] C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z. Z. Luo, H. Lee, B. Ge, Y. L. Lee, X. Chen, J. Y. Lee,
O. Cojocaru-Miredin, H. Chang, J. Im, S. P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, and
I. Chung, “Polycrystalline SnSe with a Thermoelectric Figure of Merit Greater than the Single
Crystal,” Nat Mater, vol. 20, no. 10, pp. 1378–1384, 2021.
[149] Y. Li, B. He, J. P. Heremans, and J.-C. Zhao, “High-Temperature Oxidation Behavior of Thermoelectric SnSe,” J. Alloys Comp., vol. 669, pp. 224–231, 2016.
[150] F. Roeske, H. R. Shanks, and D. K. Finnemore, “Superconducting- and Normal-state Thermal
Conductivity of NbSe2,” Phys. Rev. B, vol. 16, no. 9, pp. 3929–3935, 1977.
[151] G. J. Orchin, D. De Fazio, A. Di Bernardo, M. Hamer, D. Yoon, A. R. Cadore, I. Goykhman,
K. Watanabe, T. Taniguchi, J. W. A. Robinson, R. V. Gorbachev, A. C. Ferrari, and R. H. Hadfield,
“Niobium Diselenide Superconducting Photodetectors,” Appl. Phys. Lett., vol. 114, no. 25,
p. 251103, 2019.
[152] Y. Jin, Z. Ji, F. Gu, B. Xie, R. Zhang, J. Wu, and X. Cai, “Multiple Mechanisms of the Low
Temperature Photoresponse in Niobium Diselenide,” Appl. Phys. Lett., vol. 119, no. 22, p. 221104,
2021.
[153] M. de Wit, G. Welker, K. Heeck, F. M. Buters, H. J. Eerkens, G. Koning, H. van der Meer,
D. Bouwmeester, and T. H. Oosterkamp, “Vibration Isolation with High Thermal Conductance
for a Cryogen-Free Dilution Refrigerator,” Rev. Sci. Instrum., vol. 90, no. 1, p. 015112, 2019.
[154] Y. Seis, T. Capelle, E. Langman, S. Saarinen, E. Planz, and A. Schliesser, “Ground State Cooling
of an Ultracoherent Electromechanical System,” Nat. Commun., vol. 13, no. 1, p. 1507, 2022.
[155] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak, A. Kwiatkowski, S. Geller, S. Glancy,
E. Knill, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Direct Observation of Deterministic
Macroscopic Entanglement,” Science, vol. 372, no. 6542, pp. 622–625, 2021.
[156] L. M. de Lépinay, C. F. Ockeloen-Korppi, M. J. Woolley, and M. A. Sillanpää, “Quantum
Mechanics-Free Subsystem with Mechanical Oscillators,” Science, vol. 372, no. 6542, pp. 625–629,
2021.
[157] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and
K. W. Lehnert, “Bidirectional and Efficient Conversion between Microwave and Optical Light,”
Nat. Phys., vol. 10, no. 4, pp. 321–326, 2014.
[158] A. P. Higginbotham, P. S. Burns, M. D. Urmey, R. W. Peterson, N. S. Kampel, B. M. Brubaker,
G. Smith, K. W. Lehnert, and C. A. Regal, “Harnessing Electro-Optic Correlations in an Efficient
Mechanical Converter,” Nat. Phys., vol. 14, no. 10, pp. 1038–1042, 2018.
[159] Z. Ding, J. W. Jiang, Q. X. Pei, and Y. W. Zhang, “In-Plane and Cross-Plane Thermal Conductivities
of Molybdenum Disulfide,” Nanotechnology, vol. 26, no. 6, p. 065703, 2015.
[160] X. Gu, B. Li, and R. Yang, “Layer Thickness-Dependent Phonon Properties and Thermal Conductivity
of MoS2,” J. Appl. Phys., vol. 119, no. 8, 2016.
[161] S. Sandell, J. Maire, E. Chavez-Angel, C. M. S. Torres, H. Kristiansen, Z. Zhang, and J. He,
“Enhancement of Thermal Boundary Conductance of Metal-Polymer System,” Nanomaterials,
vol. 10, no. 4, p. 670, 2020.
[162] M. Kurek, Photothermal IR Spectroscopy with Perforated Membrane Micromechanical Resonators. PhD Thesis, Technical University of Denmark, 2017. Accessed at https://orbit.dtu.dk/en/publications/photothermal-ir-spectroscopy-with-perforated-membrane-micromechan.
[163] V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, “High-field Electrical and
Thermal Transport in Suspended Graphene,” Nano Lett., vol. 13, no. 10, pp. 4581–4586, 2013.
[164] J. Barnes, R. J. Stephenson, C. N. Woodburn, S. J. O’Shea, M. E. Welland, T. Rayment, J. K.
Gimzewski, and C. Gerber, “A Femtojoule Calorimeter using Micromechanical Sensors,” Rev. Sci.
Instrum., vol. 65, no. 5, pp. 3793–3798, 1994.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *