|
Chapter 1 [1] 2017 Key World Energy Statistics, International Energy Agency, https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf. [2] J.P. Xu, Q.L. Li, H.P. Xie, T. Ni, C. Ouyang, Tech-integrated paradigm based approaches towards carbon-free hydrogen production, Renew. Sust. Energy Rev., 82 (2018) 4279-4295. [3] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Current status of hydrogen production techniques by steam reforming of ethanol: A review, Energy Fuel, 19 (2005) 2098-2106. [4] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, 40 (2015) 11094-11111. [5] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sust. Energy Rev., 67 (2017) 597-611. [6] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renew. Sust. Energy Rev., 57 (2016) 850-866. [7] M. R. De Valladares, Global trends and outlook for hydrogen, IEA Hydrogen Technology Collaboration Program (TCP), http://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen_Dec2017_WEB.aspx. [8] K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett., 1 (2010) 2655-2661. [9] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37. [10] R. Li, C. Li, Chapter one - Photocatalytic water splitting on semiconductor-based photocatalysts, Adv. in Catal., 60 (2017) 1-57. [11] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96. [12] T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives, Catal. Lett., 145 (2015) 95-108. [13] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W.Q. Song, S.L. Suib, Photocatalytic water splitting the untamed dream: a review of recent advances, Molecules, 21 (2016) 900. [14] K. Ikehata, N.J. Naghashkar, M.G. Ei-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review, Ozone-Sci. Eng., 28 (2006) 353-414. [15] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv., 2 (2012) 6380-6388. [16] Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollution Rep., 1 (2015) 167-176. [17] M. Cheng, G.M. Zeng, D.L. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review, Chem. Eng. J., 284 (2016) 582-598. [18] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small, 3 (2007) 300-304.
Chapter 2 [1] E. Marin, A. Lanzutti, F. Andreatta, M. Lekka, L. Guzman, L. Fedrizzi, Atomic layer deposition: state-of-the-art and research/industrial perspectives, Corros. Rev., 29 (2011) 191-208. [2] D. Vogler, P. Doe, ALD special report: Where's the metal, Solid State Technol., 46 (2003) 35. [3] R.L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. Appl. Phys., 97 (2005) 121301. [4] B.L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev., 104 (2004) 3893-3946. [5] L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Sol-Gel processing of silica nanoparticles and their applications, Adv. Colloid Interface, 214 (2014) 17-37. [6] G.H. Liu, K. Du, S. Haussener, K.Y. Wang, Charge transport in two-photon semiconducting structures for solar fuels, Chemsuschem, 9 (2016) 2878-2904. [7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37. [8] M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.-Condens. Mat., 24 (2012) 195503. [9] J. Augustynski, The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2, Electrochim. Acta, 38 (1993) 43-46. [10] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80. [11] Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis, Angew. Chem. Int. Edit., 54 (2015) 12868-12884. [12] W.J. Jiang, W.J. Luo, J. Wang, M. Zhang, Y.F. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride, J. Photochem. Photobiol. C, 28 (2016) 87-115. [13] J.Y. Xu, Y.X. Li, S.Q. Peng, G.X. Lu, S.B. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys., 15 (2013) 7657-7665. [14] F. Dong, Z.Y. Wang, Y.J. Sun, W.K. Ho, H.D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interf. Sci., 401 (2013) 70-79. [15] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127. [16] Q.L. Liu, Z.Y. Zhao, J.H. Yi, Effects of crystal structure and composition on the photocatalytic performance of Ta-O-N functional materials, Phys. Chem. Chem. Phys., 20 (2018) 12005-12015. [17] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422. [18] A. Krishnaprasanth, M. Seetha, Solvent free synthesis of Ta2O5 nanoparticles and their photocatalytic properties, AIP Adv., 8 (2018) 055017. [19] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301. [20] A. Di Mauro, M.E. Fragala, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: From thin films to nanostructures, Mat. Sci. Semicon. Proc., 69 (2017) 44-51. [21] J.E. Jaffe, J.A. Snyder, Z.J. Lin, A.C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Phys. Rev. B, 62 (2000) 1660-1665. [22] N. Serpone, D. Lawless, J. Disdier, J.M. Herrmann, Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids - Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations, Langmuir, 10 (1994) 643-652. [23] S.M. Chang, W.S. Liu, The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts, Appl. Catal. B-Environ., 156 (2014) 466-475. [24] W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal-ion dopants in quantum-sized TiO2 - Correlation between photoreactivity and charge-carrier recombination dynamics, J. Phys. Chem.-Us., 98 (1994) 13669-13679. [25] X.B. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials, J. Am. Chem. Soc., 130 (2008) 5018. [26] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B-Environ., 140 (2013) 559-587. [27] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 63 (2002) 1909-1920. [28] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374. [29] T. Murase, H. Irie, K. Hashimoto, Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders, J. Phys. Chem. B, 108 (2004) 15803-15807. [30] S.T. Bae, H. Shin, S. Lee, D.W. Kim, H.S. Jung, K.S. Hong, Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution, React. Kinet. Mech. Cat., 106 (2012) 67-81. [31] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331 (2011) 746-750. [32] X.D. Yan, Y. Li, T. Xia, Black titanium dioxide nanomaterials in photocatalysis, Int. J. Photoenergy, 2017 (2017) 8529851. [33] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J.W. Tang, Visible-light driven heterojunction photocatalysts for water splitting - a critical review, Energy Environ. Sci., 8 (2015) 731-759. [34] S.C. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L.Z. Wang, Recent progress on visible light responsive heterojunctions for photocatalytic applications, J. Mater. Sci. Technol., 33 (2017) 1-22. [35] Z.A. ALOthman, A review: fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874-2902. [36] Y. Wang, X.C. Wang, M. Antonietti, Y.J. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates, Chemsuschem, 3 (2010) 435-439. [37] Y.D. Xie, D. Kocaefe, C.Y. Chen, Y. Kocaefe, Review of research on template methods in preparation of nanomaterials, J. Nanomater., 2016 (2016) 2302595. [38] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability, Chem. Rev., 116 (2016) 7159-7329. [39] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503-6570.
Chapter 3 [1] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80. [2] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Q. Song and S. L. Suib, Photocatalytic water splitting - The untamed dream: A review of recent advances, Molecules, 21 (2016) 900. [3] M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96. [4] K. Maeda, M. Higashi, D. L. Lu, R. Abe and K. Domen, Efficient nonsacrificial water splitting through two-Step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc., 132 (2010) 5858-5868. [5] K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, J. Photochem. Photobiol. C, 12 (2011) 237-268. [6] X. Li, J. G. Yu, J. X. Low, Y. P. Fang, J. Xiao and X. B. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A, 3 (2015) 2485-2534. [7] T.M. Su, Q. Shao, Z.Z. Qin, Z.H. Guo, Z.L. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal., 8 (2018) 2253-2276. [8] D. J. Martin, P. J. T. Reardon, S. J. A. Moniz and J. W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc., 136 (2014) 12568-12571. [9] G. X. Zhao, X. B. Huang, F. Fina, G. Zhang and J. T. S. Irvine, Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light, Catal. Sci. Technol., 5 (2015) 3416-3422. [10] J. Q. Yan, H. Wu, H. Chen, Y. X. Zhang, F. X. Zhang and S. F. Liu, Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting, Appl. Catal. B-Environ., 191 (2016) 130-137. [11] H. Zhang, F. Liu, H. Wu, X. Cao, J. H. Sun and W. W. Lei, In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light, RSC Adv., 7 (2017) 40327-40333. [12] Q. Zhang, H. Wang, S. Chen, Y. Su and X. Quan, Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production, RSC Adv., 7 (2017) 13223-13227. [13] A. P. Singh, P. Arora, S. Basu and B. R. Mehta, Graphitic carbon nitride based hydrogen treated disordered titanium dioxide core-shell nanocatalyst for enhanced photocatalytic and photoelectrochemical performance, Int. J. Hydrogen Energy, 41 (2016) 5617-5628. [14] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong and S. P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?, Chem. Rev., 116 (2016) 7159-7329. [15] C. Pan, J. Jia, X. Y. Hu, J. Fan and E. Z. Liu, In situ construction of g-C3N4/TiO2 heterojunction films with enhanced photocatalytic activity over magnetic-driven rotating frame, Appl. Surf. Sci., 430 (2018) 283-292. [16] C. L. Wang, L. M. Hu, B. Chai, J. T. Yan and J. F. Li, Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light, Appl. Surf. Sci., 430 (2018) 243-252. [17] L. N. Ma, G. H. Wang, C. J. Jiang, H. L. Bao and Q. C. Xu, Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light, Appl. Surf. Sci., 430 (2018) 263-272. [18] S. H. Huang, C. C. Wang, S. Y. Liao, J. Y. Gan and T. P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties, Thin Solid Films, 616 (2016) 151-159. [19] K. I. Liu, C. C. Kei, M. Mishra, P. H. Chen, W. S. Liu and T. P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735. [20] K. I. Liu, C. Y. Su and T. P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374. [21] H.S. Chen, P.H. Chen, J.L. Kuo, Y.C. Hsueh, T.P. Perng, TiO2 hollow fibers with internal interconnected nanotubes prepared by atomic layer deposition for improved photocatalytic activity, RSC Adv., 4 (2014) 40482-40486. [22] C.C. Wang, Y.C. Hsueh, C.Y. Su, C.C. Kei, T.P. Perng, Deposition of uniform Pt nanoparticles with controllable size on TiO2-based nanowires by atomic layer deposition and their photocatalytic properties, Nanotechnology, 26 (2015) 254002. [23] W. Iqbal, C. Y. Dong, M. Y. Xing, X. J. Tan and J. L. Zhang, Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity, Catal. Sci. Technol., 7 (2017) 1726-1734. [24] S. C. Yan, Z. S. Li and Z. G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2009) 10397-10401. [25] J. Y. Xu, Y. X. Li, S. Q. Peng, G. X. Lu and S. B. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys., 15 (2013) 7657-7665. [26] S. W. Cao, J. X. Low, J. G. Yu and M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27 (2015) 2150-2176. [27] P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang and Y. S. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A, 3 (2015) 24237-24244. [28] D. Q. Feng, Y. H. Cheng, J. He, L. C. Zheng, D. W. Shao, W. C. Wang, W. H. Wang, F. Lu, H. Dong, H. Liu, R. K. Zheng and H. Liu, Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process, Carbon, 125 (2017) 454-463. [29] P. Niu, L. L. Zhang, G. Liu and H. M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22 (2012) 4763-4770. [30] W. J. Jiang, W. J. Luo, J. Wang, M. Zhang and Y. F. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride, J. Photochem. Photobiol. C, 28 (2016) 87-115. [31] Y. W. Zhang, J. H. Liu, G. Wu and W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300-5303. [32] S. Rajaambal, K. Sivaranjani and C. S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47. [33] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069. [34] Z. A. ALOthman, A review: Fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874-2902. [35] Q. Su, J. Sun, J. Q. Wang, Z. F. Yang, W. G. Cheng and S. J. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates, Catal. Sci. Technol., 4 (2014) 1556-1562. [36] T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. G. Yu and C. Trapalis, Tailoring the energy band gap and edges' potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal, Chem. Eng. J., 310 (2017) 571-580. [37] A. K. Chandiran, P. Comte, R. Humphry-Baker, F. Kessler, C. Y. Yi, M. K. Nazeeruddin and M. Gratzel, Evaluating the Critical Thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in dye-sensitized solar cells, Adv. Funct. Mater., 23 (2013) 2775-2781. [38] S. H. Huang, S. Y. Liao, C. C. Wang, C. C. Kei, J. Y. Gan and T. P. Perng, Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties, Nanotechnology, 27 (2016) 405702. [39] B. Lin, H. Li, H. An, W. B. Hao, J. J. Wei, Y. Z. Dai, C. S. Ma and G. D. Yang, Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well - designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution, Appl. Catal. B-Environ., 220 (2018) 542-552.
Chapter 4 [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37. [2] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422. [3] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503-6570. [4] S. Rajaambal, K. Sivaranjani, C.S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47. [5] K.I. Liu, Y.C. Hsueh, H.S. Chen, T.P. Perng, Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application, J. Mater. Chem. A, 2 (2014) 5387-5393. [6] K. An, S. Alayoglu, N. Musselwhite, K. Na, G.A. Somorjai, Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-Hexane, J. Am. Chem. Soc., 136 (2014) 6830-6833. [7] Y. Noda, B. Lee, K. Domen, J.N. Kondo, Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation, Chem. Mater., 20 (2008) 5361-5367. [8] T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H2 evolution, J. Mol. Catal. a-Chem., 235 (2005) 1-11. [9] T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Facile surfactant-aided sol-gel synthesis of mesoporous-assembled Ta2O5 nanoparticles with enhanced photocatalytic H2 production, J. Mol. Catal. A-Chem., 374 (2013) 94-101. [10] Y. Takahara, J.N. Kondo, T. Takata, D.L. Lu, K. Domen, Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition, Chem. Mater., 13 (2001) 1194-1199. [11] G.L. Guo, J.H. Huang, Preparation of mesoporous tantalum oxide and its enhanced photocatalytic activity, Mater. Lett., 65 (2011) 64-66. [12] L.M. Guo, H. Hagiwara, S. Ida, T. Daio, T. Ishihara, One-pot soft-templating method to synthesize crystalline mesoporous tantalum oxide and its photocatalytic activity for overall water splitting, ACS Appl. Mater. Inter., 5 (2013) 11080-11086. [13] A. Ovcharova, V. Vasilevsky, I. Borisov, S. Bazhenov, A. Volkov, A. Bildyukevich, V. Volkov, Polysulfone porous hollow fiber membranes for ethylene-ethane separation in gas-liquid membrane contactor, Sep. Purif. Technol., 183 (2017) 162-172. [14] C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Sep. Purif. Technol., 111 (2013) 43-71. [15] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515 [15] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater., 11 (1999) 2813-2826. [16] L.M. Guo, S. Ida, T. Daio, H. Hagiwara, T. Ishihara, In situ carbonization of a soft-template to directly synthesize crystalline mesoporous metal oxides with high surface areas, New J. Chem., 38 (2014) 5846-5855. [17] I. Rustamov, T. Farcas, F. Ahmed, F. Chan, R. LoBrutto, H.M. McNair, Y.V. Kazakevich, Geometry of chemically modified silica, J. Chromatogr. A, 913 (2001) 49-63. [18] H.C. Huang, T.E. Hsieh, Preparation and characterizations of tantalum pentoxide (Ta2O5) nanoparticles and UV-curable Ta2O5-acrylic nanocomposites, J. Appl. Polym. Sci., 117 (2010) 1252-1259. [19] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069. [20] X.Y. Chen, T. Yu, X.X. Fan, H.T. Zhang, Z.S. Li, J.H. Ye, Z.G. Zou, Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production, Appl. Surf. Sci., 253 (2007) 8500-8506. [21] B.A. Lu, X.D. Li, T.H. Wang, E.Q. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis, J. Mater. Chem. A, 1 (2013) 3900-3906.
Chapter 5 [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37. [2] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422. [3] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energy Rev., 11 (2007) 401-425. [4] S. Rajaambal, K. Sivaranjani, C.S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47. [5] T.M. Suzuki, S. Saeki, K. Sekizawa, K. Kitazumi, N. Takahashi, T. Morikawa, Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta2O5 photocathode active under visible light irradiation, Appl. Catal. B-Environ., 202 (2017) 597-604. [6] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96. [7] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W.Q. Song, S.L. Suib, Photocatalytic water splitting - The untamed dream: A review of recent advances, Molecules, 21 (2016) 900. [8] J.N. Nian, C.C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Int. J. Hydrogen Energy, 33 (2008) 2897-2903. [9] T. Morikawa, K. Kitazumi, N. Takahashi, T. Arai, T. Kajino, P-type conduction induced by N-doping in alpha-Fe2O3, Appl. Phys. Lett., 98 (2011) 242108. [10] X.M. Shi, D.L. Ma, Y. Ma, A.M. Hu, N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue, J. Photochem. Photobiol. A, 332 (2017) 487-496. [11] S.T. Bae, H. Shin, S. Lee, D.W. Kim, H.S. Jung, K.S. Hong, Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution, React. Kinet. Mech. Cat., 106 (2012) 67-81. [12] T. Murase, H. Irie, K. Hashimoto, Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders, J. Phys. Chem. B, 108 (2004) 15803-15807. [13] Y. Wang, H.Q. Lu, Y.Y. Wang, J.H. Qiu, J. Wen, K. Zhou, L. Chen, G.L. Song, J.F. Yao, Facile synthesis of TaOxNy photocatalysts with enhanced visible photocatalytic activity, RSC Adv., 6 (2016) 1860-1864. [14] S. Sato, T. Morikawa, S. Saeki, T. Kajino, T. Motohiro, Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor, Angew. Chem. Int. Edit., 49 (2010) 5101-5105. [15] T.M. Suzuki, T. Nakamura, S. Saeki, Y. Matsuoka, H. Tanaka, K. Yano, T. Kajino, T. Morikawa, Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction, J. Mater. Chem., 22 (2012) 24584-24590. [16] S. Shirai, S. Sato, T.M. Suzuki, R. Jinnouchi, N. Ohba, R. Asahi, T. Morikawa, Effects of Ta2O5 surface modification by NH3 on the electronic structure of a Ru-complex/N-Ta2O5 hybrid photocatalyst for selective CO2 reduction, J. Phys. Chem. C, 122 (2018) 1921-1929. [17] C. Wang, Q.Q. Hu, J.Q. Huang, L. Wu, Z.H. Deng, Z.G. Liu, Y. Liu, Y.G. Cao, Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film, Appl. Surf. Sci., 283 (2013) 188-192. [18] V.J. Babu, M.K. Kumar, A.S. Nair, T.L. Kheng, S.I. Allakhverdiev, S. Ramakrishna, Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures, Int. J. Hydrogen Energy, 37 (2012) 8897-8904. [19] S.U. Khan, M. Al-Shahry, W.B. Ingler, Jr., Efficient photochemical water splitting by a chemically modified N-TiO2, Science, 297 (2002) 2243-2245. [20] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374. [21] A. Dabirian, H. van’t Spijker, R. van de Krol, Wet ammonia Synthesis of Semiconducting N:Ta2O5, Ta3N5 and β-TaON Films for Photoanode Applications, Energy Procedia., 22 (2012) 15-22. [22] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515. [23] C. Joseph, P. Bourson, M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy, J. Raman Spectrosc., 43 (2012) 1146-1150. [24] E. Nurlaela, S. Ould-Chikh, M. Harb, S. del Gobbo, M. Aouine, E. Puzenat, P. Sautet, K. Domen, J.M. Basset, K. Takanabe, Critical role of the semiconductor electrolyte interface in photocatalytic performance for water-splitting reactions using Ta3N5 particles, Chem. Mater., 26 (2014) 4812-4825. [25] G. Fu, S.C. Yan, T. Yu, Z.G. Zou, Oxygen related recombination defects in Ta3N5 water splitting photoanode, Appl. Phys. Lett., 107 (2015) 171902. [26] E. Nurlaela, M. Harb, S. del Gobbo, M. Vashishta, K. Takanabe, Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5, J. Solid State Chem., 229 (2015) 219-227. [27] A. Fernandez, A. Caballero, V. Jimenez, J.C. Sanchez, A.R. GonzalezElipe, F. Alonso, J.I. Onate, The use of EXAFS spectroscopy to show the structural modifications in metals implanted with N+ ions, Surf. Coat Tech., 83 (1996) 109-114. [28] C.W. Tsai, H.M. Chen, R.S. Liu, K. Asakura, T.S. Chan, Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol, J. Phys. Chem. C, 115 (2011) 10180-10186. [29] J.C. Jan, P.D. Babu, H.M. Tsai, C.W. Pao, J.W. Chiou, S.C. Ray, K.P.K. Kumar, W.F. Pong, M.H. Tsai, C.A. Jong, T.S. Chin, Bonding properties and their relation to residual stress and refractive index of amorphous Ta(N,O) films investigated by x-ray absorption spectroscopy, Appl. Phys. Lett., 86 (2005) 161910. [30] A.O. Ibidunni, R.L. Masaitis, R.L. Opila, A.J. Davenport, H.S. Isaacs, J.A. Taylor, Characterization of the oxidation of tantalum nitride, Surf. Interface Anal., 20 (1993) 559-564. [31] H. Shin, S.Y. Park, S.T. Bae, S. Lee, K.S. Hong, H.S. Jung, Defect energy levels in Ta2O5 and nitrogen-doped Ta2O5, J. Appl. Phys., 104 (2008) 116108. [32] T. Morikawa, S. Saeki, T. Suzuki, T. Kajino, T. Motohiro, Dual functional modification by N doping of Ta2O5: P-type conduction in visible-light-activated N-doped Ta2O5, Appl. Phys. Lett., 96 (2010) 142111. [33] Q.S. Gao, S.N. Wang, Y.C. Ma, Y. Tang, C. Giordano, M. Antonietti, SiO2-surface-assisted controllable synthesis of TaON and Ta3N5 nanoparticles for alkene epoxidation, Angew. Chem. Int. Edit., 51 (2012) 961-965. [34] R. Jinnouchi, A.V. Akimov, S. Shirai, R. Asahi, O.V. Prezhdo, Upward shift in conduction band of Ta2O5 due to surface dipoles induced by N-doping, J. Phys. Chem. C, 119 (2015) 26925-26936.
Chapter 6 [1] F. Rubio, J. Denis, J.M. Albella, J.M. Martinezduart, Sputtered Ta2O5 antireflection coatings for silicon solar-cells, Thin Solid Films, 90 (1982) 405-408. [2] C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications, Mat. Sci. Eng. R., 22 (1998) 269-322. [3] I. Porqueras, J. Marti, E. Bertran, Optical and electrical characterisation of Ta2O5 thin films for ionic conduction applications, Thin Solid Films, 343 (1999) 449-452. [4] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422. [5] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B-Environ., 140 (2013) 559-587. [6] Z.K. Zheng, B.B. Huang, J.B. Lu, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity, Chem. Commun., 48 (2012) 5733-5735. [7] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331 (2011) 746-750. [8] X.B. Chen, L. Liu, F.Q. Huang, Black titanium dioxide (TiO2) nanomaterials, Chem. Soc. Rev., 44 (2015) 1861-1885. [9] Y. Liu, L.H. Tian, X.Y. Tan, X. Li, X.B. Chen, Synthesis, properties, and applications of black titanium dioxide nanomaterials, Sci. Bull., 62 (2017) 431-441. [10] T. Xia, Y.L. Zhang, J. Murowchick, X.B. Chen, Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities, Catal. Today, 225 (2014) 2-9. [11] Y.C. Ling, G.M. Wang, J. Reddy, C.C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Edit., 51 (2012) 4074-4079. [12] T. Onozato, T. Katase, A. Yamamoto, S. Katayama, K. Matsushima, N. Itagaki, H. Yoshida, H. Ohta, Optoelectronic properties of valence-state-controlled amorphous niobium oxide, J. Phys.-Condens. Mat., 28 (2016) 255001. [13] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127. [14] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515. [15] C. Joseph, P. Bourson, M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy, J. Raman Spectrosc., 43 (2012) 1146-1150. [16] T. Tsuchiya, H. Imai, S. Miyoshi, P.A. Glans, J.H. Guo, S. Yamaguchi, X-Ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry, Phys. Chem. Chem. Phys., 13 (2011) 17013-17018. [17] R.S. Devan, C.L. Lin, S.Y. Gao, C.L. Cheng, Y. Liou, Y.R. Ma, Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks, Phys. Chem. Chem. Phys., 13 (2011) 13441-13446. [18] P.S. Dobal, R.S. Katiyar, Y. Jiang, R. Guo, A.S. Bhalla, Raman scattering study of a phase transition in tantalum pentoxide, J. Raman Spectrosc., 31 (2000) 1061-1065. [19] R.S. Devan, C.L. Lin, J.H. Lin, T.K. Wen, R.A. Patil, Y.R. Ma, Effective photoluminescence in a large-area array of Ta2O5 nanodots, J. Nanosci. Nanotechno., 13 (2013) 1001-1005. [20] G. Fu, S.C. Yan, T. Yu, Z.G. Zou, Oxygen related recombination defects in Ta3N5 water splitting photoanode, Appl. Phys. Lett., 107 (2015) 171902. [21] L.E. Gomes, M.F. da Silva, R.V. Goncalves, G. Machado, G.B. Alcantara, A.R.L. Caires, H. Wender, Synthesis and visible-light-driven photocatalytic activity of Ta4+ self-doped gray Ta2O5 nanoparticles, J. Phys. Chem. C, 122 (2018) 6014-6025.
Chapter 7 [1] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96. [2] A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup, Inter. J. Hydrogen Energy, 32 (2007) 2664-2672. [3] G.X. Cao, Y.G. Li, Q.H. Zhang, H.Z. Wang, Hierarchical Porous, Self-supporting La- and F-codoped TiO2 with high durability for continuous-flow visible light photocatalysis, J. Amer. Ceram. Soc., 93 (2010) 1252-1255. [4] B.A. Lu, X.D. Li, T.H. Wang, E.Q. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis, J. Mater. Chem. A, 1 (2013) 3900-3906. [5] T.J. Kemp, R.A. McIntyre, Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride), Polym. Degrad. Stab., 91 (2006) 165-194. [6] P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal. B-Envir., 73 (2007) 51-59. [7] K.M. Reddy, B. Baruwati, M. Jayalakshmi, M.M. Rao, S.V. Manorama, S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study, J. Solid State Chem., 178 (2005) 3352-3358. [8] H. Wang, J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J. Phy.-Condens. Matter, 18 (2006) 421-434. [9] C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Separ. Purif. Technol., 111 (2013) 43-71. [10] K.I. Liu, C.C. Kei, M. Mishra, P.H. Chen, W.S. Liu, T.P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735. [11] S.H. Huang, C.C. Wang, S.Y. Liao, J.Y. Gan, T.P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties, Thin Solid Films, 616 (2016) 151-159. [12] Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition, J. Phys. Chem. C, 115 (2011) 9498-9502. [13] W.T. Chang, Y.C. Hsueh, S.H. Huang, K.I. Liu, C.C. Kei, T.P. Perng, Fabrication of Ag-loaded multi-walled TiO2 nanotube arrays and their photocatalytic activity, J. Mater. Chem. A, 1 (2013) 1987-1991. [14] C.C. Wang, C.C. Kei, Y. Tao, T.P. Perng, Photoluminescence of GaQ3-Al2O3 core-shell nanowires, Electrochem. Solid-State Lett., 12 (2009) K49-K52. [15] C.Y. Su, T.H. Yang, V. Gurylev, S.H. Huang, J.M. Wu, T.P. Perng, Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis, Nanotechnology, 26 (2015). [16] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374. [17] Y.J. Liu, C.X. Xu, Z. Zhu, J.F. Lu, A.G. Manohari, Z.L. Shi, Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and bacteriostasis, Mater. Res. Bull., 98 (2018) 64-69. [18] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069. [19] V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys., 83 (1998) 5447-5451.
Chapter 8 [1] H. Zhang, F. Liu, H. Wu, X. Cao, J. H. Sun and W. W. Lei, In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light, RSC Adv., 7 (2017) 40327-40333. [2] J. Wang, J. Huang, H. Xie and A. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method, Int. J. Hydrogen Energy, 39 (2014) 6354-6363. [3] Q. Zhang, H. Wang, S. Chen, Y. Su and X. Quan, Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production, RSC Adv. 7 (2017) 13223-13227. [4] H. Yan and H. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd. 509 (2011) L26-L29. [5] Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang and Z. Zhao, One-step synthesis of nanostructured g-C3N4-TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Appli. Catal. B: Environ., 230 (2018)260-268. [6] T.M. Suzuki, T. Nakamura, S. Saeki, Y. Matsuoka, H. Tanaka, K. Yano, T. Kajino, T. Morikawa, Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction, J. Mater. Chem., 22 (2012) 24584-24590. [7] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127. [8] T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Facile surfactant-aided sol-gel synthesis of mesoporous-assembled Ta2O5 nanoparticles with enhanced photocatalytic H2 production, J. Mol. Catal. A-Chem., 374 (2013) 94-101.
|