帳號:guest(13.58.205.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉維斯
作者(外文):Liu, Wei-Szu
論文名稱(中文):利用原子沉積及化學法製備光觸媒及其應用於光催降解與光催產氫之研究
論文名稱(外文):Fabrication of Photocatalysts by Atomic Layer Deposition and Chemical Methods for Photocatalytic Degradation and Hydrogen Evolution
指導教授(中文):彭宗平
指導教授(外文):Perng, Tsong-Pyng
口試委員(中文):葉君棣
張淑閔
王冠文
陳學仕
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101000811
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:157
中文關鍵詞:光觸媒原子沉積法五氧化二鉭石墨相氮化碳
外文關鍵詞:PhotocatalystALDTa2O5g-C3N4
相關次數:
  • 推薦推薦:0
  • 點閱點閱:235
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文係研究光觸媒材料的製備,且根據其光照產生電子電洞可用以進行氧化還原反應的特性,將其應用於光催產氫(photocatalytic H2 evolution )及光催有機物降解 (photocatalytic organic degradation)。本論文根據不同的材料系統區分為三個部分。
第一個部分是研究如何有效提升石墨相氮化碳(g-C3N4)的光催產氫率。g-C3N4為少見的無機光觸媒材料。由於其製備簡單、地球含量多、二維(2D)結構等優點,近年來備受矚目。然而,其快速的電子電洞對的再結合率導致極低的光催效率,所以本論文主要從三個方向進行改質,包含多孔結構、異質接面、助催化劑沉積。首先,多孔的結構可藉由增加反應面積、提高光的吸收,以及抑制電子電洞對的結合來提升光催效率,所以利用氯化銨於高熱會產生大量氣體的方式,在熱縮聚合成過程中,於g-C3N4片狀物上形成大量的孔洞,進而提升48%的太陽光產氫率。而原子沉積法(atomic layer deposition, ALD)是一項薄膜技術,可以將前驅物傳輸至複雜奈米結構內,在其表面形成薄膜,且可藉由ALD層數控制其薄膜厚度。所以本論文採用ALD系統,均勻成長TiO2薄膜於多孔g-C3N4片狀基板上,藉此形成2D/2D異質接面。由於大面積的接觸,所以2D/2D異質接面可以有效傳輸電子,進而提升電子電洞對的分離率,而且,適當的 TiO2薄膜厚度(~ 13 nm, 180 層數之TiO2)可提供更有效電子傳輸。另外,以ALD製程將白金奈米顆粒沉積於TiO2@P-g-C3N4複合材料上,會加快光電子遷移至表面的速率,進而提升光催產氫率。綜合三個方向的改質後,可以大幅度的提升g-C3N4奈米片的太陽光產氫率約1500倍。
第二部分則是研究五氧化二鉭(Ta2O5)材料。因為其傳導帶的最小值(conduction band minimum, CBM)高於TiO2,理論上其產氫量應該大於TiO2;然而其能帶遠大於TiO2,不利於光催產氫。所以第二部分區分為兩個主軸。第一主軸為確認Ta2O5是否在UV光的照射下,產出比TiO2還要高的產氫量。由光催產氫結果發現,在UV光的照射下,Ta2O5微米顆粒(12.4 m2/g)的光催產氫率相似於TiO2奈米顆粒(P25) (39.0 m2/g),顯示在單位面積上的產氫率,Ta2O5遠大於TiO2。所以為了進一步提升其光催效率,本論文致力於合成出Ta2O5中空纖維內含中孔互連奈米管,實驗結果發現藉由中孔奈米管的結構,其Ta2O5的產氫率比P25高出2.1倍。然而,Ta2O5的能隙太大,不利於光催產氫,所以第二主軸為研究如何在降低其能帶之情況下,同時提高其光催產氫率。本論文利用氮摻雜(N-Ta2O5)及真空退火處理(獲取灰色Ta2O5)降低電子電洞的再結合速率,提高光催產氫率。
利用不同的退火溫度對商用的Ta2O5進行氮化(nitridation)合成氮摻雜的Ta2O5 (N-Ta2O5)。隨著溫度的升高,氮摻雜的濃度也隨之提高,其中摻雜的氮離子會與Ta2O5的氧離子置換,且置換反應主要是發生在Ta2O5表面。而氮摻雜會在Ta2O5內會產生一些空缺,造成能隙窄化,進而提升Ta2O5在太陽光照射下的產氫能力。然而,當表面形成Ta3N5結晶相時,因為電子電洞對容易在此處結合,光催產氫率因而下降。所以,相較於Ta2O5在太陽光照射下無H2產出,在沒有Ta3N5存在的情況下,大量的氮摻雜可以有效提升Ta2O5的太陽光產氫率。
利用後段真空退火,除了使無晶相的Ta2O5結晶化外,還能於表面形成大量的氧空缺,形成灰色的Ta2O5。相比之下,在空氣下退火則會形成白色的Ta2O5。表面氧空缺的存在,除了會在Ta2O5的表面形成無晶相外殼外,同時還會降低電子電洞對再結合率,且增強可見光的吸收能力。因此,灰色的Ta2O5光催產氫率比白色Ta2O5高出48%。
總之,Ta2O5的產氫量高於TiO2,且改質後的Ta2O5能進一步提升光催產氫率,所以Ta2O5可藉由ALD技術,取代TiO2與P-g-C3N4結合,形成另一個有潛力的光產氫複合材料。
第三個部分則是架設連續流的光降解系統。由於現在供水壓力的升高,其中之一的解決方案,就是利用連續流光催系統大量純化雨水成中水,供小家庭使用。利用ALD能夠準確控制鍍膜材料的厚度與均一性的特性,將氧化鋅(ZnO)薄膜鍍在多孔的聚砜中空纖維(PSF hollow fiber)上,製作固定床的奈米反應器。此外,利用光還原法鍍奈米銀顆粒在上面,除了抗菌外還可以提升25%的效率。與此同時,藉由光催染料降解實驗來評估ZnO@PSF奈米反應器應用在水淨化系統的可行性。
This dissertation studies the fabrication and the characteristics of several photocatalysts which are applied to photocatalytic H2 evolution and photocatalytic organic degradation. According to different material systems, this dissertation is divided into three parts.
The first part is to study the improvement of photocatalytic H2 production rate by g-C3N4. g-C3N4, a metal-free photocatalyst, has become a popular material because of several advantages, such as easy fabrication, abundance, and 2D structure. However, it exhibits poor photocatalytic efficiency due to its fast recombination of charge carriers. Thus, there are three directions for modification of g-C3N4, including construction of heterojunction, formation of porous structure, and deposition of co-catalyst. First, because of the addition of NH4Cl, numerous pores were formed in P-g-C3N4 sheets by gas release during the thermal treatment. This would enlarge specific surface, trap more light, and reduce recombination rate of charge carriers, resulting in higher photocatalytic efficiency. Atomic layer deposition (ALD) is a thin film process in which the precursors can pass through the complicate nanostructure of substrate and form thin film on it. In addition, the thickness of thin film can be controlled by the cycle number. Second, with porous g-C3N4 (P-g-C3N4) sheet as a substrate to deposit TiO2 by ALD, it resulted in the formation of a 2D/2D heterostructure. It exhibited fast transfer of electrons due to interface contact, leading to higher separation rate of charge carriers. In addition, a suitable thickness (~13 nm,180 ALD cycles of TiO2) provided more efficient transport of electrons. Finally, platinum (Pt) nanoparticles were deposited on TiO2@P-g-C3N4 by ALD as a co-catalyst to enhance the migration of photoelectrons to surface, leading to even higher H2 generation rate. The synergy of the three modifications could greatly enhance the photocatalytic H2 evolution of g-C3N4 by about 1500 times.
The second part is modification of Ta2O5. Because its conduction band minimum (CBM) is higher than that of TiO2, Ta2O5 theoretically is expected to generate more H2. However, its bandgap is much larger than that of TiO2, which is a disadvantage for photocatalysis. Thus, this part is separated into two directions. The first part is to confirm whether Ta2O5 can indeed exhibit higher H2 generate rate than TiO2 under UV light illumination. Based on the photocatalytic test, Ta2O5 microparticles showed similar photocatalytic H2 generation rate to TiO2 nanoparticles (P25), which implies that the H2 generation rate per unit area of Ta2O5 is much higher than that of P25. In order to further improve the efficiency, Ta2O5 hollow fibers with internal interconnected mesoporous nanotubes were fabricated, and its photocatalytic H2 generation rate was formed to be 2.1 times higher than that of P25 due to the existence of mesopores. Although Ta2O5 shows better performance than TiO2 under UV light irradiation, its bandgap is too big for high photocatalysis efficiency. Thus, the second part is to study how to achieve bandgap narrowing and higher photocatalytic H2 evolution rate at the same time. In this study, nitrogen doping and vacuum annealing methods were adopted to modify Ta2O5, both of which could enhance the photocatalytic H2 generation rate by lowering the recombination rate of charge carriers.
N-Ta2O5 powder was prepared by annealing commercial Ta2O5 powder in NH3 at different temperatures. With increasing the nitridation temperature, the amount of nitrogen doping increased. During the nitridation process, some oxygen was substituted by nitrogen, and the substitution occurred preferentially on the surface of Ta2O5. Nitrogen doping in Ta2O5 induced formation of vacancies and narrowing of band gap, resulting in higher hydrogen production from water splitting than pure Ta2O5 under solar light illumination. However, if Ta3N5 forms, it can act as recombination center of charge carriers that leads to lower photocatalytic activity. Therefore, compared to pure Ta2O5 which did not produce H2 under solar light irradiation, N-Ta2O5 treated at 650 oC showed the highest H2 evolution because of more nitrogen doping and no presence of Ta3N5.
Post-vacuum annealing caused not only crystallization of amorphous Ta2O5 but also formation of surface oxygen vacancies, leading to formation of gray Ta2O5. White Ta2O5, formed by annealing in air, was used as a control specimen. The existence of surface oxygen vacancies resulted in formation of a disordered shell, lower recombination rate of charge carriers, and more absorption of visible light. Thus, gray Ta2O5 exhibited 48% higher photocatalytic hydrogen rate than white one.
In summary, pure Ta2O5 exhibited better photocatalytic performance than TiO2, while the modified Ta2O5 could generate more amount of H2 than pure Ta2O5. It is expected, therefore, that using Ta2O5 to replace TiO2 for deposition on P-g-C3N4 by ALD would be another potential composite for improved photocatalytic H2 production.
The third part is to fabricate a continuous-flow photocatalysis system. Because the stress of water supply has become higher, one of the solutions is to purify a large amount of rainwater to recycled water by continuous-flow photocatalysis in each home. Hence, ZnO was deposited on porous polysulfone (PSF) hollow fiber by ALD to construct a fixed-bed nanoreactor because ALD can provide good conformity and precise thickness-control of the film. In addition, Ag nanoparticles, loaded on ZnO@PSF by photoreduction, showed 25% higher efficiency. In the meanwhile, photocatalytic dye-degradation experiment was conducted to evaluate the feasibility of the design of nanoreactor using ZnO@PSF fibers as the photocatalyst for rainwater purification.
Content Index

摘要 ⅰ
Abstract ⅳ
誌謝 ⅷ

Chapter 1 Introduction
1-1 Hydrogen energy 3
1-2 Hydrogen generation methods 3
1-3 Photocatalytic water splitting 7
1-4 Waste water treatment 7
1-5 Photocatalysis 11
1-6 Motivation 11
References 17
Chapter 2 Literature Review
2-1 Synthesis methods of photocatalysts 19
2-1-1 Atomic layer deposition (ALD) 19
2-1-2 Sol-gel 23
2-2 Properties of photocatalytsts 23
2-2-1 Titanium oxide (TiO2) 25
2-2-2 Carbon nitride (g-C3N4) 25
2-2-3 Tantalum oxide (Ta2O5) 28
2-2-4 Znic oxide (ZnO) 32
2-3 Improvement of photocatalytic activity 32
2-3-1 Doping 32
2-3-2 Coupling of photocatalysts 36
2-3-3 Porous structure 40
References 47
Chapter 3 Fabrication of TiO2 on Porous g-C3N4 by ALD for Improved Solar-driven H2 Evolution
Abstract 52
3-1 Introduction 52
3-2 Experimental 53
3-3 Results and Discussion 56
3-4 Conclusion 76
References 78
Chapter 4 Porous Ta2O5 Hollow Fibers with Internal 3D Interconnected Nanotubes Synthesized by Template-assisted Sol-gel for Enhanced Photochemical H2 Evolution
Abstract 83
4-1 Introduction 83
4-2 Experimental 84
4-3 Results and Discussion 86
4-4 Conclusion 93
References 97
Chapter 5 Nitrogen Doping in Ta2O5 and Its Implication for Photocatalytic H2 Production
Abstract 100
5-1 Introduction 100
5-2 Experimental 101
5-3 Results and Discussion 103
5-4 Conclusion 116
References 117
Chapter 6 Formation of Gray Ta2O5 and Its Enhanced Photocatalytic Hydrogen Generation Activity
Abstract 121
6-1 Introduction 121
6-2 Experimental 122
6-3 Results and Discussion 123
6-4 Conclusion 131
References 132
Chapter 7 Fabrication of Porous Ag-loaded ZnO@PSF Hollow Fibers for Continuous-flow Photocatalysis
7-1 Introduction 135
7-2 Experimental 136
7-3 Results and Discussion 138
7-4 Conclusion 145
References 146
Chapter 8 Conclusions 149
Chapter 9 Suggested Future Work 157

Chapter 1
[1] 2017 Key World Energy Statistics, International Energy Agency, https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf.
[2] J.P. Xu, Q.L. Li, H.P. Xie, T. Ni, C. Ouyang, Tech-integrated paradigm based approaches towards carbon-free hydrogen production, Renew. Sust. Energy Rev., 82 (2018) 4279-4295.
[3] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Current status of hydrogen production techniques by steam reforming of ethanol: A review, Energy Fuel, 19 (2005) 2098-2106.
[4] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, 40 (2015) 11094-11111.
[5] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sust. Energy Rev., 67 (2017) 597-611.
[6] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renew. Sust. Energy Rev., 57 (2016) 850-866.
[7] M. R. De Valladares, Global trends and outlook for hydrogen, IEA Hydrogen Technology Collaboration Program (TCP), http://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen_Dec2017_WEB.aspx.
[8] K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges, J. Phys. Chem. Lett., 1 (2010) 2655-2661.
[9] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37.
[10] R. Li, C. Li, Chapter one - Photocatalytic water splitting on semiconductor-based photocatalysts, Adv. in Catal., 60 (2017) 1-57.
[11] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
[12] T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives, Catal. Lett., 145 (2015) 95-108.
[13] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W.Q. Song, S.L. Suib, Photocatalytic water splitting the untamed dream: a review of recent advances, Molecules, 21 (2016) 900.
[14] K. Ikehata, N.J. Naghashkar, M.G. Ei-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review, Ozone-Sci. Eng., 28 (2006) 353-414.
[15] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv., 2 (2012) 6380-6388.
[16] Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollution Rep., 1 (2015) 167-176.
[17] M. Cheng, G.M. Zeng, D.L. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review, Chem. Eng. J., 284 (2016) 582-598.
[18] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small, 3 (2007) 300-304.

Chapter 2
[1] E. Marin, A. Lanzutti, F. Andreatta, M. Lekka, L. Guzman, L. Fedrizzi, Atomic layer deposition: state-of-the-art and research/industrial perspectives, Corros. Rev., 29 (2011) 191-208.
[2] D. Vogler, P. Doe, ALD special report: Where's the metal, Solid State Technol., 46 (2003) 35.
[3] R.L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. Appl. Phys., 97 (2005) 121301.
[4] B.L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev., 104 (2004) 3893-3946.
[5] L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Sol-Gel processing of silica nanoparticles and their applications, Adv. Colloid Interface, 214 (2014) 17-37.
[6] G.H. Liu, K. Du, S. Haussener, K.Y. Wang, Charge transport in two-photon semiconducting structures for solar fuels, Chemsuschem, 9 (2016) 2878-2904.
[7] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37.
[8] M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.-Condens. Mat., 24 (2012) 195503.
[9] J. Augustynski, The role of the surface intermediates in the photoelectrochemical behavior of anatase and rutile TiO2, Electrochim. Acta, 38 (1993) 43-46.
[10] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80.
[11] Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis, Angew. Chem. Int. Edit., 54 (2015) 12868-12884.
[12] W.J. Jiang, W.J. Luo, J. Wang, M. Zhang, Y.F. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride, J. Photochem. Photobiol. C, 28 (2016) 87-115.
[13] J.Y. Xu, Y.X. Li, S.Q. Peng, G.X. Lu, S.B. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys., 15 (2013) 7657-7665.
[14] F. Dong, Z.Y. Wang, Y.J. Sun, W.K. Ho, H.D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interf. Sci., 401 (2013) 70-79.
[15] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127.
[16] Q.L. Liu, Z.Y. Zhao, J.H. Yi, Effects of crystal structure and composition on the photocatalytic performance of Ta-O-N functional materials, Phys. Chem. Chem. Phys., 20 (2018) 12005-12015.
[17] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422.
[18] A. Krishnaprasanth, M. Seetha, Solvent free synthesis of Ta2O5 nanoparticles and their photocatalytic properties, AIP Adv., 8 (2018) 055017.
[19] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 041301.
[20] A. Di Mauro, M.E. Fragala, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: From thin films to nanostructures, Mat. Sci. Semicon. Proc., 69 (2017) 44-51.
[21] J.E. Jaffe, J.A. Snyder, Z.J. Lin, A.C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Phys. Rev. B, 62 (2000) 1660-1665.
[22] N. Serpone, D. Lawless, J. Disdier, J.M. Herrmann, Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids - Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations, Langmuir, 10 (1994) 643-652.
[23] S.M. Chang, W.S. Liu, The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts, Appl. Catal. B-Environ., 156 (2014) 466-475.
[24] W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal-ion dopants in quantum-sized TiO2 - Correlation between photoreactivity and charge-carrier recombination dynamics, J. Phys. Chem.-Us., 98 (1994) 13669-13679.
[25] X.B. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials, J. Am. Chem. Soc., 130 (2008) 5018.
[26] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B-Environ., 140 (2013) 559-587.
[27] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 63 (2002) 1909-1920.
[28] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374.
[29] T. Murase, H. Irie, K. Hashimoto, Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders, J. Phys. Chem. B, 108 (2004) 15803-15807.
[30] S.T. Bae, H. Shin, S. Lee, D.W. Kim, H.S. Jung, K.S. Hong, Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution, React. Kinet. Mech. Cat., 106 (2012) 67-81.
[31] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331 (2011) 746-750.
[32] X.D. Yan, Y. Li, T. Xia, Black titanium dioxide nanomaterials in photocatalysis, Int. J. Photoenergy, 2017 (2017) 8529851.
[33] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J.W. Tang, Visible-light driven heterojunction photocatalysts for water splitting - a critical review, Energy Environ. Sci., 8 (2015) 731-759.
[34] S.C. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L.Z. Wang, Recent progress on visible light responsive heterojunctions for photocatalytic applications, J. Mater. Sci. Technol., 33 (2017) 1-22.
[35] Z.A. ALOthman, A review: fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874-2902.
[36] Y. Wang, X.C. Wang, M. Antonietti, Y.J. Zhang, Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates, Chemsuschem, 3 (2010) 435-439.
[37] Y.D. Xie, D. Kocaefe, C.Y. Chen, Y. Kocaefe, Review of research on template methods in preparation of nanomaterials, J. Nanomater., 2016 (2016) 2302595.
[38] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability, Chem. Rev., 116 (2016) 7159-7329.
[39] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503-6570.

Chapter 3
[1] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76-80.
[2] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Q. Song and S. L. Suib, Photocatalytic water splitting - The untamed dream: A review of recent advances, Molecules, 21 (2016) 900.
[3] M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
[4] K. Maeda, M. Higashi, D. L. Lu, R. Abe and K. Domen, Efficient nonsacrificial water splitting through two-Step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc., 132 (2010) 5858-5868.
[5] K. Maeda, Photocatalytic water splitting using semiconductor particles: History and recent developments, J. Photochem. Photobiol. C, 12 (2011) 237-268.
[6] X. Li, J. G. Yu, J. X. Low, Y. P. Fang, J. Xiao and X. B. Chen, Engineering heterogeneous semiconductors for solar water splitting, J. Mater. Chem. A, 3 (2015) 2485-2534.
[7] T.M. Su, Q. Shao, Z.Z. Qin, Z.H. Guo, Z.L. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal., 8 (2018) 2253-2276.
[8] D. J. Martin, P. J. T. Reardon, S. J. A. Moniz and J. W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc., 136 (2014) 12568-12571.
[9] G. X. Zhao, X. B. Huang, F. Fina, G. Zhang and J. T. S. Irvine, Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light, Catal. Sci. Technol., 5 (2015) 3416-3422.
[10] J. Q. Yan, H. Wu, H. Chen, Y. X. Zhang, F. X. Zhang and S. F. Liu, Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting, Appl. Catal. B-Environ., 191 (2016) 130-137.
[11] H. Zhang, F. Liu, H. Wu, X. Cao, J. H. Sun and W. W. Lei, In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light, RSC Adv., 7 (2017) 40327-40333.
[12] Q. Zhang, H. Wang, S. Chen, Y. Su and X. Quan, Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production, RSC Adv., 7 (2017) 13223-13227.
[13] A. P. Singh, P. Arora, S. Basu and B. R. Mehta, Graphitic carbon nitride based hydrogen treated disordered titanium dioxide core-shell nanocatalyst for enhanced photocatalytic and photoelectrochemical performance, Int. J. Hydrogen Energy, 41 (2016) 5617-5628.
[14] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong and S. P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?, Chem. Rev., 116 (2016) 7159-7329.
[15] C. Pan, J. Jia, X. Y. Hu, J. Fan and E. Z. Liu, In situ construction of g-C3N4/TiO2 heterojunction films with enhanced photocatalytic activity over magnetic-driven rotating frame, Appl. Surf. Sci., 430 (2018) 283-292.
[16] C. L. Wang, L. M. Hu, B. Chai, J. T. Yan and J. F. Li, Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light, Appl. Surf. Sci., 430 (2018) 243-252.
[17] L. N. Ma, G. H. Wang, C. J. Jiang, H. L. Bao and Q. C. Xu, Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light, Appl. Surf. Sci., 430 (2018) 263-272.
[18] S. H. Huang, C. C. Wang, S. Y. Liao, J. Y. Gan and T. P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties, Thin Solid Films, 616 (2016) 151-159.
[19] K. I. Liu, C. C. Kei, M. Mishra, P. H. Chen, W. S. Liu and T. P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735.
[20] K. I. Liu, C. Y. Su and T. P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374.
[21] H.S. Chen, P.H. Chen, J.L. Kuo, Y.C. Hsueh, T.P. Perng, TiO2 hollow fibers with internal interconnected nanotubes prepared by atomic layer deposition for improved photocatalytic activity, RSC Adv., 4 (2014) 40482-40486.
[22] C.C. Wang, Y.C. Hsueh, C.Y. Su, C.C. Kei, T.P. Perng, Deposition of uniform Pt nanoparticles with controllable size on TiO2-based nanowires by atomic layer deposition and their photocatalytic properties, Nanotechnology, 26 (2015) 254002.
[23] W. Iqbal, C. Y. Dong, M. Y. Xing, X. J. Tan and J. L. Zhang, Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity, Catal. Sci. Technol., 7 (2017) 1726-1734.
[24] S. C. Yan, Z. S. Li and Z. G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 25 (2009) 10397-10401.
[25] J. Y. Xu, Y. X. Li, S. Q. Peng, G. X. Lu and S. B. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys., 15 (2013) 7657-7665.
[26] S. W. Cao, J. X. Low, J. G. Yu and M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27 (2015) 2150-2176.
[27] P. X. Qiu, H. Chen, C. M. Xu, N. Zhou, F. Jiang, X. Wang and Y. S. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A, 3 (2015) 24237-24244.
[28] D. Q. Feng, Y. H. Cheng, J. He, L. C. Zheng, D. W. Shao, W. C. Wang, W. H. Wang, F. Lu, H. Dong, H. Liu, R. K. Zheng and H. Liu, Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process, Carbon, 125 (2017) 454-463.
[29] P. Niu, L. L. Zhang, G. Liu and H. M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22 (2012) 4763-4770.
[30] W. J. Jiang, W. J. Luo, J. Wang, M. Zhang and Y. F. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride, J. Photochem. Photobiol. C, 28 (2016) 87-115.
[31] Y. W. Zhang, J. H. Liu, G. Wu and W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300-5303.
[32] S. Rajaambal, K. Sivaranjani and C. S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47.
[33] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
[34] Z. A. ALOthman, A review: Fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874-2902.
[35] Q. Su, J. Sun, J. Q. Wang, Z. F. Yang, W. G. Cheng and S. J. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates, Catal. Sci. Technol., 4 (2014) 1556-1562.
[36] T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J. G. Yu and C. Trapalis, Tailoring the energy band gap and edges' potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal, Chem. Eng. J., 310 (2017) 571-580.
[37] A. K. Chandiran, P. Comte, R. Humphry-Baker, F. Kessler, C. Y. Yi, M. K. Nazeeruddin and M. Gratzel, Evaluating the Critical Thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in dye-sensitized solar cells, Adv. Funct. Mater., 23 (2013) 2775-2781.
[38] S. H. Huang, S. Y. Liao, C. C. Wang, C. C. Kei, J. Y. Gan and T. P. Perng, Direct formation of anatase TiO2 nanoparticles on carbon nanotubes by atomic layer deposition and their photocatalytic properties, Nanotechnology, 27 (2016) 405702.
[39] B. Lin, H. Li, H. An, W. B. Hao, J. J. Wei, Y. Z. Dai, C. S. Ma and G. D. Yang, Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well - designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution, Appl. Catal. B-Environ., 220 (2018) 542-552.

Chapter 4
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37.
[2] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422.
[3] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010) 6503-6570.
[4] S. Rajaambal, K. Sivaranjani, C.S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47.
[5] K.I. Liu, Y.C. Hsueh, H.S. Chen, T.P. Perng, Mesoporous TiO2/WO3 hollow fibers with interior interconnected nanotubes for photocatalytic application, J. Mater. Chem. A, 2 (2014) 5387-5393.
[6] K. An, S. Alayoglu, N. Musselwhite, K. Na, G.A. Somorjai, Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-Hexane, J. Am. Chem. Soc., 136 (2014) 6830-6833.
[7] Y. Noda, B. Lee, K. Domen, J.N. Kondo, Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation, Chem. Mater., 20 (2008) 5361-5367.
[8] T. Sreethawong, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Nanocrystalline mesoporous Ta2O5-based photocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H2 evolution, J. Mol. Catal. a-Chem., 235 (2005) 1-11.
[9] T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Facile surfactant-aided sol-gel synthesis of mesoporous-assembled Ta2O5 nanoparticles with enhanced photocatalytic H2 production, J. Mol. Catal. A-Chem., 374 (2013) 94-101.
[10] Y. Takahara, J.N. Kondo, T. Takata, D.L. Lu, K. Domen, Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition, Chem. Mater., 13 (2001) 1194-1199.
[11] G.L. Guo, J.H. Huang, Preparation of mesoporous tantalum oxide and its enhanced photocatalytic activity, Mater. Lett., 65 (2011) 64-66.
[12] L.M. Guo, H. Hagiwara, S. Ida, T. Daio, T. Ishihara, One-pot soft-templating method to synthesize crystalline mesoporous tantalum oxide and its photocatalytic activity for overall water splitting, ACS Appl. Mater. Inter., 5 (2013) 11080-11086.
[13] A. Ovcharova, V. Vasilevsky, I. Borisov, S. Bazhenov, A. Volkov, A. Bildyukevich, V. Volkov, Polysulfone porous hollow fiber membranes for ethylene-ethane separation in gas-liquid membrane contactor, Sep. Purif. Technol., 183 (2017) 162-172.
[14] C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Sep. Purif. Technol., 111 (2013) 43-71.
[15] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515
[15] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater., 11 (1999) 2813-2826.
[16] L.M. Guo, S. Ida, T. Daio, H. Hagiwara, T. Ishihara, In situ carbonization of a soft-template to directly synthesize crystalline mesoporous metal oxides with high surface areas, New J. Chem., 38 (2014) 5846-5855.
[17] I. Rustamov, T. Farcas, F. Ahmed, F. Chan, R. LoBrutto, H.M. McNair, Y.V. Kazakevich, Geometry of chemically modified silica, J. Chromatogr. A, 913 (2001) 49-63.
[18] H.C. Huang, T.E. Hsieh, Preparation and characterizations of tantalum pentoxide (Ta2O5) nanoparticles and UV-curable Ta2O5-acrylic nanocomposites, J. Appl. Polym. Sci., 117 (2010) 1252-1259.
[19] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
[20] X.Y. Chen, T. Yu, X.X. Fan, H.T. Zhang, Z.S. Li, J.H. Ye, Z.G. Zou, Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production, Appl. Surf. Sci., 253 (2007) 8500-8506.
[21] B.A. Lu, X.D. Li, T.H. Wang, E.Q. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis, J. Mater. Chem. A, 1 (2013) 3900-3906.

Chapter 5
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37.
[2] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422.
[3] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energy Rev., 11 (2007) 401-425.
[4] S. Rajaambal, K. Sivaranjani, C.S. Gopinath, Recent developments in solar H2 generation from water splitting, J. Chem. Sci., 127 (2015) 33-47.
[5] T.M. Suzuki, S. Saeki, K. Sekizawa, K. Kitazumi, N. Takahashi, T. Morikawa, Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta2O5 photocathode active under visible light irradiation, Appl. Catal. B-Environ., 202 (2017) 597-604.
[6] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
[7] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W.Q. Song, S.L. Suib, Photocatalytic water splitting - The untamed dream: A review of recent advances, Molecules, 21 (2016) 900.
[8] J.N. Nian, C.C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Int. J. Hydrogen Energy, 33 (2008) 2897-2903.
[9] T. Morikawa, K. Kitazumi, N. Takahashi, T. Arai, T. Kajino, P-type conduction induced by N-doping in alpha-Fe2O3, Appl. Phys. Lett., 98 (2011) 242108.
[10] X.M. Shi, D.L. Ma, Y. Ma, A.M. Hu, N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue, J. Photochem. Photobiol. A, 332 (2017) 487-496.
[11] S.T. Bae, H. Shin, S. Lee, D.W. Kim, H.S. Jung, K.S. Hong, Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution, React. Kinet. Mech. Cat., 106 (2012) 67-81.
[12] T. Murase, H. Irie, K. Hashimoto, Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders, J. Phys. Chem. B, 108 (2004) 15803-15807.
[13] Y. Wang, H.Q. Lu, Y.Y. Wang, J.H. Qiu, J. Wen, K. Zhou, L. Chen, G.L. Song, J.F. Yao, Facile synthesis of TaOxNy photocatalysts with enhanced visible photocatalytic activity, RSC Adv., 6 (2016) 1860-1864.
[14] S. Sato, T. Morikawa, S. Saeki, T. Kajino, T. Motohiro, Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor, Angew. Chem. Int. Edit., 49 (2010) 5101-5105.
[15] T.M. Suzuki, T. Nakamura, S. Saeki, Y. Matsuoka, H. Tanaka, K. Yano, T. Kajino, T. Morikawa, Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction, J. Mater. Chem., 22 (2012) 24584-24590.
[16] S. Shirai, S. Sato, T.M. Suzuki, R. Jinnouchi, N. Ohba, R. Asahi, T. Morikawa, Effects of Ta2O5 surface modification by NH3 on the electronic structure of a Ru-complex/N-Ta2O5 hybrid photocatalyst for selective CO2 reduction, J. Phys. Chem. C, 122 (2018) 1921-1929.
[17] C. Wang, Q.Q. Hu, J.Q. Huang, L. Wu, Z.H. Deng, Z.G. Liu, Y. Liu, Y.G. Cao, Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film, Appl. Surf. Sci., 283 (2013) 188-192.
[18] V.J. Babu, M.K. Kumar, A.S. Nair, T.L. Kheng, S.I. Allakhverdiev, S. Ramakrishna, Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures, Int. J. Hydrogen Energy, 37 (2012) 8897-8904.
[19] S.U. Khan, M. Al-Shahry, W.B. Ingler, Jr., Efficient photochemical water splitting by a chemically modified N-TiO2, Science, 297 (2002) 2243-2245.
[20] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374.
[21] A. Dabirian, H. van’t Spijker, R. van de Krol, Wet ammonia Synthesis of Semiconducting N:Ta2O5, Ta3N5 and β-TaON Films for Photoanode Applications, Energy Procedia., 22 (2012) 15-22.
[22] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515.
[23] C. Joseph, P. Bourson, M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy, J. Raman Spectrosc., 43 (2012) 1146-1150.
[24] E. Nurlaela, S. Ould-Chikh, M. Harb, S. del Gobbo, M. Aouine, E. Puzenat, P. Sautet, K. Domen, J.M. Basset, K. Takanabe, Critical role of the semiconductor electrolyte interface in photocatalytic performance for water-splitting reactions using Ta3N5 particles, Chem. Mater., 26 (2014) 4812-4825.
[25] G. Fu, S.C. Yan, T. Yu, Z.G. Zou, Oxygen related recombination defects in Ta3N5 water splitting photoanode, Appl. Phys. Lett., 107 (2015) 171902.
[26] E. Nurlaela, M. Harb, S. del Gobbo, M. Vashishta, K. Takanabe, Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5, J. Solid State Chem., 229 (2015) 219-227.
[27] A. Fernandez, A. Caballero, V. Jimenez, J.C. Sanchez, A.R. GonzalezElipe, F. Alonso, J.I. Onate, The use of EXAFS spectroscopy to show the structural modifications in metals implanted with N+ ions, Surf. Coat Tech., 83 (1996) 109-114.
[28] C.W. Tsai, H.M. Chen, R.S. Liu, K. Asakura, T.S. Chan, Ni@NiO core-shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol, J. Phys. Chem. C, 115 (2011) 10180-10186.
[29] J.C. Jan, P.D. Babu, H.M. Tsai, C.W. Pao, J.W. Chiou, S.C. Ray, K.P.K. Kumar, W.F. Pong, M.H. Tsai, C.A. Jong, T.S. Chin, Bonding properties and their relation to residual stress and refractive index of amorphous Ta(N,O) films investigated by x-ray absorption spectroscopy, Appl. Phys. Lett., 86 (2005) 161910.
[30] A.O. Ibidunni, R.L. Masaitis, R.L. Opila, A.J. Davenport, H.S. Isaacs, J.A. Taylor, Characterization of the oxidation of tantalum nitride, Surf. Interface Anal., 20 (1993) 559-564.
[31] H. Shin, S.Y. Park, S.T. Bae, S. Lee, K.S. Hong, H.S. Jung, Defect energy levels in Ta2O5 and nitrogen-doped Ta2O5, J. Appl. Phys., 104 (2008) 116108.
[32] T. Morikawa, S. Saeki, T. Suzuki, T. Kajino, T. Motohiro, Dual functional modification by N doping of Ta2O5: P-type conduction in visible-light-activated N-doped Ta2O5, Appl. Phys. Lett., 96 (2010) 142111.
[33] Q.S. Gao, S.N. Wang, Y.C. Ma, Y. Tang, C. Giordano, M. Antonietti, SiO2-surface-assisted controllable synthesis of TaON and Ta3N5 nanoparticles for alkene epoxidation, Angew. Chem. Int. Edit., 51 (2012) 961-965.
[34] R. Jinnouchi, A.V. Akimov, S. Shirai, R. Asahi, O.V. Prezhdo, Upward shift in conduction band of Ta2O5 due to surface dipoles induced by N-doping, J. Phys. Chem. C, 119 (2015) 26925-26936.

Chapter 6
[1] F. Rubio, J. Denis, J.M. Albella, J.M. Martinezduart, Sputtered Ta2O5 antireflection coatings for silicon solar-cells, Thin Solid Films, 90 (1982) 405-408.
[2] C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications, Mat. Sci. Eng. R., 22 (1998) 269-322.
[3] I. Porqueras, J. Marti, E. Bertran, Optical and electrical characterisation of Ta2O5 thin films for ionic conduction applications, Thin Solid Films, 343 (1999) 449-452.
[4] P. Zhang, J.J. Zhang, J.L. Gong, Tantalum-based semiconductors for solar water splitting, Chem. Soc. Rev., 43 (2014) 4395-4422.
[5] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B-Environ., 140 (2013) 559-587.
[6] Z.K. Zheng, B.B. Huang, J.B. Lu, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity, Chem. Commun., 48 (2012) 5733-5735.
[7] X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331 (2011) 746-750.
[8] X.B. Chen, L. Liu, F.Q. Huang, Black titanium dioxide (TiO2) nanomaterials, Chem. Soc. Rev., 44 (2015) 1861-1885.
[9] Y. Liu, L.H. Tian, X.Y. Tan, X. Li, X.B. Chen, Synthesis, properties, and applications of black titanium dioxide nanomaterials, Sci. Bull., 62 (2017) 431-441.
[10] T. Xia, Y.L. Zhang, J. Murowchick, X.B. Chen, Vacuum-treated titanium dioxide nanocrystals: Optical properties, surface disorder, oxygen vacancy, and photocatalytic activities, Catal. Today, 225 (2014) 2-9.
[11] Y.C. Ling, G.M. Wang, J. Reddy, C.C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angew. Chem. Int. Edit., 51 (2012) 4074-4079.
[12] T. Onozato, T. Katase, A. Yamamoto, S. Katayama, K. Matsushima, N. Itagaki, H. Yoshida, H. Ohta, Optoelectronic properties of valence-state-controlled amorphous niobium oxide, J. Phys.-Condens. Mat., 28 (2016) 255001.
[13] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127.
[14] T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, D.I. Koukis, D.B. Tanner, D.J. Arenas, Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films, J. Appl. Phys., 114 (2013) 083515.
[15] C. Joseph, P. Bourson, M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy, J. Raman Spectrosc., 43 (2012) 1146-1150.
[16] T. Tsuchiya, H. Imai, S. Miyoshi, P.A. Glans, J.H. Guo, S. Yamaguchi, X-Ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry, Phys. Chem. Chem. Phys., 13 (2011) 17013-17018.
[17] R.S. Devan, C.L. Lin, S.Y. Gao, C.L. Cheng, Y. Liou, Y.R. Ma, Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks, Phys. Chem. Chem. Phys., 13 (2011) 13441-13446.
[18] P.S. Dobal, R.S. Katiyar, Y. Jiang, R. Guo, A.S. Bhalla, Raman scattering study of a phase transition in tantalum pentoxide, J. Raman Spectrosc., 31 (2000) 1061-1065.
[19] R.S. Devan, C.L. Lin, J.H. Lin, T.K. Wen, R.A. Patil, Y.R. Ma, Effective photoluminescence in a large-area array of Ta2O5 nanodots, J. Nanosci. Nanotechno., 13 (2013) 1001-1005.
[20] G. Fu, S.C. Yan, T. Yu, Z.G. Zou, Oxygen related recombination defects in Ta3N5 water splitting photoanode, Appl. Phys. Lett., 107 (2015) 171902.
[21] L.E. Gomes, M.F. da Silva, R.V. Goncalves, G. Machado, G.B. Alcantara, A.R.L. Caires, H. Wender, Synthesis and visible-light-driven photocatalytic activity of Ta4+ self-doped gray Ta2O5 nanoparticles, J. Phys. Chem. C, 122 (2018) 6014-6025.

Chapter 7
[1] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
[2] A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup, Inter. J. Hydrogen Energy, 32 (2007) 2664-2672.
[3] G.X. Cao, Y.G. Li, Q.H. Zhang, H.Z. Wang, Hierarchical Porous, Self-supporting La- and F-codoped TiO2 with high durability for continuous-flow visible light photocatalysis, J. Amer. Ceram. Soc., 93 (2010) 1252-1255.
[4] B.A. Lu, X.D. Li, T.H. Wang, E.Q. Xie, Z. Xu, WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis, J. Mater. Chem. A, 1 (2013) 3900-3906.
[5] T.J. Kemp, R.A. McIntyre, Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride), Polym. Degrad. Stab., 91 (2006) 165-194.
[6] P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal. B-Envir., 73 (2007) 51-59.
[7] K.M. Reddy, B. Baruwati, M. Jayalakshmi, M.M. Rao, S.V. Manorama, S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study, J. Solid State Chem., 178 (2005) 3352-3358.
[8] H. Wang, J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J. Phy.-Condens. Matter, 18 (2006) 421-434.
[9] C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Separ. Purif. Technol., 111 (2013) 43-71.
[10] K.I. Liu, C.C. Kei, M. Mishra, P.H. Chen, W.S. Liu, T.P. Perng, Uniform coating of TiO2 on high aspect ratio substrates with complex morphology by vertical forced-flow atomic layer deposition, RSC Adv., 7 (2017) 34730-34735.
[11] S.H. Huang, C.C. Wang, S.Y. Liao, J.Y. Gan, T.P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties, Thin Solid Films, 616 (2016) 151-159.
[12] Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition, J. Phys. Chem. C, 115 (2011) 9498-9502.
[13] W.T. Chang, Y.C. Hsueh, S.H. Huang, K.I. Liu, C.C. Kei, T.P. Perng, Fabrication of Ag-loaded multi-walled TiO2 nanotube arrays and their photocatalytic activity, J. Mater. Chem. A, 1 (2013) 1987-1991.
[14] C.C. Wang, C.C. Kei, Y. Tao, T.P. Perng, Photoluminescence of GaQ3-Al2O3 core-shell nanowires, Electrochem. Solid-State Lett., 12 (2009) K49-K52.
[15] C.Y. Su, T.H. Yang, V. Gurylev, S.H. Huang, J.M. Wu, T.P. Perng, Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis, Nanotechnology, 26 (2015).
[16] K.I. Liu, C.Y. Su, T.P. Perng, Highly porous N-doped TiO2 hollow fibers with internal three-dimensional interconnected nanotubes for photocatalytic hydrogen production, RSC Adv., 5 (2015) 88367-88374.
[17] Y.J. Liu, C.X. Xu, Z. Zhu, J.F. Lu, A.G. Manohari, Z.L. Shi, Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and bacteriostasis, Mater. Res. Bull., 98 (2018) 64-69.
[18] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.
[19] V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys., 83 (1998) 5447-5451.

Chapter 8
[1] H. Zhang, F. Liu, H. Wu, X. Cao, J. H. Sun and W. W. Lei, In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light, RSC Adv., 7 (2017) 40327-40333.
[2] J. Wang, J. Huang, H. Xie and A. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method, Int. J. Hydrogen Energy, 39 (2014) 6354-6363.
[3] Q. Zhang, H. Wang, S. Chen, Y. Su and X. Quan, Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production, RSC Adv. 7 (2017) 13223-13227.
[4] H. Yan and H. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloys Compd. 509 (2011) L26-L29.
[5] Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang and Z. Zhao, One-step synthesis of nanostructured g-C3N4-TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Appli. Catal. B: Environ., 230 (2018)260-268.
[6] T.M. Suzuki, T. Nakamura, S. Saeki, Y. Matsuoka, H. Tanaka, K. Yano, T. Kajino, T. Morikawa, Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction, J. Mater. Chem., 22 (2012) 24584-24590.
[7] G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, Gray Ta2O5 nanowires with greatly enhanced photocatalytic performance, ACS Appl. Mater. Inter., 8 (2016) 122-127.
[8] T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Facile surfactant-aided sol-gel synthesis of mesoporous-assembled Ta2O5 nanoparticles with enhanced photocatalytic H2 production, J. Mol. Catal. A-Chem., 374 (2013) 94-101.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *