帳號:guest(3.138.117.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳韋全
作者(外文):Chen,Wei-Chuan
論文名稱(中文):研究金原子沉積在鉛(111)上的晶格與電子結構
論文名稱(外文):Study of the lattice and electronic structures for Au deposition on Pb(111)
指導教授(中文):唐述中
指導教授(外文):Tang, Shu-Jung
口試委員(中文):鄭弘泰
鄭澄懋
林俊良
徐瑋廷
口試委員(外文):Jeng, Horng-Tay
Cheng, Cheng-Maw
Lin, Chun-Liang
Hsu, Wei-Ting
學位類別:博士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:101001801
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:94
中文關鍵詞:角解析光電子能譜鉛金合金拉什巴效應表面態
外文關鍵詞:ARPESPbAu AlloyRashba effectSurface state
相關次數:
  • 推薦推薦:0
  • 點閱點閱:451
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文使用角解析光電子能譜與低能量電子繞射研究在不同條件下沉積金原子在鉛(111)的表面。在第一部分中,在室溫下沉積金原子在鉛薄膜和鉛(111)單晶上。我們觀察到在表面形成鉛金合金,其能帶結構在表面布里淵區的中心Γ ̅點有兩個纇迪拉克錐能帶,萃取並分析出其拉什巴參數為 1.53 和 4.45電子伏特埃。因此,我們使用自旋解析光電子能譜測量鉛金合金的自旋結構,證實它是拉什巴型的自旋結構。在超導量子干涉儀的實驗中測量到超導現象,超導溫度為凱氏溫度6.38度。第一性原理計算模型採用鉛金合金上覆蓋一層具有戈薇晶格的金,由此產生的計算能帶結構與實驗測量相匹配。由金與鉛原子的彎曲起伏結構和高 Z 值引起的反轉對稱性破缺導致此顯著的拉什巴效應。
第二部分,我們在凱氏溫度40度環境下,研究鉛(111)單晶表面吸附金原子後的晶格和電子結構。結果顯示與室溫下形成鉛金合金不相同,我們發現金原子在鉛(111)表面頂部形成超薄的超結構金/鉛(111)-3×3。此外,三個表面態能帶 S1、S2 和 S3 在鄰近鉛體投影能隙在表面布里淵M ̅點為中心被誘導出來,能量分別為 -0.02、-1.05和 -2.56 電子伏特,基於第一性原理金/鉛(111)-3×3的計算證實了實驗測量的表面態能帶,其中最有趣的是 S1 和 S3 表面態。S1在費米能級附近具有平坦的色散關係,並且表現出各向異性拉什巴分裂與在以 M ̅Pb(111) 為中心的兩個對稱方向上的計算值分別為 1.0 和 3.54 電子伏特埃。而S3沿著底部體能帶邊緣的色散關係是一個表面共振態。
In the research presented in this dissertation, I investigated the lattice and electronic structures of Au atoms deposited on Pb(111) surfaces under different conditions using angle-resolved photoelectron spectroscopy (ARPES) and low-energy electron diffraction (LEED). In the first part of the dissertation, Au atoms were deposited on Pb films and Pb(111) single crystals, respectively, at room temperature (RT). We observed the formation of PbAu alloys on the surface. The measured band structures of PbAu alloy exhibit two cones-like bands observed at the surface zone center Γ with Rashba parameters 1.53 and 4.45 eVÅ. We further used spin-resolved photoelectron spectroscopy to detect the spin texture of energy band structures of PbAu alloys, confirming the observed Rashba splitting. The superconducting quantum interference device (SQUID) measurement revealed its superconductivity with a critical temperature of 6.38 K. The model of a buckled Pb2Au layer covered with an Au layer in the Kagome lattice was employed for first-principles calculation. The resulting calculated energy band structures match the measured counterparts reasonably. The broken inversion symmetry caused by the bucked configuration and high Z values of Au and Pb atoms induces such a significant Rashba effect.
For the second part of the dissertation, we investigated the lattice and electronic structures of the Pb(111) surface upon the adsorption of Au atoms at the low-temperature T = 40 K. Unlike the precedent results showing the formation of PbAu alloy layers at RT. We found that Au atoms form an ultra-thin superstructure, Au/Pb(111)-3×3, on top of the Pb(111) surface. Moreover, three surface-state bands, S1, S2, and S3, are induced within the Pb bulk projected band gap centered at the surface zone boundary at the energies of -0.02 eV, -1.05 eV, and -2.56 eV, respectively. The first-principles calculation based on Au/Pb(111)-3×3 confirms the measured surface-state bands, among which the most interesting are the S1 and S3 surface states. In particular, S1, which disperses across the Fermi level, exhibits a large anisotropic Rashba splitting with the Rashba parameter of 1.0 and 3.54 eVÅ in the two symmetry directions centered at MPb(111). S3, dispersing along the bottom bulk band edge, is a surface resonance.
Table of Contents
CHAPTER 1 INTRODUCTION ............................................................................................................... 1
CHAPTER 2 EXPERIMENTAL TECHNIQUES ........................................................................................... 4
2.1 ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY ................................................................................... 4
2.2 SPIN-RESOLVED PHOTOELETRON SPECTROSCOPY ..................................................................................... 13
2.3 LOW ENERGY ELECTRON DIFFRACTION .................................................................................................. 14
CHAPTER 3 THEORETICAL BACKGROUNDS ........................................................................................ 28
3.1 QUANTUM WELL STATE...................................................................................................................... 28
3.2 SURFACE STATE AND SURFACE RESONANCE STATE ...................................................................................... 29
3.3 RASHBA EFFECT ................................................................................................................................ 31
CHAPTER 4 THE PBAU ALLOY GROWTH ON DIFFERENT SUBSTRATES AT ROOM TEMPERATURE ...... 38
4.1 SUBSTRATES PREPARATION .................................................................................................................. 38
4.2 THE STUDY OF THE PBAU ALLOY GROWTH ON PB FILMS ............................................................................ 38
4.3 THE STUDY OF THE PBAU ALLOY GROWTH ON PB(111) BULK CRYSTAL ......................................................... 57
4.4 SUPERCONDUCTIVITY ......................................................................................................................... 58
4.5 SUMMARY ....................................................................................................................................... 59
CHAPTER 5 THE AU ULTRA-THIN FILM GROWTH ON PB(111) SURFACE AT LOW TEMPERATURES ...... 77
5.1 SUBSTRATES PREPARATION AND AU THIN FILM GROWTH ............................................................................ 77
5.2 BAND STRUCTURES OF BARE PB(111) ................................................................................................... 77
5.3 BAND STRUCTURES OF AU/PB(111)-3 ×3 ............................................................................................. 79
5.4 FIRST PRINCIPLE CALCULATION OF THE BAND STRUCTURE ........................................................................... 80
5.5 SUMMARY ....................................................................................................................................... 85
CHAPTER 6 CONCLUSION ................................................................................................................. 93
Ch1:
[1] Guo Y, Zhang Y-F, Bao X-Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, and Xue Q K, Science 306, 1915 (2004)
[2] Qi Y, Yang W, Ma X, Ji S, Fu Y, Zhang Y, Jia JF and Xue QK, J. Phys.: Condens. Matter 19, 136005 (2007)
[3] Yu Y, Tang Z, Jiang Y, and Fujita D, Surface Science 602, 3358–3363 (2008)
[4] Chen W C, Study of the interfacial effects on the growth of Pb thin films on Ge(111) by ARPES and LEED, NTHU Master Thsis (2012)
[5] Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacilé D, Bruno P, Kern K, and Grioni M, Phys. Rev. Lett. 98, 186807 (2007)
[6] Bian G, Wang X, Miller T and Chiang T C, Phys. Rev. B 88, 085427 (2013)
[7] Würde K, Mazur A, and Pollmann J, Phys. Rev. B 49, 7679 (1994)
[8] Horn K, Reihl B, Zartner A, Eastman D E, Hermann K, and Noffke J, Phys. Rev. B 30, 1711 (1984)

Ch2:
[1] Hufner S, Photoelectron Spetroscopy, 3rd edn, Springer, (2003)
[2] Somorjai G A, Chemistry in Two Dimensions: Surfaces, Cornell University Press,
Ithaca, NY, (1981)
[3] Luth H, Solid Surfaces, Interfaces and Thin Films, Springer, (2001)
[4] Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I, Kinoshita T, and Kakizaki
A, Rev. Sci. Instrum. 79, 123117 (2008)

Ch3:
[1] Chiang T C, Surf. Sci. Rep. 39, 181-235, (2000)
[2] Shockley, Phys. Rev. B 56, 317–323, (1939)
[3] Tamm I, Phys. Z. Sowjetunion., 1: 733, (1932)
[4] Luth H, Solid surfaces, interfaces and thin films, (Springer, 2001)
[5] Rashba E and Tela F T, Sov. Phys. SolidState, 21109, (1960)
[6] Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng C-X, Ehrenfreund E, and Vardeny
Z V, Sci. Adv. 3 e1700704, (2017)

Ch4:
[1] Tang S J, Lee C Y, Huang C, Chang T R, Cheng C M, Tsuei K D, Jeng H T, Yeh V and Chiang T C, Phys. Rev. Lett. 107 066802 (2011)
[2] Yu Y, Tang Z, Jiang Y and Fujita D, Surf. Sci. 602 3358 (2008)
[3] Qi Y, Yang W, Ma X, Ji S, Fu Y, Zhang Y, Jia J F and Xue Q K, J. Phys. Condens. Matter 19 136005 (2007)
[4] Pacilé D, Ast C R, Papagno M, Silva C D, Moreschini L, Falub M, Seitsonen A P and Grioni M, Phys. Rev. B 73 245429 (2006)
[5] Bian G, Wang X, Miller T and Chiang T C, Phys. Rev. B 88 085427 (2013)
[6] Gierz I, Stadtmüller B, Vuorinen J, Lindroos M, Meier F, Dil J H, Kern K and Ast C R, Phys. Rev. B 81 245430 (2010)
[7] Höpfner P, Schäfer J, Fleszar A, Meyer S, Blumenstein C, Schramm T, Heßmann M, Cui X, Patthey L, Hanke W, and Claessen R, Phys. Rev. B 83 235435 (2011)
[8] Nakatsuji K, Niikura R, Shibata Y, Yamada M, Iimori T and Komori F, Phys. Rev. B 84 035436 (2011)
[9] Upton M H, Miller T and Chiang T C 2005 , Phys. Rev. B 71 033403 (2005)
[10] Dil J H, Kim J W, Kampen T, Horn K and Ettema ARHF, Phys. Rev. B 73 161308 (2006)
[11] Zhang Y, Tan YW, Stormer H L and Kim P, Nature 438 201 (2005)
[12] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, and Shen Z X, Science 325 178 (2009)
[13] Fu L, Phys. Rev. Lett. 103 266801 (2009)
[14] Perdew J P, Burke K and Ernzerhof M, Phys. Rev. Lett. 77 3865 (1996)
[15] Blöchl P E, Phys. Rev. B 50 17953 (1994)
[16] Kresse G and Hafner J, Phys. Rev. B 48 13115 (1993)
[17] Perlitz H, Tartu RiiklikuUlik. Toim. 27 3–15, (1934)
[18] Gierz I, Stadtmüller B, Vuorinen J, Lindroos M, Meier F, Dil J H, Kern K andAst C R, Phys. Rev. B 81 245430, (2010)
[19] Lin C H, Berlijn T, Wang L, Lee C C, Yin W G and Ku W, Phys. Rev. Lett. 107 257001, (2011)
[20] Mans A, Santoso I, Huang Y, Siu W K, Tavaddod S, Arpiainen V, Lindroos M, Berger H, Strocov V N, Shi M, Patthey L, and Golden M SMans A et al, Phys. Rev. Lett. 96 107007, (2006)
[21] Gierz I, Suzuki T, Frantzeskakis E, Pons S, Ostanin S, Ernst A, Henk J, Grioni M, Kern K, and Ast C R, Phys. Rev. Lett. 103 046803, (2009)
[22] Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M , Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R , Kaneko Y, Onose Y and Tokura Y, Nature Mater. 10 521, (2011)
[23] Frantzeskakis E, Pons S and Grioni M, Phys. Rev. B 82 085440, (2010)
[24] Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacile D, Bruno P, Kern K and Grioni M, Phys. Rev. Lett. 98 186807, (2007)
[25] Ley L, Kowalczyk S P, McFeely F R and Shirley D A, Phys. Rev. B 10 4881, (1974)
[26] Moreschini L, Bendounan A, Bentmann H, Assig M, Kern K, Reinert F, Henk J, Ast C R and Grioni M, 2009 Phys. Rev. B 80 035438, (2009)
[27] Jozwiak C, Chen Y L, Fedorov A V, Analytis J G, Rotundu C R, Schmid A K, Denlinger J D, Chuang Y D, Lee D H, Fisher I R , Birgeneau R J, Shen Z X , Hussain Z, and Lanzara A, Phys. Rev. B 84, 165113 (2011)
[28] Rojas Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, and Fert A, Nat. Commun. 4 2944, (2013)
[29] Hirayama H, Aoki Y and Kato C, Phys. Rev. Lett. 107 027204, (2011)
[30] Cottin M C, Lobo-Checa J, Schaffert J, Bobisch C A, Möller R, Ortega J E and Walter A L, New J. Phys. 16 045002, (2014)
[31] He K, Takeichi Y, Ogawa M, Okuda T, Moras P, Topwal D, Harasawa A, Hirahara T, Carbone C, Kakizaki A, and Matsuda I et al, Phys. Rev. Lett. 104 156805, (2010)
[32] Bian G, Zhang L, Liu Y, Miller T and Chiang T C, Phys. Rev. Lett. 108 186403, (2012)
[33] Eom D, Qin S, Chou M Y, and Shih C K, Phys. Rev. Lett. 96, 027005 (2006)


Ch5:
[1] Wurde K, Mazur A and Pollmann J, Phys. Rev. B 49, 7679 (1994).
[2] Davison S G and Steslicka M, Basic Theory of Surface States, (Oxford University Press, 1992).
[3] Bocquet F C, Giovanelli L, Amsalem P, Petaccia L, Topwal D, Gorovikov S, Abel M, Koch N, Porte L, Goldoni A, and Themlin J-M, Phys. Rev. B 84, 241407 (2011).
[4] Kresse G and Furthmüller J, Comput. Mater. Sci. 6, 15 (1996).; Kresse G and Furthmüller J, Phys. Rev. B 54, 11169 (1996)
[5] Ceperley D M and Alder B J, Phys. Rev. Lett. 45, 566 (1980).
[6] Medeiros P V C, Stafström S, and Björk J, Phys. Rev. B 89, 041407 (2014).; Medeiros P V C, Tsirkin S S, Stafström S, and Björk J, Phys. Rev. B 91, 041116 (2015).
[7] Davison S G and Steslicka M, Basic Theory of Surface States, (Oxford University Press, 1992).
[8] Guo Y, Zhang Y-F, Bao X-Y, Han T-Z, Tang Z, Zhang L-X, Zhu W-G, Wang E G, Niu Q, Qiu Z Q, Jia J-F, Zhao Z-X, and Xue Q-K, Science 306, 1915 (2004).
[9] Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L, Malterre D, and Reinert F, Phys. Rev. B 73, 195413 (2006).
[10] LaShell S, McDougall B A, and Jensen E, Phys. Rev. Lett. 77, 3419 (1996).
[11] Dil J H, Meier F, Lobo-Checa J, Patthey L, Bihlmayer G, and Osterwalder J, Phys. Rev. Lett. 101, 266802 (2008).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *